u-boot/drivers/ufs/ufs.c
Faiz Abbas 7feafb0ae4 ufs: Add Initial Support for UFS subsystem
Add Support for UFS Host Controller Interface (UFSHCI) for communicating
with Universal Flash Storage (UFS) devices. The steps to initialize the
host controller interface are the following:

- Initiate the Host Controller Initialization process by writing to the
Host controller enable register.
- Configure the Host Controller base address registers by allocating a
host memory space and related data structures.
- Unipro link startup procedure
- Check for connected device
- Configure UFS host controller to process requests

Also register this host controller as a SCSI host controller.

Taken from Linux Kernel v5.2 (drivers/scsi/ufs/ufshcd.c) and ported to
U-boot.

Signed-off-by: Faiz Abbas <faiz_abbas@ti.com>
2019-10-23 20:47:12 -04:00

1968 lines
49 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/**
* ufs.c - Universal Flash Subsystem (UFS) driver
*
* Taken from Linux Kernel v5.2 (drivers/scsi/ufs/ufshcd.c) and ported
* to u-boot.
*
* Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com
*/
#include <charset.h>
#include <common.h>
#include <dm.h>
#include <dm/lists.h>
#include <dm/device-internal.h>
#include <malloc.h>
#include <hexdump.h>
#include <scsi.h>
#include <asm/dma-mapping.h>
#include "ufs.h"
#define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
UTP_TASK_REQ_COMPL |\
UFSHCD_ERROR_MASK)
/* maximum number of link-startup retries */
#define DME_LINKSTARTUP_RETRIES 3
/* maximum number of retries for a general UIC command */
#define UFS_UIC_COMMAND_RETRIES 3
/* Query request retries */
#define QUERY_REQ_RETRIES 3
/* Query request timeout */
#define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
/* maximum timeout in ms for a general UIC command */
#define UFS_UIC_CMD_TIMEOUT 1000
/* NOP OUT retries waiting for NOP IN response */
#define NOP_OUT_RETRIES 10
/* Timeout after 30 msecs if NOP OUT hangs without response */
#define NOP_OUT_TIMEOUT 30 /* msecs */
/* Only use one Task Tag for all requests */
#define TASK_TAG 0
/* Expose the flag value from utp_upiu_query.value */
#define MASK_QUERY_UPIU_FLAG_LOC 0xFF
#define MAX_PRDT_ENTRY 262144
/* maximum bytes per request */
#define UFS_MAX_BYTES (128 * 256 * 1024)
static inline bool ufshcd_is_hba_active(struct ufs_hba *hba);
static inline void ufshcd_hba_stop(struct ufs_hba *hba);
static int ufshcd_hba_enable(struct ufs_hba *hba);
/*
* ufshcd_wait_for_register - wait for register value to change
*/
static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
u32 val, unsigned long timeout_ms)
{
int err = 0;
unsigned long start = get_timer(0);
/* ignore bits that we don't intend to wait on */
val = val & mask;
while ((ufshcd_readl(hba, reg) & mask) != val) {
if (get_timer(start) > timeout_ms) {
if ((ufshcd_readl(hba, reg) & mask) != val)
err = -ETIMEDOUT;
break;
}
}
return err;
}
/**
* ufshcd_init_pwr_info - setting the POR (power on reset)
* values in hba power info
*/
static void ufshcd_init_pwr_info(struct ufs_hba *hba)
{
hba->pwr_info.gear_rx = UFS_PWM_G1;
hba->pwr_info.gear_tx = UFS_PWM_G1;
hba->pwr_info.lane_rx = 1;
hba->pwr_info.lane_tx = 1;
hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
hba->pwr_info.hs_rate = 0;
}
/**
* ufshcd_print_pwr_info - print power params as saved in hba
* power info
*/
static void ufshcd_print_pwr_info(struct ufs_hba *hba)
{
static const char * const names[] = {
"INVALID MODE",
"FAST MODE",
"SLOW_MODE",
"INVALID MODE",
"FASTAUTO_MODE",
"SLOWAUTO_MODE",
"INVALID MODE",
};
dev_err(hba->dev, "[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
names[hba->pwr_info.pwr_rx],
names[hba->pwr_info.pwr_tx],
hba->pwr_info.hs_rate);
}
/**
* ufshcd_ready_for_uic_cmd - Check if controller is ready
* to accept UIC commands
*/
static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
{
if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
return true;
else
return false;
}
/**
* ufshcd_get_uic_cmd_result - Get the UIC command result
*/
static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
MASK_UIC_COMMAND_RESULT;
}
/**
* ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
*/
static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
}
/**
* ufshcd_is_device_present - Check if any device connected to
* the host controller
*/
static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
DEVICE_PRESENT) ? true : false;
}
/**
* ufshcd_send_uic_cmd - UFS Interconnect layer command API
*
*/
static int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
{
unsigned long start = 0;
u32 intr_status;
u32 enabled_intr_status;
if (!ufshcd_ready_for_uic_cmd(hba)) {
dev_err(hba->dev,
"Controller not ready to accept UIC commands\n");
return -EIO;
}
debug("sending uic command:%d\n", uic_cmd->command);
/* Write Args */
ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
/* Write UIC Cmd */
ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
REG_UIC_COMMAND);
start = get_timer(0);
do {
intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
enabled_intr_status = intr_status & hba->intr_mask;
ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
if (get_timer(start) > UFS_UIC_CMD_TIMEOUT) {
dev_err(hba->dev,
"Timedout waiting for UIC response\n");
return -ETIMEDOUT;
}
if (enabled_intr_status & UFSHCD_ERROR_MASK) {
dev_err(hba->dev, "Error in status:%08x\n",
enabled_intr_status);
return -1;
}
} while (!(enabled_intr_status & UFSHCD_UIC_MASK));
uic_cmd->argument2 = ufshcd_get_uic_cmd_result(hba);
uic_cmd->argument3 = ufshcd_get_dme_attr_val(hba);
debug("Sent successfully\n");
return 0;
}
/**
* ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
*
*/
int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, u8 attr_set,
u32 mib_val, u8 peer)
{
struct uic_command uic_cmd = {0};
static const char *const action[] = {
"dme-set",
"dme-peer-set"
};
const char *set = action[!!peer];
int ret;
int retries = UFS_UIC_COMMAND_RETRIES;
uic_cmd.command = peer ?
UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
uic_cmd.argument1 = attr_sel;
uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
uic_cmd.argument3 = mib_val;
do {
/* for peer attributes we retry upon failure */
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
} while (ret && peer && --retries);
if (ret)
dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
set, UIC_GET_ATTR_ID(attr_sel), mib_val,
UFS_UIC_COMMAND_RETRIES - retries);
return ret;
}
/**
* ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
*
*/
int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
u32 *mib_val, u8 peer)
{
struct uic_command uic_cmd = {0};
static const char *const action[] = {
"dme-get",
"dme-peer-get"
};
const char *get = action[!!peer];
int ret;
int retries = UFS_UIC_COMMAND_RETRIES;
uic_cmd.command = peer ?
UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
uic_cmd.argument1 = attr_sel;
do {
/* for peer attributes we retry upon failure */
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
get, UIC_GET_ATTR_ID(attr_sel), ret);
} while (ret && peer && --retries);
if (ret)
dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
get, UIC_GET_ATTR_ID(attr_sel),
UFS_UIC_COMMAND_RETRIES - retries);
if (mib_val && !ret)
*mib_val = uic_cmd.argument3;
return ret;
}
static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
{
u32 tx_lanes, i, err = 0;
if (!peer)
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&tx_lanes);
else
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&tx_lanes);
for (i = 0; i < tx_lanes; i++) {
if (!peer)
err = ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
0);
else
err = ufshcd_dme_peer_set(hba,
UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
0);
if (err) {
dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
__func__, peer, i, err);
break;
}
}
return err;
}
static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
{
return ufshcd_disable_tx_lcc(hba, true);
}
/**
* ufshcd_dme_link_startup - Notify Unipro to perform link startup
*
*/
static int ufshcd_dme_link_startup(struct ufs_hba *hba)
{
struct uic_command uic_cmd = {0};
int ret;
uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev,
"dme-link-startup: error code %d\n", ret);
return ret;
}
/**
* ufshcd_disable_intr_aggr - Disables interrupt aggregation.
*
*/
static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
{
ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
}
/**
* ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
*/
static inline int ufshcd_get_lists_status(u32 reg)
{
return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
}
/**
* ufshcd_enable_run_stop_reg - Enable run-stop registers,
* When run-stop registers are set to 1, it indicates the
* host controller that it can process the requests
*/
static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
{
ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
REG_UTP_TASK_REQ_LIST_RUN_STOP);
ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
}
/**
* ufshcd_enable_intr - enable interrupts
*/
static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
{
u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
u32 rw;
if (hba->version == UFSHCI_VERSION_10) {
rw = set & INTERRUPT_MASK_RW_VER_10;
set = rw | ((set ^ intrs) & intrs);
} else {
set |= intrs;
}
ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
hba->intr_mask = set;
}
/**
* ufshcd_make_hba_operational - Make UFS controller operational
*
* To bring UFS host controller to operational state,
* 1. Enable required interrupts
* 2. Configure interrupt aggregation
* 3. Program UTRL and UTMRL base address
* 4. Configure run-stop-registers
*
*/
static int ufshcd_make_hba_operational(struct ufs_hba *hba)
{
int err = 0;
u32 reg;
/* Enable required interrupts */
ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
/* Disable interrupt aggregation */
ufshcd_disable_intr_aggr(hba);
/* Configure UTRL and UTMRL base address registers */
ufshcd_writel(hba, lower_32_bits((dma_addr_t)hba->utrdl),
REG_UTP_TRANSFER_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits((dma_addr_t)hba->utrdl),
REG_UTP_TRANSFER_REQ_LIST_BASE_H);
ufshcd_writel(hba, lower_32_bits((dma_addr_t)hba->utmrdl),
REG_UTP_TASK_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits((dma_addr_t)hba->utmrdl),
REG_UTP_TASK_REQ_LIST_BASE_H);
/*
* UCRDY, UTMRLDY and UTRLRDY bits must be 1
*/
reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
if (!(ufshcd_get_lists_status(reg))) {
ufshcd_enable_run_stop_reg(hba);
} else {
dev_err(hba->dev,
"Host controller not ready to process requests");
err = -EIO;
goto out;
}
out:
return err;
}
/**
* ufshcd_link_startup - Initialize unipro link startup
*/
static int ufshcd_link_startup(struct ufs_hba *hba)
{
int ret;
int retries = DME_LINKSTARTUP_RETRIES;
bool link_startup_again = true;
link_startup:
do {
ufshcd_ops_link_startup_notify(hba, PRE_CHANGE);
ret = ufshcd_dme_link_startup(hba);
/* check if device is detected by inter-connect layer */
if (!ret && !ufshcd_is_device_present(hba)) {
dev_err(hba->dev, "%s: Device not present\n", __func__);
ret = -ENXIO;
goto out;
}
/*
* DME link lost indication is only received when link is up,
* but we can't be sure if the link is up until link startup
* succeeds. So reset the local Uni-Pro and try again.
*/
if (ret && ufshcd_hba_enable(hba))
goto out;
} while (ret && retries--);
if (ret)
/* failed to get the link up... retire */
goto out;
if (link_startup_again) {
link_startup_again = false;
retries = DME_LINKSTARTUP_RETRIES;
goto link_startup;
}
/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
ufshcd_init_pwr_info(hba);
if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
ret = ufshcd_disable_device_tx_lcc(hba);
if (ret)
goto out;
}
/* Include any host controller configuration via UIC commands */
ret = ufshcd_ops_link_startup_notify(hba, POST_CHANGE);
if (ret)
goto out;
ret = ufshcd_make_hba_operational(hba);
out:
if (ret)
dev_err(hba->dev, "link startup failed %d\n", ret);
return ret;
}
/**
* ufshcd_hba_stop - Send controller to reset state
*/
static inline void ufshcd_hba_stop(struct ufs_hba *hba)
{
int err;
ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
CONTROLLER_ENABLE, CONTROLLER_DISABLE,
10);
if (err)
dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
}
/**
* ufshcd_is_hba_active - Get controller state
*/
static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
? false : true;
}
/**
* ufshcd_hba_start - Start controller initialization sequence
*/
static inline void ufshcd_hba_start(struct ufs_hba *hba)
{
ufshcd_writel(hba, CONTROLLER_ENABLE, REG_CONTROLLER_ENABLE);
}
/**
* ufshcd_hba_enable - initialize the controller
*/
static int ufshcd_hba_enable(struct ufs_hba *hba)
{
int retry;
if (!ufshcd_is_hba_active(hba))
/* change controller state to "reset state" */
ufshcd_hba_stop(hba);
ufshcd_ops_hce_enable_notify(hba, PRE_CHANGE);
/* start controller initialization sequence */
ufshcd_hba_start(hba);
/*
* To initialize a UFS host controller HCE bit must be set to 1.
