u-boot/drivers/mtd/nand/denali.c
Masahiro Yamada ed3c980bee mtd: denali: support NAND_CMD_RNDOUT command
The function nand_flash_detect_ext_param_page() requires
NAND_CMD_RNDOUT command supported.  It is necessary to detect some
types of ONFi-compliant devices.  Without it, the error message
"unsupported command received 0x5" is shown.

Let's support this command on the Denali NAND controller driver.

Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Acked-by: Chin Liang See <clsee@altera.com>
2014-10-09 17:33:26 -05:00

1213 lines
34 KiB
C

/*
* Copyright (C) 2014 Panasonic Corporation
* Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
* Copyright (C) 2009-2010, Intel Corporation and its suppliers.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <nand.h>
#include <asm/errno.h>
#include <asm/io.h>
#include "denali.h"
#define NAND_DEFAULT_TIMINGS -1
static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
/* We define a macro here that combines all interrupts this driver uses into
* a single constant value, for convenience. */
#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
INTR_STATUS__ECC_TRANSACTION_DONE | \
INTR_STATUS__ECC_ERR | \
INTR_STATUS__PROGRAM_FAIL | \
INTR_STATUS__LOAD_COMP | \
INTR_STATUS__PROGRAM_COMP | \
INTR_STATUS__TIME_OUT | \
INTR_STATUS__ERASE_FAIL | \
INTR_STATUS__RST_COMP | \
INTR_STATUS__ERASE_COMP | \
INTR_STATUS__ECC_UNCOR_ERR | \
INTR_STATUS__INT_ACT | \
INTR_STATUS__LOCKED_BLK)
/* indicates whether or not the internal value for the flash bank is
* valid or not */
#define CHIP_SELECT_INVALID -1
#define SUPPORT_8BITECC 1
/*
* this macro allows us to convert from an MTD structure to our own
* device context (denali) structure.
*/
#define mtd_to_denali(m) (((struct nand_chip *)mtd->priv)->priv)
/* These constants are defined by the driver to enable common driver
* configuration options. */
#define SPARE_ACCESS 0x41
#define MAIN_ACCESS 0x42
#define MAIN_SPARE_ACCESS 0x43
#define DENALI_UNLOCK_START 0x10
#define DENALI_UNLOCK_END 0x11
#define DENALI_LOCK 0x21
#define DENALI_LOCK_TIGHT 0x31
#define DENALI_BUFFER_LOAD 0x60
#define DENALI_BUFFER_WRITE 0x62
#define DENALI_READ 0
#define DENALI_WRITE 0x100
/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE 0
#define ADDR_CYCLE 1
#define STATUS_CYCLE 2
/* this is a helper macro that allows us to
* format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)
/* Interrupts are cleared by writing a 1 to the appropriate status bit */
static inline void clear_interrupt(struct denali_nand_info *denali,
uint32_t irq_mask)
{
uint32_t intr_status_reg;
intr_status_reg = INTR_STATUS(denali->flash_bank);
writel(irq_mask, denali->flash_reg + intr_status_reg);
}
static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
uint32_t intr_status_reg;
intr_status_reg = INTR_STATUS(denali->flash_bank);
return readl(denali->flash_reg + intr_status_reg);
}
static void clear_interrupts(struct denali_nand_info *denali)
{
uint32_t status;
status = read_interrupt_status(denali);
clear_interrupt(denali, status);
denali->irq_status = 0;
}
static void denali_irq_enable(struct denali_nand_info *denali,
uint32_t int_mask)
{
int i;
for (i = 0; i < denali->max_banks; ++i)
writel(int_mask, denali->flash_reg + INTR_EN(i));
}
static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
unsigned long timeout = 1000000;
uint32_t intr_status;
do {
intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL;
if (intr_status & irq_mask) {
denali->irq_status &= ~irq_mask;
/* our interrupt was detected */
break;
}
udelay(1);
timeout--;
} while (timeout != 0);
if (timeout == 0) {
/* timeout */
printf("Denali timeout with interrupt status %08x\n",
read_interrupt_status(denali));
intr_status = 0;
}
return intr_status;
}
/*
* Certain operations for the denali NAND controller use an indexed mode to
* read/write data. The operation is performed by writing the address value
* of the command to the device memory followed by the data. This function
* abstracts this common operation.