* During initialization the HCE bit value changes from 1->0->1.
* When the host controller completes initialization sequence
* it sets the value of HCE bit to 1. The same HCE bit is read back
* to check if the controller has completed initialization sequence.
* So without this delay the value HCE = 1, set in the previous
* instruction might be read back.
* This delay can be changed based on the controller.
*/
mdelay(1);
/* wait for the host controller to complete initialization */
retry = 10;
while (ufshcd_is_hba_active(hba)) {
if (retry) {
retry--;
} else {
dev_err(hba->dev, "Controller enable failed\n");
return -EIO;
}
mdelay(5);
}
/* enable UIC related interrupts */
ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
ufshcd_ops_hce_enable_notify(hba, POST_CHANGE);
return 0;
}
/**
* ufshcd_host_memory_configure - configure local reference block with
* memory offsets
*/
static void ufshcd_host_memory_configure(struct ufs_hba *hba)
{
struct utp_transfer_req_desc *utrdlp;
dma_addr_t cmd_desc_dma_addr;
u16 response_offset;
u16 prdt_offset;
utrdlp = hba->utrdl;
cmd_desc_dma_addr = (dma_addr_t)hba->ucdl;
utrdlp->command_desc_base_addr_lo =
cpu_to_le32(lower_32_bits(cmd_desc_dma_addr));
utrdlp->command_desc_base_addr_hi =
cpu_to_le32(upper_32_bits(cmd_desc_dma_addr));
response_offset = offsetof(struct utp_transfer_cmd_desc, response_upiu);
prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
utrdlp->response_upiu_offset = cpu_to_le16(response_offset >> 2);
utrdlp->prd_table_offset = cpu_to_le16(prdt_offset >> 2);
utrdlp->response_upiu_length = cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
hba->ucd_req_ptr = (struct utp_upiu_req *)hba->ucdl;
hba->ucd_rsp_ptr =
(struct utp_upiu_rsp *)&hba->ucdl->response_upiu;
hba->ucd_prdt_ptr =
(struct ufshcd_sg_entry *)&hba->ucdl->prd_table;
}
/**
* ufshcd_memory_alloc - allocate memory for host memory space data structures
*/
static int ufshcd_memory_alloc(struct ufs_hba *hba)
{
/* Allocate one Transfer Request Descriptor
* Should be aligned to 1k boundary.
*/
hba->utrdl = memalign(1024, sizeof(struct utp_transfer_req_desc));
if (!hba->utrdl) {
dev_err(hba->dev, "Transfer Descriptor memory allocation failed\n");
return -ENOMEM;
}
/* Allocate one Command Descriptor
* Should be aligned to 1k boundary.
*/
hba->ucdl = memalign(1024, sizeof(struct utp_transfer_cmd_desc));
if (!hba->ucdl) {
dev_err(hba->dev, "Command descriptor memory allocation failed\n");
return -ENOMEM;
}
return 0;
}
/**
* ufshcd_get_intr_mask - Get the interrupt bit mask
*/
static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
{
u32 intr_mask = 0;
switch (hba->version) {
case UFSHCI_VERSION_10:
intr_mask = INTERRUPT_MASK_ALL_VER_10;
break;
case UFSHCI_VERSION_11:
case UFSHCI_VERSION_20:
intr_mask = INTERRUPT_MASK_ALL_VER_11;
break;
case UFSHCI_VERSION_21:
default:
intr_mask = INTERRUPT_MASK_ALL_VER_21;
break;
}
return intr_mask;
}
/**
* ufshcd_get_ufs_version - Get the UFS version supported by the HBA
*/
static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UFS_VERSION);
}
/**
* ufshcd_get_upmcrs - Get the power mode change request status
*/
static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
}
/**
* ufshcd_prepare_req_desc_hdr() - Fills the requests header
* descriptor according to request
*/
static void ufshcd_prepare_req_desc_hdr(struct utp_transfer_req_desc *req_desc,
u32 *upiu_flags,
enum dma_data_direction cmd_dir)
{
u32 data_direction;
u32 dword_0;
if (cmd_dir == DMA_FROM_DEVICE) {
data_direction = UTP_DEVICE_TO_HOST;
*upiu_flags = UPIU_CMD_FLAGS_READ;
} else if (cmd_dir == DMA_TO_DEVICE) {
data_direction = UTP_HOST_TO_DEVICE;
*upiu_flags = UPIU_CMD_FLAGS_WRITE;
} else {
data_direction = UTP_NO_DATA_TRANSFER;
*upiu_flags = UPIU_CMD_FLAGS_NONE;
}
dword_0 = data_direction | (0x1 << UPIU_COMMAND_TYPE_OFFSET);
/* Enable Interrupt for command */
dword_0 |= UTP_REQ_DESC_INT_CMD;
/* Transfer request descriptor header fields */
req_desc->header.dword_0 = cpu_to_le32(dword_0);
/* dword_1 is reserved, hence it is set to 0 */
req_desc->header.dword_1 = 0;
/*
* assigning invalid value for command status. Controller
* updates OCS on command completion, with the command
* status
*/
req_desc->header.dword_2 =
cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
/* dword_3 is reserved, hence it is set to 0 */
req_desc->header.dword_3 = 0;
req_desc->prd_table_length = 0;
}
static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
u32 upiu_flags)
{
struct utp_upiu_req *ucd_req_ptr = hba->ucd_req_ptr;
struct ufs_query *query = &hba->dev_cmd.query;
u16 len = be16_to_cpu(query->request.upiu_req.length);
/* Query request header */
ucd_req_ptr->header.dword_0 =
UPIU_HEADER_DWORD(UPIU_TRANSACTION_QUERY_REQ,
upiu_flags, 0, TASK_TAG);
ucd_req_ptr->header.dword_1 =
UPIU_HEADER_DWORD(0, query->request.query_func,
0, 0);
/* Data segment length only need for WRITE_DESC */
if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
ucd_req_ptr->header.dword_2 =
UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
else
ucd_req_ptr->header.dword_2 = 0;
/* Copy the Query Request buffer as is */
memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, QUERY_OSF_SIZE);
/* Copy the Descriptor */
if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
memcpy(ucd_req_ptr + 1, query->descriptor, len);
memset(hba->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
static inline void ufshcd_prepare_utp_nop_upiu(struct ufs_hba *hba)
{
struct utp_upiu_req *ucd_req_ptr = hba->ucd_req_ptr;
memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
/* command descriptor fields */
ucd_req_ptr->header.dword_0 =
UPIU_HEADER_DWORD(UPIU_TRANSACTION_NOP_OUT, 0, 0, 0x1f);
/* clear rest of the fields of basic header */
ucd_req_ptr->header.dword_1 = 0;
ucd_req_ptr->header.dword_2 = 0;
memset(hba->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
/**
* ufshcd_comp_devman_upiu - UFS Protocol Information Unit(UPIU)
* for Device Management Purposes
*/
static int ufshcd_comp_devman_upiu(struct ufs_hba *hba,
enum dev_cmd_type cmd_type)
{
u32 upiu_flags;
int ret = 0;
struct utp_transfer_req_desc *req_desc = hba->utrdl;
hba->dev_cmd.type = cmd_type;
ufshcd_prepare_req_desc_hdr(req_desc, &upiu_flags, DMA_NONE);
switch (cmd_type) {
case DEV_CMD_TYPE_QUERY:
ufshcd_prepare_utp_query_req_upiu(hba, upiu_flags);
break;
case DEV_CMD_TYPE_NOP:
ufshcd_prepare_utp_nop_upiu(hba);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
{
unsigned long start;
u32 intr_status;
u32 enabled_intr_status;
ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
start = get_timer(0);
do {
intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
enabled_intr_status = intr_status & hba->intr_mask;
ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
if (get_timer(start) > QUERY_REQ_TIMEOUT) {
dev_err(hba->dev,
"Timedout waiting for UTP response\n");
return -ETIMEDOUT;
}
if (enabled_intr_status & UFSHCD_ERROR_MASK) {
dev_err(hba->dev, "Error in status:%08x\n",
enabled_intr_status);
return -1;
}
} while (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL));
return 0;
}
/**
* ufshcd_get_req_rsp - returns the TR response transaction type
*/
static inline int ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
}
/**
* ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
*
*/
static inline int ufshcd_get_tr_ocs(struct ufs_hba *hba)
{
return le32_to_cpu(hba->utrdl->header.dword_2) & MASK_OCS;
}
static inline int ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
}
static int ufshcd_check_query_response(struct ufs_hba *hba)
{
struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
/* Get the UPIU response */
query_res->response = ufshcd_get_rsp_upiu_result(hba->ucd_rsp_ptr) >>
UPIU_RSP_CODE_OFFSET;
return query_res->response;
}
/**
* ufshcd_copy_query_response() - Copy the Query Response and the data
* descriptor
*/
static int ufshcd_copy_query_response(struct ufs_hba *hba)
{
struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
memcpy(&query_res->upiu_res, &hba->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
/* Get the descriptor */
if (hba->dev_cmd.query.descriptor &&
hba->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
u8 *descp = (u8 *)hba->ucd_rsp_ptr +
GENERAL_UPIU_REQUEST_SIZE;
u16 resp_len;
u16 buf_len;
/* data segment length */
resp_len = be32_to_cpu(hba->ucd_rsp_ptr->header.dword_2) &
MASK_QUERY_DATA_SEG_LEN;
buf_len =
be16_to_cpu(hba->dev_cmd.query.request.upiu_req.length);
if (likely(buf_len >= resp_len)) {
memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
} else {
dev_warn(hba->dev,
"%s: Response size is bigger than buffer",
__func__);
return -EINVAL;
}
}
return 0;
}
/**
* ufshcd_exec_dev_cmd - API for sending device management requests
*/
static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, enum dev_cmd_type cmd_type,
int timeout)
{
int err;
int resp;
err = ufshcd_comp_devman_upiu(hba, cmd_type);
if (err)
return err;
err = ufshcd_send_command(hba, TASK_TAG);
if (err)
return err;
err = ufshcd_get_tr_ocs(hba);
if (err) {
dev_err(hba->dev, "Error in OCS:%d\n", err);
return -EINVAL;
}
resp = ufshcd_get_req_rsp(hba->ucd_rsp_ptr);
switch (resp) {
case UPIU_TRANSACTION_NOP_IN:
break;
case UPIU_TRANSACTION_QUERY_RSP:
err = ufshcd_check_query_response(hba);
if (!err)
err = ufshcd_copy_query_response(hba);
break;
case UPIU_TRANSACTION_REJECT_UPIU:
/* TODO: handle Reject UPIU Response */
err = -EPERM;
dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
__func__);
break;
default:
err = -EINVAL;
dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
__func__, resp);
}
return err;
}
/**
* ufshcd_init_query() - init the query response and request parameters
*/
static inline void ufshcd_init_query(struct ufs_hba *hba,
struct ufs_query_req **request,
struct ufs_query_res **response,
enum query_opcode opcode,
u8 idn, u8 index, u8 selector)
{
*request = &hba->dev_cmd.query.request;
*response = &hba->dev_cmd.query.response;
memset(*request, 0, sizeof(struct ufs_query_req));
memset(*response, 0, sizeof(struct ufs_query_res));
(*request)->upiu_req.opcode = opcode;
(*request)->upiu_req.idn = idn;
(*request)->upiu_req.index = index;
(*request)->upiu_req.selector = selector;
}
/**
* ufshcd_query_flag() - API function for sending flag query requests
*/
int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
enum flag_idn idn, bool *flag_res)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err, index = 0, selector = 0;
int timeout = QUERY_REQ_TIMEOUT;
ufshcd_init_query(hba, &request, &response, opcode, idn, index,
selector);
switch (opcode) {
case UPIU_QUERY_OPCODE_SET_FLAG:
case UPIU_QUERY_OPCODE_CLEAR_FLAG:
case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
break;
case UPIU_QUERY_OPCODE_READ_FLAG:
request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
if (!flag_res) {
/* No dummy reads */
dev_err(hba->dev, "%s: Invalid argument for read request\n",
__func__);
err = -EINVAL;
goto out;
}
break;
default:
dev_err(hba->dev,
"%s: Expected query flag opcode but got = %d\n",
__func__, opcode);
err = -EINVAL;
goto out;
}
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