*/
static void index_addr(struct denali_nand_info *denali,
uint32_t address, uint32_t data)
{
writel(address, denali->flash_mem + INDEX_CTRL_REG);
writel(data, denali->flash_mem + INDEX_DATA_REG);
}
/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
uint32_t address, uint32_t *pdata)
{
writel(address, denali->flash_mem + INDEX_CTRL_REG);
*pdata = readl(denali->flash_mem + INDEX_DATA_REG);
}
/* We need to buffer some data for some of the NAND core routines.
* The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
denali->buf.head = 0;
denali->buf.tail = 0;
}
static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
denali->buf.buf[denali->buf.tail++] = byte;
}
/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
uint32_t irq_status;
uint32_t irq_mask = INTR_STATUS__RST_COMP |
INTR_STATUS__TIME_OUT;
clear_interrupts(denali);
writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status & INTR_STATUS__TIME_OUT)
debug("reset bank failed.\n");
}
/* Reset the flash controller */
static uint32_t denali_nand_reset(struct denali_nand_info *denali)
{
uint32_t i;
for (i = 0; i < denali->max_banks; i++)
writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
for (i = 0; i < denali->max_banks; i++) {
writel(1 << i, denali->flash_reg + DEVICE_RESET);
while (!(readl(denali->flash_reg + INTR_STATUS(i)) &
(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
if (readl(denali->flash_reg + INTR_STATUS(i)) &
INTR_STATUS__TIME_OUT)
debug("NAND Reset operation timed out on bank"
" %d\n", i);
}
for (i = 0; i < denali->max_banks; i++)
writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
return 0;
}
/*
* this routine calculates the ONFI timing values for a given mode and
* programs the clocking register accordingly. The mode is determined by
* the get_onfi_nand_para routine.
*/
static void nand_onfi_timing_set(struct denali_nand_info *denali,
uint16_t mode)
{
uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
uint32_t treh[6] = {30, 15, 15, 10, 10, 7};
uint32_t trc[6] = {100, 50, 35, 30, 25, 20};
uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15};
uint32_t trloh[6] = {0, 0, 0, 0, 5, 5};
uint32_t tcea[6] = {100, 45, 30, 25, 25, 25};
uint32_t tadl[6] = {200, 100, 100, 100, 70, 70};
uint32_t trhw[6] = {200, 100, 100, 100, 100, 100};
uint32_t trhz[6] = {200, 100, 100, 100, 100, 100};
uint32_t twhr[6] = {120, 80, 80, 60, 60, 60};
uint32_t tcs[6] = {70, 35, 25, 25, 20, 15};
uint32_t tclsrising = 1;
uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
uint32_t dv_window = 0;
uint32_t en_lo, en_hi;
uint32_t acc_clks;
uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
en_lo = DIV_ROUND_UP(trp[mode], CLK_X);
en_hi = DIV_ROUND_UP(treh[mode], CLK_X);
if ((en_hi * CLK_X) < (treh[mode] + 2))
en_hi++;
if ((en_lo + en_hi) * CLK_X < trc[mode])
en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X),
CLK_X);
if ((en_lo + en_hi) < CLK_MULTI)
en_lo += CLK_MULTI - en_lo - en_hi;
while (dv_window < 8) {
data_invalid_rhoh = en_lo * CLK_X + trhoh[mode];
data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode];
data_invalid =
data_invalid_rhoh <
data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
dv_window = data_invalid - trea[mode];
if (dv_window < 8)
en_lo++;
}
acc_clks = DIV_ROUND_UP(trea[mode], CLK_X);
while (((acc_clks * CLK_X) - trea[mode]) < 3)
acc_clks++;
if ((data_invalid - acc_clks * CLK_X) < 2)
debug("%s, Line %d: Warning!\n", __FILE__, __LINE__);
addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X);
re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X);
re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X);
we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X);
cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X);
if (!tclsrising)
cs_cnt = DIV_ROUND_UP(tcs[mode], CLK_X);
if (cs_cnt == 0)
cs_cnt = 1;
if (tcea[mode]) {
while (((cs_cnt * CLK_X) + trea[mode]) < tcea[mode])
cs_cnt++;
}
/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
if ((readl(denali->flash_reg + MANUFACTURER_ID) == 0) &&
(readl(denali->flash_reg + DEVICE_ID) == 0x88))
acc_clks = 6;
writel(acc_clks, denali->flash_reg + ACC_CLKS);
writel(re_2_we, denali->flash_reg + RE_2_WE);
writel(re_2_re, denali->flash_reg + RE_2_RE);
writel(we_2_re, denali->flash_reg + WE_2_RE);
writel(addr_2_data, denali->flash_reg + ADDR_2_DATA);
writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}
/* queries the NAND device to see what ONFI modes it supports. */
static uint32_t get_onfi_nand_para(struct denali_nand_info *denali)
{
int i;
/*
* we needn't to do a reset here because driver has already
* reset all the banks before
*/
if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) &
ONFI_TIMING_MODE__VALUE))
return -EIO;
for (i = 5; i > 0; i--) {
if (readl(denali->flash_reg + ONFI_TIMING_MODE) &
(0x01 << i))
break;
}
nand_onfi_timing_set(denali, i);
/* By now, all the ONFI devices we know support the page cache */
/* rw feature. So here we enable the pipeline_rw_ahead feature */
return 0;
}
static void get_samsung_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
/* Set timing register values according to datasheet */
writel(5, denali->flash_reg + ACC_CLKS);
writel(20, denali->flash_reg + RE_2_WE);
writel(12, denali->flash_reg + WE_2_RE);
writel(14, denali->flash_reg + ADDR_2_DATA);
writel(3, denali->flash_reg + RDWR_EN_LO_CNT);
writel(2, denali->flash_reg + RDWR_EN_HI_CNT);
writel(2, denali->flash_reg + CS_SETUP_CNT);
}
}
static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
uint32_t tmp;
/* Workaround to fix a controller bug which reports a wrong */
/* spare area size for some kind of Toshiba NAND device */
if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
(readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
tmp = readl(denali->flash_reg + DEVICES_CONNECTED) *
readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
}
}
static void get_hynix_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
uint32_t main_size, spare_size;
switch (device_id) {
case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
writel(128, denali->flash_reg + PAGES_PER_BLOCK);
writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
main_size = 4096 *
readl(denali->flash_reg + DEVICES_CONNECTED);
spare_size = 224 *
readl(denali->flash_reg + DEVICES_CONNECTED);
writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
writel(0, denali->flash_reg + DEVICE_WIDTH);
break;
default:
debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
device_id);
}
}
/*
* determines how many NAND chips are connected to the controller. Note for
* Intel CE4100 devices we don't support more than one device.
*/
static void find_valid_banks(struct denali_nand_info *denali)
{
uint32_t id[denali->max_banks];
int i;
denali->total_used_banks = 1;
for (i = 0; i < denali->max_banks; i++) {
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
index_addr_read_data(denali,
(uint32_t)(MODE_11 | (i << 24) | 2),
&id[i]);
if (i == 0) {
if (!(id[i] & 0x0ff))
break;
} else {
if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
denali->total_used_banks++;
else
break;
}
}
}
/*
* Use the configuration feature register to determine the maximum number of
* banks that the hardware supports.
*/
static void detect_max_banks(struct denali_nand_info *denali)
{
uint32_t features = readl(denali->flash_reg + FEATURES);
denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}
static void detect_partition_feature(struct denali_nand_info *denali)
{
/*
* For MRST platform, denali->fwblks represent the
* number of blocks firmware is taken,
* FW is in protect partition and MTD driver has no
* permission to access it. So let driver know how many
* blocks it can't touch.
*/
if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
denali->fwblks =
((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
MIN_MAX_BANK__MIN_VALUE) *
denali->blksperchip)
+
(readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
MIN_BLK_ADDR__VALUE);
} else {
denali->fwblks = SPECTRA_START_BLOCK;
}
} else {
denali->fwblks = SPECTRA_START_BLOCK;
}
}
static uint32_t denali_nand_timing_set(struct denali_nand_info *denali)
{
uint32_t id_bytes[5], addr;
uint8_t i, maf_id, device_id;
/* Use read id method to get device ID and other
* params. For some NAND chips, controller can't
* report the correct device ID by reading from
* DEVICE_ID register
* */
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
index_addr(denali, (uint32_t)addr | 0, 0x90);
index_addr(denali, (uint32_t)addr | 1, 0);
for (i = 0; i < 5; i++)
index_addr_read_data(denali, addr | 2, &id_bytes[i]);
maf_id = id_bytes[0];
device_id = id_bytes[1];
if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
if (get_onfi_nand_para(denali))
return -EIO;
} else if (maf_id == 0xEC) { /* Samsung NAND */
get_samsung_nand_para(denali, device_id);
} else if (maf_id == 0x98) { /* Toshiba NAND */
get_toshiba_nand_para(denali);
} else if (maf_id == 0xAD) { /* Hynix NAND */
get_hynix_nand_para(denali, device_id);
}
find_valid_banks(denali);
detect_partition_feature(denali);
/* If the user specified to override the default timings
* with a specific ONFI mode, we apply those changes here.