if (err) {
dev_err(hba->dev,
"%s: Sending flag query for idn %d failed, err = %d\n",
__func__, idn, err);
goto out;
}
if (flag_res)
*flag_res = (be32_to_cpu(response->upiu_res.value) &
MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
out:
return err;
}
static int ufshcd_query_flag_retry(struct ufs_hba *hba,
enum query_opcode opcode,
enum flag_idn idn, bool *flag_res)
{
int ret;
int retries;
for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
ret = ufshcd_query_flag(hba, opcode, idn, flag_res);
if (ret)
dev_dbg(hba->dev,
"%s: failed with error %d, retries %d\n",
__func__, ret, retries);
else
break;
}
if (ret)
dev_err(hba->dev,
"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
__func__, opcode, idn, ret, retries);
return ret;
}
static int __ufshcd_query_descriptor(struct ufs_hba *hba,
enum query_opcode opcode,
enum desc_idn idn, u8 index, u8 selector,
u8 *desc_buf, int *buf_len)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err;
if (!desc_buf) {
dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
__func__, opcode);
err = -EINVAL;
goto out;
}
if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
__func__, *buf_len);
err = -EINVAL;
goto out;
}
ufshcd_init_query(hba, &request, &response, opcode, idn, index,
selector);
hba->dev_cmd.query.descriptor = desc_buf;
request->upiu_req.length = cpu_to_be16(*buf_len);
switch (opcode) {
case UPIU_QUERY_OPCODE_WRITE_DESC:
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
break;
case UPIU_QUERY_OPCODE_READ_DESC:
request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
break;
default:
dev_err(hba->dev, "%s: Expected query descriptor opcode but got = 0x%.2x\n",
__func__, opcode);
err = -EINVAL;
goto out;
}
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
if (err) {
dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
__func__, opcode, idn, index, err);
goto out;
}
hba->dev_cmd.query.descriptor = NULL;
*buf_len = be16_to_cpu(response->upiu_res.length);
out:
return err;
}
/**
* ufshcd_query_descriptor_retry - API function for sending descriptor requests
*/
int ufshcd_query_descriptor_retry(struct ufs_hba *hba, enum query_opcode opcode,
enum desc_idn idn, u8 index, u8 selector,
u8 *desc_buf, int *buf_len)
{
int err;
int retries;
for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
err = __ufshcd_query_descriptor(hba, opcode, idn, index,
selector, desc_buf, buf_len);
if (!err || err == -EINVAL)
break;
}
return err;
}
/**
* ufshcd_read_desc_length - read the specified descriptor length from header
*/
static int ufshcd_read_desc_length(struct ufs_hba *hba, enum desc_idn desc_id,
int desc_index, int *desc_length)
{
int ret;
u8 header[QUERY_DESC_HDR_SIZE];
int header_len = QUERY_DESC_HDR_SIZE;
if (desc_id >= QUERY_DESC_IDN_MAX)
return -EINVAL;
ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
desc_id, desc_index, 0, header,
&header_len);
if (ret) {
dev_err(hba->dev, "%s: Failed to get descriptor header id %d",
__func__, desc_id);
return ret;
} else if (desc_id != header[QUERY_DESC_DESC_TYPE_OFFSET]) {
dev_warn(hba->dev, "%s: descriptor header id %d and desc_id %d mismatch",
__func__, header[QUERY_DESC_DESC_TYPE_OFFSET],
desc_id);
ret = -EINVAL;
}
*desc_length = header[QUERY_DESC_LENGTH_OFFSET];
return ret;
}
static void ufshcd_init_desc_sizes(struct ufs_hba *hba)
{
int err;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_DEVICE, 0,
&hba->desc_size.dev_desc);
if (err)
hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_POWER, 0,
&hba->desc_size.pwr_desc);
if (err)
hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_INTERCONNECT, 0,
&hba->desc_size.interc_desc);
if (err)
hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_CONFIGURATION, 0,
&hba->desc_size.conf_desc);
if (err)
hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_UNIT, 0,
&hba->desc_size.unit_desc);
if (err)
hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_GEOMETRY, 0,
&hba->desc_size.geom_desc);
if (err)
hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE;
err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_HEALTH, 0,
&hba->desc_size.hlth_desc);
if (err)
hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE;
}
/**
* ufshcd_map_desc_id_to_length - map descriptor IDN to its length
*
*/
int ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
int *desc_len)
{
switch (desc_id) {
case QUERY_DESC_IDN_DEVICE:
*desc_len = hba->desc_size.dev_desc;
break;
case QUERY_DESC_IDN_POWER:
*desc_len = hba->desc_size.pwr_desc;
break;
case QUERY_DESC_IDN_GEOMETRY:
*desc_len = hba->desc_size.geom_desc;
break;
case QUERY_DESC_IDN_CONFIGURATION:
*desc_len = hba->desc_size.conf_desc;
break;
case QUERY_DESC_IDN_UNIT:
*desc_len = hba->desc_size.unit_desc;
break;
case QUERY_DESC_IDN_INTERCONNECT:
*desc_len = hba->desc_size.interc_desc;
break;
case QUERY_DESC_IDN_STRING:
*desc_len = QUERY_DESC_MAX_SIZE;
break;
case QUERY_DESC_IDN_HEALTH:
*desc_len = hba->desc_size.hlth_desc;
break;
case QUERY_DESC_IDN_RFU_0:
case QUERY_DESC_IDN_RFU_1:
*desc_len = 0;
break;
default:
*desc_len = 0;
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
/**
* ufshcd_read_desc_param - read the specified descriptor parameter
*
*/
int ufshcd_read_desc_param(struct ufs_hba *hba, enum desc_idn desc_id,
int desc_index, u8 param_offset, u8 *param_read_buf,
u8 param_size)
{
int ret;
u8 *desc_buf;
int buff_len;
bool is_kmalloc = true;
/* Safety check */
if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
return -EINVAL;
/* Get the max length of descriptor from structure filled up at probe
* time.