*/
if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
nand_onfi_timing_set(denali, onfi_timing_mode);
return 0;
}
/* validation function to verify that the controlling software is making
* a valid request
*/
static inline bool is_flash_bank_valid(int flash_bank)
{
return flash_bank >= 0 && flash_bank < 4;
}
static void denali_irq_init(struct denali_nand_info *denali)
{
uint32_t int_mask = 0;
int i;
/* Disable global interrupts */
writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);
int_mask = DENALI_IRQ_ALL;
/* Clear all status bits */
for (i = 0; i < denali->max_banks; ++i)
writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));
denali_irq_enable(denali, int_mask);
}
/* This helper function setups the registers for ECC and whether or not
* the spare area will be transferred. */
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
bool transfer_spare)
{
int ecc_en_flag = 0, transfer_spare_flag = 0;
/* set ECC, transfer spare bits if needed */
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
/* Enable spare area/ECC per user's request. */
writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
/* applicable for MAP01 only */
writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
}
/* sends a pipeline command operation to the controller. See the Denali NAND
* controller's user guide for more information (section 4.2.3.6).
*/
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
bool ecc_en, bool transfer_spare,
int access_type, int op)
{
uint32_t addr, cmd, irq_status;
static uint32_t page_count = 1;
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
/* clear interrupts */
clear_interrupts(denali);
addr = BANK(denali->flash_bank) | denali->page;
/* setup the acccess type */
cmd = MODE_10 | addr;
index_addr(denali, cmd, access_type);
/* setup the pipeline command */
index_addr(denali, cmd, 0x2000 | op | page_count);
cmd = MODE_01 | addr;
writel(cmd, denali->flash_mem + INDEX_CTRL_REG);
if (op == DENALI_READ) {
/* wait for command to be accepted */
irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP);
if (irq_status == 0)
return -EIO;
}
return 0;
}
/* helper function that simply writes a buffer to the flash */
static int write_data_to_flash_mem(struct denali_nand_info *denali,
const uint8_t *buf, int len)
{
uint32_t i = 0, *buf32;
/* verify that the len is a multiple of 4. see comment in
* read_data_from_flash_mem() */
BUG_ON((len % 4) != 0);
/* write the data to the flash memory */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
writel(*buf32++, denali->flash_mem + INDEX_DATA_REG);
return i * 4; /* intent is to return the number of bytes read */
}
/* helper function that simply reads a buffer from the flash */
static int read_data_from_flash_mem(struct denali_nand_info *denali,
uint8_t *buf, int len)
{
uint32_t i, *buf32;
/*
* we assume that len will be a multiple of 4, if not
* it would be nice to know about it ASAP rather than
* have random failures...
* This assumption is based on the fact that this
* function is designed to be used to read flash pages,
* which are typically multiples of 4...
*/
BUG_ON((len % 4) != 0);
/* transfer the data from the flash */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
*buf32++ = readl(denali->flash_mem + INDEX_DATA_REG);
return i * 4; /* intent is to return the number of bytes read */
}
static void denali_mode_main_access(struct denali_nand_info *denali)
{
uint32_t addr, cmd;
addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
index_addr(denali, cmd, MAIN_ACCESS);
}
static void denali_mode_main_spare_access(struct denali_nand_info *denali)
{
uint32_t addr, cmd;
addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
index_addr(denali, cmd, MAIN_SPARE_ACCESS);
}
/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status;
uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
INTR_STATUS__PROGRAM_FAIL;
int status = 0;
denali->page = page;
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_WRITE) == 0) {
write_data_to_flash_mem(denali, buf, mtd->oobsize);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev, "OOB write failed\n");
status = -EIO;
}
} else {
printf("unable to send pipeline command\n");
status = -EIO;
}
return status;
}
/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
irq_status = 0, addr = 0x0, cmd = 0x0;
denali->page = page;
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_READ) == 0) {
read_data_from_flash_mem(denali, buf, mtd->oobsize);
/* wait for command to be accepted
* can always use status0 bit as the mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0)
printf("page on OOB timeout %d\n", denali->page);
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
* and the last transaction was a SPARE_ACCESS. Block erase
* is reliable (according to the MTD test infrastructure)
* if you are in MAIN_ACCESS.
*/
addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
index_addr(denali, cmd, MAIN_ACCESS);
}
}
/* this function examines buffers to see if they contain data that
* indicate that the buffer is part of an erased region of flash.
*/
static bool is_erased(uint8_t *buf, int len)
{
int i = 0;
for (i = 0; i < len; i++)
if (buf[i] != 0xFF)
return false;
return true;
}
/* programs the controller to either enable/disable DMA transfers */
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
{
uint32_t reg_val = 0x0;
if (en)
reg_val = DMA_ENABLE__FLAG;
writel(reg_val, denali->flash_reg + DMA_ENABLE);
readl(denali->flash_reg + DMA_ENABLE);
}
/* setups the HW to perform the data DMA */
static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
uint32_t mode;
const int page_count = 1;
uint32_t addr = (uint32_t)denali->buf.dma_buf;
flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf));
/* For Denali controller that is 64 bit bus IP core */
#ifdef CONFIG_SYS_NAND_DENALI_64BIT
mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
/* DMA is a three step process */
/* 1. setup transfer type, interrupt when complete,
burst len = 64 bytes, the number of pages */
index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
/* 2. set memory low address bits 31:0 */
index_addr(denali, mode, addr);
/* 3. set memory high address bits 64:32 */
index_addr(denali, mode, 0);
#else
mode = MODE_10 | BANK(denali->flash_bank);
/* DMA is a four step process */
/* 1. setup transfer type and # of pages */
index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
/* 2. set memory high address bits 23:8 */
index_addr(denali, mode | ((uint32_t)(addr >> 16) << 8), 0x2200);
/* 3. set memory low address bits 23:8 */
index_addr(denali, mode | ((uint32_t)addr << 8), 0x2300);
/* 4. interrupt when complete, burst len = 64 bytes*/
index_addr(denali, mode | 0x14000, 0x2400);
#endif
}
/* Common DMA function */
static uint32_t denali_dma_configuration(struct denali_nand_info *denali,
uint32_t ops, bool raw_xfer,
uint32_t irq_mask, int oob_required)
{
uint32_t irq_status = 0;
/* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
setup_ecc_for_xfer(denali, !raw_xfer, oob_required);
/* clear any previous interrupt flags */
clear_interrupts(denali);
/* enable the DMA */
denali_enable_dma(denali, true);
/* setup the DMA */
denali_setup_dma(denali, ops);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
/* if ECC fault happen, seems we need delay before turning off DMA.
* If not, the controller will go into non responsive condition */
if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
udelay(100);
/* disable the DMA */
denali_enable_dma(denali, false);
return irq_status;
}
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, bool raw_xfer, int oob_required)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
denali->status = 0;
/* copy buffer into DMA buffer */
memcpy(denali->buf.dma_buf, buf, mtd->writesize);
/* need extra memcpy for raw transfer */
if (raw_xfer)
memcpy(denali->buf.dma_buf + mtd->writesize,
chip->oob_poi, mtd->oobsize);
/* setting up DMA */
irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer,
irq_mask, oob_required);
/* if timeout happen, error out */
if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
debug("DMA timeout for denali write_page\n");
denali->status = NAND_STATUS_FAIL;
return -EIO;
}
if (irq_status & INTR_STATUS__LOCKED_BLK) {
debug("Failed as write to locked block\n");
denali->status = NAND_STATUS_FAIL;
return -EIO;
}
return 0;
}
/* NAND core entry points */
/*
* this is the callback that the NAND core calls to write a page. Since
* writing a page with ECC or without is similar, all the work is done
* by write_page above.
*/
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
/*
* for regular page writes, we let HW handle all the ECC
* data written to the device.
*/
if (oob_required)
/* switch to main + spare access */
denali_mode_main_spare_access(denali);
else
/* switch to main access only */
denali_mode_main_access(denali);
return write_page(mtd, chip, buf, false, oob_required);
}
/*
* This is the callback that the NAND core calls to write a page without ECC.
* raw access is similar to ECC page writes, so all the work is done in the
* write_page() function above.