*/
ret = ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
/* Sanity checks */
if (ret || !buff_len) {
dev_err(hba->dev, "%s: Failed to get full descriptor length",
__func__);
return ret;
}
/* Check whether we need temp memory */
if (param_offset != 0 || param_size < buff_len) {
desc_buf = kmalloc(buff_len, GFP_KERNEL);
if (!desc_buf)
return -ENOMEM;
} else {
desc_buf = param_read_buf;
is_kmalloc = false;
}
/* Request for full descriptor */
ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
desc_id, desc_index, 0, desc_buf,
&buff_len);
if (ret) {
dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d",
__func__, desc_id, desc_index, param_offset, ret);
goto out;
}
/* Sanity check */
if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header",
__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
ret = -EINVAL;
goto out;
}
/* Check wherher we will not copy more data, than available */
if (is_kmalloc && param_size > buff_len)
param_size = buff_len;
if (is_kmalloc)
memcpy(param_read_buf, &desc_buf[param_offset], param_size);
out:
if (is_kmalloc)
kfree(desc_buf);
return ret;
}
/* replace non-printable or non-ASCII characters with spaces */
static inline void ufshcd_remove_non_printable(uint8_t *val)
{
if (!val)
return;
if (*val < 0x20 || *val > 0x7e)
*val = ' ';
}
/**
* ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
* state) and waits for it to take effect.
*
*/
static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
{
unsigned long start = 0;
u8 status;
int ret;
ret = ufshcd_send_uic_cmd(hba, cmd);
if (ret) {
dev_err(hba->dev,
"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
cmd->command, cmd->argument3, ret);
return ret;
}
start = get_timer(0);
do {
status = ufshcd_get_upmcrs(hba);
if (get_timer(start) > UFS_UIC_CMD_TIMEOUT) {
dev_err(hba->dev,
"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
cmd->command, status);
ret = (status != PWR_OK) ? status : -1;
break;
}
} while (status != PWR_LOCAL);
return ret;
}
/**
* ufshcd_uic_change_pwr_mode - Perform the UIC power mode change
* using DME_SET primitives.
*/
static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
{
struct uic_command uic_cmd = {0};
int ret;
uic_cmd.command = UIC_CMD_DME_SET;
uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
uic_cmd.argument3 = mode;
ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
return ret;
}
static
void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufs_hba *hba,
struct scsi_cmd *pccb, u32 upiu_flags)
{
struct utp_upiu_req *ucd_req_ptr = hba->ucd_req_ptr;
unsigned int cdb_len;
/* command descriptor fields */
ucd_req_ptr->header.dword_0 =
UPIU_HEADER_DWORD(UPIU_TRANSACTION_COMMAND, upiu_flags,
pccb->lun, TASK_TAG);
ucd_req_ptr->header.dword_1 =
UPIU_HEADER_DWORD(UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
/* Total EHS length and Data segment length will be zero */
ucd_req_ptr->header.dword_2 = 0;
ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(pccb->datalen);
cdb_len = min_t(unsigned short, pccb->cmdlen, UFS_CDB_SIZE);
memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
memcpy(ucd_req_ptr->sc.cdb, pccb->cmd, cdb_len);
memset(hba->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
static inline void prepare_prdt_desc(struct ufshcd_sg_entry *entry,
unsigned char *buf, ulong len)
{
entry->size = cpu_to_le32(len) | GENMASK(1, 0);
entry->base_addr = cpu_to_le32(lower_32_bits((unsigned long)buf));
entry->upper_addr = cpu_to_le32(upper_32_bits((unsigned long)buf));
}
static void prepare_prdt_table(struct ufs_hba *hba, struct scsi_cmd *pccb)
{
struct utp_transfer_req_desc *req_desc = hba->utrdl;
struct ufshcd_sg_entry *prd_table = hba->ucd_prdt_ptr;
ulong datalen = pccb->datalen;
int table_length;
u8 *buf;
int i;
if (!datalen) {
req_desc->prd_table_length = 0;
return;
}
table_length = DIV_ROUND_UP(pccb->datalen, MAX_PRDT_ENTRY);
buf = pccb->pdata;
i = table_length;
while (--i) {
prepare_prdt_desc(&prd_table[table_length - i - 1], buf,
MAX_PRDT_ENTRY - 1);
buf += MAX_PRDT_ENTRY;
datalen -= MAX_PRDT_ENTRY;
}
prepare_prdt_desc(&prd_table[table_length - i - 1], buf, datalen - 1);
req_desc->prd_table_length = table_length;
}
static int ufs_scsi_exec(struct udevice *scsi_dev, struct scsi_cmd *pccb)
{
struct ufs_hba *hba = dev_get_uclass_priv(scsi_dev->parent);
struct utp_transfer_req_desc *req_desc = hba->utrdl;
u32 upiu_flags;
int ocs, result = 0;
u8 scsi_status;
ufshcd_prepare_req_desc_hdr(req_desc, &upiu_flags, pccb->dma_dir);
ufshcd_prepare_utp_scsi_cmd_upiu(hba, pccb, upiu_flags);
prepare_prdt_table(hba, pccb);
ufshcd_send_command(hba, TASK_TAG);
ocs = ufshcd_get_tr_ocs(hba);
switch (ocs) {
case OCS_SUCCESS:
result = ufshcd_get_req_rsp(hba->ucd_rsp_ptr);
switch (result) {
case UPIU_TRANSACTION_RESPONSE:
result = ufshcd_get_rsp_upiu_result(hba->ucd_rsp_ptr);
scsi_status = result & MASK_SCSI_STATUS;
if (scsi_status)
return -EINVAL;
break;
case UPIU_TRANSACTION_REJECT_UPIU:
/* TODO: handle Reject UPIU Response */
dev_err(hba->dev,