*/
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
/*
* for raw page writes, we want to disable ECC and simply write
* whatever data is in the buffer.
*/
if (oob_required)
/* switch to main + spare access */
denali_mode_main_spare_access(denali);
else
/* switch to main access only */
denali_mode_main_access(denali);
return write_page(mtd, chip, buf, true, oob_required);
}
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
return write_oob_data(mtd, chip->oob_poi, page);
}
/* raw include ECC value and all the spare area */
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
if (denali->page != page) {
debug("Missing NAND_CMD_READ0 command\n");
return -EIO;
}
if (oob_required)
/* switch to main + spare access */
denali_mode_main_spare_access(denali);
else
/* switch to main access only */
denali_mode_main_access(denali);
/* setting up the DMA where ecc_enable is false */
irq_status = denali_dma_configuration(denali, DENALI_READ, true,
irq_mask, oob_required);
/* if timeout happen, error out */
if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
debug("DMA timeout for denali_read_page_raw\n");
return -EIO;
}
/* splitting the content to destination buffer holder */
memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize),
mtd->oobsize);
memcpy(buf, denali->buf.dma_buf, mtd->writesize);
return 0;
}
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
if (denali->page != page) {
debug("Missing NAND_CMD_READ0 command\n");
return -EIO;
}
if (oob_required)
/* switch to main + spare access */
denali_mode_main_spare_access(denali);
else
/* switch to main access only */
denali_mode_main_access(denali);
/* setting up the DMA where ecc_enable is true */
irq_status = denali_dma_configuration(denali, DENALI_READ, false,
irq_mask, oob_required);
memcpy(buf, denali->buf.dma_buf, mtd->writesize);
/* check whether any ECC error */
if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
/* is the ECC cause by erase page, check using read_page_raw */
debug(" Uncorrected ECC detected\n");
denali_read_page_raw(mtd, chip, buf, oob_required,
denali->page);
if (is_erased(buf, mtd->writesize) == true &&
is_erased(chip->oob_poi, mtd->oobsize) == true) {
debug(" ECC error cause by erased block\n");
/* false alarm, return the 0xFF */
} else {
return -EIO;
}
}
memcpy(buf, denali->buf.dma_buf, mtd->writesize);
return 0;
}
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
read_oob_data(mtd, chip->oob_poi, page);
return 0;
}
static uint8_t denali_read_byte(struct mtd_info *mtd)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t addr, result;
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
index_addr_read_data(denali, addr | 2, &result);
return (uint8_t)result & 0xFF;
}
static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t i, addr, result;
/* delay for tR (data transfer from Flash array to data register) */
udelay(25);
/* ensure device completed else additional delay and polling */
wait_for_irq(denali, INTR_STATUS__INT_ACT);
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
for (i = 0; i < len; i++) {
index_addr_read_data(denali, (uint32_t)addr | 2, &result);
write_byte_to_buf(denali, result);
}
memcpy(buf, denali->buf.buf, len);
}
static void denali_select_chip(struct mtd_info *mtd, int chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
denali->flash_bank = chip;
}
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
int status = denali->status;
denali->status = 0;
return status;
}
static void denali_erase(struct mtd_info *mtd, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t cmd, irq_status;
/* clear interrupts */
clear_interrupts(denali);
/* setup page read request for access type */
cmd = MODE_10 | BANK(denali->flash_bank) | page;
index_addr(denali, cmd, 0x1);
/* wait for erase to complete or failure to occur */
irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
INTR_STATUS__ERASE_FAIL);
if (irq_status & INTR_STATUS__ERASE_FAIL ||
irq_status & INTR_STATUS__LOCKED_BLK)
denali->status = NAND_STATUS_FAIL;
else
denali->status = 0;
}
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t addr;
switch (cmd) {
case NAND_CMD_PAGEPROG:
break;
case NAND_CMD_STATUS:
addr = MODE_11 | BANK(denali->flash_bank);
index_addr(denali, addr | 0, cmd);
break;
case NAND_CMD_READID:
case NAND_CMD_PARAM:
reset_buf(denali);
/* sometimes ManufactureId read from register is not right
* e.g. some of Micron MT29F32G08QAA MLC NAND chips
* So here we send READID cmd to NAND insteand
* */
addr = MODE_11 | BANK(denali->flash_bank);
index_addr(denali, addr | 0, cmd);
index_addr(denali, addr | 1, col & 0xFF);
if (cmd == NAND_CMD_PARAM)
udelay(50);
break;
case NAND_CMD_RNDOUT:
addr = MODE_11 | BANK(denali->flash_bank);
index_addr(denali, addr | 0, cmd);
index_addr(denali, addr | 1, col & 0xFF);
index_addr(denali, addr | 1, col >> 8);
index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART);
break;
case NAND_CMD_READ0:
case NAND_CMD_SEQIN:
denali->page = page;
break;
case NAND_CMD_RESET:
reset_bank(denali);
break;
case NAND_CMD_READOOB:
/* TODO: Read OOB data */
break;
case NAND_CMD_ERASE1:
/*
* supporting block erase only, not multiblock erase as
* it will cross plane and software need complex calculation
* to identify the block count for the cross plane
*/
denali_erase(mtd, page);
break;
case NAND_CMD_ERASE2:
/* nothing to do here as it was done during NAND_CMD_ERASE1 */
break;
case NAND_CMD_UNLOCK1:
addr = MODE_10 | BANK(denali->flash_bank) | page;
index_addr(denali, addr | 0, DENALI_UNLOCK_START);
break;
case NAND_CMD_UNLOCK2:
addr = MODE_10 | BANK(denali->flash_bank) | page;
index_addr(denali, addr | 0, DENALI_UNLOCK_END);
break;
case NAND_CMD_LOCK:
addr = MODE_10 | BANK(denali->flash_bank);
index_addr(denali, addr | 0, DENALI_LOCK);
break;
default:
printf(": unsupported command received 0x%x\n", cmd);
break;
}
}
/* end NAND core entry points */
/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
/*
* tell driver how many bit controller will skip before writing
* ECC code in OOB. This is normally used for bad block marker
*/
writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
denali->flash_reg + SPARE_AREA_SKIP_BYTES);
detect_max_banks(denali);
denali_nand_reset(denali);
writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
writel(CHIP_EN_DONT_CARE__FLAG,
denali->flash_reg + CHIP_ENABLE_DONT_CARE);
writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
/* Should set value for these registers when init */
writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
writel(1, denali->flash_reg + ECC_ENABLE);
denali_nand_timing_set(denali);
denali_irq_init(denali);
}
static struct nand_ecclayout nand_oob;
static int denali_nand_init(struct nand_chip *nand)
{
struct denali_nand_info *denali;
denali = malloc(sizeof(*denali));
if (!denali)
return -ENOMEM;
nand->priv = denali;
denali->flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
denali->flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
/* check whether flash got BBT table (located at end of flash). As we
* use NAND_BBT_NO_OOB, the BBT page will start with
* bbt_pattern. We will have mirror pattern too */
nand->bbt_options |= NAND_BBT_USE_FLASH;
/*
* We are using main + spare with ECC support. As BBT need ECC support,
* we need to ensure BBT code don't write to OOB for the BBT pattern.
* All BBT info will be stored into data area with ECC support.
*/
nand->bbt_options |= NAND_BBT_NO_OOB;
#endif
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
nand->ecc.read_oob = denali_read_oob;
nand->ecc.write_oob = denali_write_oob;
nand->ecc.read_page = denali_read_page;
nand->ecc.read_page_raw = denali_read_page_raw;
nand->ecc.write_page = denali_write_page;
nand->ecc.write_page_raw = denali_write_page_raw;
/*
* Tell driver the ecc strength. This register may be already set
* correctly. So we read this value out.
*/
nand->ecc.strength = readl(denali->flash_reg + ECC_CORRECTION);
switch (nand->ecc.size) {
case 512:
nand->ecc.bytes = (nand->ecc.strength * 13 + 15) / 16 * 2;
break;
case 1024:
nand->ecc.bytes = (nand->ecc.strength * 14 + 15) / 16 * 2;
break;
default:
pr_err("Unsupported ECC size\n");
return -EINVAL;
}
nand_oob.eccbytes = nand->ecc.bytes;
nand->ecc.layout = &nand_oob;
/* Set address of hardware control function */
nand->cmdfunc = denali_cmdfunc;
nand->read_byte = denali_read_byte;
nand->read_buf = denali_read_buf;
nand->select_chip = denali_select_chip;
nand->waitfunc = denali_waitfunc;
denali_hw_init(denali);
return 0;
}
int board_nand_init(struct nand_chip *chip)
{
return denali_nand_init(chip);
}