"Reject UPIU not fully implemented\n");
return -EINVAL;
default:
dev_err(hba->dev,
"Unexpected request response code = %x\n",
result);
return -EINVAL;
}
break;
default:
dev_err(hba->dev, "OCS error from controller = %x\n", ocs);
return -EINVAL;
}
return 0;
}
static inline int ufshcd_read_desc(struct ufs_hba *hba, enum desc_idn desc_id,
int desc_index, u8 *buf, u32 size)
{
return ufshcd_read_desc_param(hba, desc_id, desc_index, 0, buf, size);
}
static int ufshcd_read_device_desc(struct ufs_hba *hba, u8 *buf, u32 size)
{
return ufshcd_read_desc(hba, QUERY_DESC_IDN_DEVICE, 0, buf, size);
}
/**
* ufshcd_read_string_desc - read string descriptor
*
*/
int ufshcd_read_string_desc(struct ufs_hba *hba, int desc_index,
u8 *buf, u32 size, bool ascii)
{
int err = 0;
err = ufshcd_read_desc(hba, QUERY_DESC_IDN_STRING, desc_index, buf,
size);
if (err) {
dev_err(hba->dev, "%s: reading String Desc failed after %d retries. err = %d\n",
__func__, QUERY_REQ_RETRIES, err);
goto out;
}
if (ascii) {
int desc_len;
int ascii_len;
int i;
u8 *buff_ascii;
desc_len = buf[0];
/* remove header and divide by 2 to move from UTF16 to UTF8 */
ascii_len = (desc_len - QUERY_DESC_HDR_SIZE) / 2 + 1;
if (size < ascii_len + QUERY_DESC_HDR_SIZE) {
dev_err(hba->dev, "%s: buffer allocated size is too small\n",
__func__);
err = -ENOMEM;
goto out;
}
buff_ascii = kmalloc(ascii_len, GFP_KERNEL);
if (!buff_ascii) {
err = -ENOMEM;
goto out;
}
/*
* the descriptor contains string in UTF16 format
* we need to convert to utf-8 so it can be displayed
*/
utf16_to_utf8(buff_ascii,
(uint16_t *)&buf[QUERY_DESC_HDR_SIZE], ascii_len);
/* replace non-printable or non-ASCII characters with spaces */
for (i = 0; i < ascii_len; i++)
ufshcd_remove_non_printable(&buff_ascii[i]);
memset(buf + QUERY_DESC_HDR_SIZE, 0,
size - QUERY_DESC_HDR_SIZE);
memcpy(buf + QUERY_DESC_HDR_SIZE, buff_ascii, ascii_len);
buf[QUERY_DESC_LENGTH_OFFSET] = ascii_len + QUERY_DESC_HDR_SIZE;
kfree(buff_ascii);
}
out:
return err;
}
static int ufs_get_device_desc(struct ufs_hba *hba,
struct ufs_dev_desc *dev_desc)
{
int err;
size_t buff_len;
u8 model_index;
u8 *desc_buf;
buff_len = max_t(size_t, hba->desc_size.dev_desc,
QUERY_DESC_MAX_SIZE + 1);
desc_buf = kmalloc(buff_len, GFP_KERNEL);
if (!desc_buf) {
err = -ENOMEM;
goto out;
}
err = ufshcd_read_device_desc(hba, desc_buf, hba->desc_size.dev_desc);
if (err) {
dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
__func__, err);
goto out;
}
/*
* getting vendor (manufacturerID) and Bank Index in big endian
* format
*/
dev_desc->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
/* Zero-pad entire buffer for string termination. */
memset(desc_buf, 0, buff_len);
err = ufshcd_read_string_desc(hba, model_index, desc_buf,
QUERY_DESC_MAX_SIZE, true/*ASCII*/);
if (err) {
dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
__func__, err);
goto out;
}
desc_buf[QUERY_DESC_MAX_SIZE] = '\0';
strlcpy(dev_desc->model, (char *)(desc_buf + QUERY_DESC_HDR_SIZE),
min_t(u8, desc_buf[QUERY_DESC_LENGTH_OFFSET],
MAX_MODEL_LEN));
/* Null terminate the model string */
dev_desc->model[MAX_MODEL_LEN] = '\0';
out:
kfree(desc_buf);
return err;
}
/**
* ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
*/
static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
{
struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
if (hba->max_pwr_info.is_valid)
return 0;
pwr_info->pwr_tx = FAST_MODE;
pwr_info->pwr_rx = FAST_MODE;
pwr_info->hs_rate = PA_HS_MODE_B;
/* Get the connected lane count */
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
&pwr_info->lane_rx);
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&pwr_info->lane_tx);
if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
__func__, pwr_info->lane_rx, pwr_info->lane_tx);
return -EINVAL;
}
/*
* First, get the maximum gears of HS speed.
* If a zero value, it means there is no HSGEAR capability.
* Then, get the maximum gears of PWM speed.
*/
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
if (!pwr_info->gear_rx) {
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&pwr_info->gear_rx);
if (!pwr_info->gear_rx) {
dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
__func__, pwr_info->gear_rx);
return -EINVAL;
}
pwr_info->pwr_rx = SLOW_MODE;
}
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
&pwr_info->gear_tx);
if (!pwr_info->gear_tx) {
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&pwr_info->gear_tx);
if (!pwr_info->gear_tx) {
dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
__func__, pwr_info->gear_tx);
return -EINVAL;
}
pwr_info->pwr_tx = SLOW_MODE;
}
hba->max_pwr_info.is_valid = true;
return 0;
}
static int ufshcd_change_power_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *pwr_mode)
{
int ret;
/* if already configured to the requested pwr_mode */
if (pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
dev_dbg(hba->dev, "%s: power already configured\n", __func__);
return 0;
}
/*
* Configure attributes for power mode change with below.
* - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
* - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
* - PA_HSSERIES
*/
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
pwr_mode->lane_rx);
if (pwr_mode->pwr_rx == FASTAUTO_MODE || pwr_mode->pwr_rx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
else
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
pwr_mode->lane_tx);
if (pwr_mode->pwr_tx == FASTAUTO_MODE || pwr_mode->pwr_tx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
else
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
pwr_mode->pwr_tx == FASTAUTO_MODE ||
pwr_mode->pwr_rx == FAST_MODE ||
pwr_mode->pwr_tx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
pwr_mode->hs_rate);
ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 |
pwr_mode->pwr_tx);
if (ret) {
dev_err(hba->dev,
"%s: power mode change failed %d\n", __func__, ret);
return ret;
}
/* Copy new Power Mode to power info */
memcpy(&hba->pwr_info, pwr_mode, sizeof(struct ufs_pa_layer_attr));
return ret;
}
/**
* ufshcd_verify_dev_init() - Verify device initialization
*
*/
static int ufshcd_verify_dev_init(struct ufs_hba *hba)
{
int retries;
int err;
for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
NOP_OUT_TIMEOUT);
if (!err || err == -ETIMEDOUT)
break;
dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
}
if (err)
dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
return err;
}
/**
* ufshcd_complete_dev_init() - checks device readiness
*/
static int ufshcd_complete_dev_init(struct ufs_hba *hba)
{
int i;
int err;
bool flag_res = 1;
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
QUERY_FLAG_IDN_FDEVICEINIT, NULL);
if (err) {
dev_err(hba->dev,
"%s setting fDeviceInit flag failed with error %d\n",
__func__, err);
goto out;
}
/* poll for max. 1000 iterations for fDeviceInit flag to clear */
for (i = 0; i < 1000 && !err && flag_res; i++)
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
QUERY_FLAG_IDN_FDEVICEINIT,
&flag_res);
if (err)
dev_err(hba->dev,
"%s reading fDeviceInit flag failed with error %d\n",
__func__, err);
else if (flag_res)
dev_err(hba->dev,
"%s fDeviceInit was not cleared by the device\n",
__func__);
out:
return err;
}
static void ufshcd_def_desc_sizes(struct ufs_hba *hba)
{
hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE;
hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE;
hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE;
hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE;
hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE;
hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE;
hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE;
}
int ufs_start(struct ufs_hba *hba)
{
struct ufs_dev_desc card = {0};
int ret;
ret = ufshcd_link_startup(hba);
if (ret)
return ret;
ret = ufshcd_verify_dev_init(hba);
if (ret)
return ret;
ret = ufshcd_complete_dev_init(hba);
if (ret)
return ret;
/* Init check for device descriptor sizes */
ufshcd_init_desc_sizes(hba);
ret = ufs_get_device_desc(hba, &card);
if (ret) {
dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
__func__, ret);
return ret;
}
if (ufshcd_get_max_pwr_mode(hba)) {
dev_err(hba->dev,
"%s: Failed getting max supported power mode\n",
__func__);
} else {
ret = ufshcd_change_power_mode(hba, &hba->max_pwr_info.info);
if (ret) {
dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
__func__, ret);
return ret;
}
printf("Device at %s up at:", hba->dev->name);
ufshcd_print_pwr_info(hba);
}
return 0;
}
int ufshcd_probe(struct udevice *ufs_dev, struct ufs_hba_ops *hba_ops)
{
struct ufs_hba *hba = dev_get_uclass_priv(ufs_dev);
struct scsi_platdata *scsi_plat;
struct udevice *scsi_dev;
int err;
device_find_first_child(ufs_dev, &scsi_dev);
if (!scsi_dev)
return -ENODEV;
scsi_plat = dev_get_uclass_platdata(scsi_dev);
scsi_plat->max_id = UFSHCD_MAX_ID;
scsi_plat->max_lun = UFS_MAX_LUNS;
scsi_plat->max_bytes_per_req = UFS_MAX_BYTES;
hba->dev = ufs_dev;
hba->ops = hba_ops;
hba->mmio_base = (void *)dev_read_addr(ufs_dev);
/* Set descriptor lengths to specification defaults */
ufshcd_def_desc_sizes(hba);
ufshcd_ops_init(hba);
/* Read capabilties registers */
hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
/* Get UFS version supported by the controller */
hba->version = ufshcd_get_ufs_version(hba);
if (hba->version != UFSHCI_VERSION_10 &&
hba->version != UFSHCI_VERSION_11 &&
hba->version != UFSHCI_VERSION_20 &&
hba->version != UFSHCI_VERSION_21)
dev_err(hba->dev, "invalid UFS version 0x%x\n",
hba->version);
/* Get Interrupt bit mask per version */
hba->intr_mask = ufshcd_get_intr_mask(hba);
/* Allocate memory for host memory space */
err = ufshcd_memory_alloc(hba);
if (err) {
dev_err(hba->dev, "Memory allocation failed\n");
return err;
}
/* Configure Local data structures */
ufshcd_host_memory_configure(hba);
/*
* In order to avoid any spurious interrupt immediately after
* registering UFS controller interrupt handler, clear any pending UFS
* interrupt status and disable all the UFS interrupts.
*/
ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
REG_INTERRUPT_STATUS);
ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
err = ufshcd_hba_enable(hba);
if (err) {
dev_err(hba->dev, "Host controller enable failed\n");
return err;
}
err = ufs_start(hba);
if (err)
return err;
return 0;
}
int ufs_scsi_bind(struct udevice *ufs_dev, struct udevice **scsi_devp)
{
int ret = device_bind_driver(ufs_dev, "ufs_scsi", "ufs_scsi",
scsi_devp);
return ret;
}
static struct scsi_ops ufs_ops = {
.exec = ufs_scsi_exec,
};
int ufs_probe_dev(int index)
{
struct udevice *dev;
return uclass_get_device(UCLASS_UFS, index, &dev);
}
int ufs_probe(void)
{
struct udevice *dev;
int ret, i;
for (i = 0;; i++) {
ret = uclass_get_device(UCLASS_UFS, i, &dev);
if (ret == -ENODEV)
break;
}
return 0;
}
U_BOOT_DRIVER(ufs_scsi) = {
.id = UCLASS_SCSI,
.name = "ufs_scsi",
.ops = &ufs_ops,
};