u-boot/drivers/mtd/mtdpart.c
Simon Glass 8909066199 dm: core: Drop ofnode_is_available()
This function is also available as ofnode_is_enabled(), so use that
instead.

Signed-off-by: Simon Glass <sjg@chromium.org>
2022-09-29 16:11:31 -04:00

1057 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Simple MTD partitioning layer
*
* Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
* Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
* Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
*
*/
#ifndef __UBOOT__
#include <log.h>
#include <dm/devres.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/kmod.h>
#endif
#include <common.h>
#include <malloc.h>
#include <linux/bug.h>
#include <linux/errno.h>
#include <linux/compat.h>
#include <ubi_uboot.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/err.h>
#include <linux/sizes.h>
#include "mtdcore.h"
#ifndef __UBOOT__
static DEFINE_MUTEX(mtd_partitions_mutex);
#else
DEFINE_MUTEX(mtd_partitions_mutex);
#endif
#ifdef __UBOOT__
/* from mm/util.c */
/**
* kstrdup - allocate space for and copy an existing string
* @s: the string to duplicate
* @gfp: the GFP mask used in the kmalloc() call when allocating memory
*/
char *kstrdup(const char *s, gfp_t gfp)
{
size_t len;
char *buf;
if (!s)
return NULL;
len = strlen(s) + 1;
buf = kmalloc(len, gfp);
if (buf)
memcpy(buf, s, len);
return buf;
}
#endif
#define MTD_SIZE_REMAINING (~0LLU)
#define MTD_OFFSET_NOT_SPECIFIED (~0LLU)
bool mtd_partitions_used(struct mtd_info *master)
{
struct mtd_info *slave;
list_for_each_entry(slave, &master->partitions, node) {
if (slave->usecount)
return true;
}
return false;
}
/**
* mtd_parse_partition - Parse @mtdparts partition definition, fill @partition
* with it and update the @mtdparts string pointer.
*
* The partition name is allocated and must be freed by the caller.
*
* This function is widely inspired from part_parse (mtdparts.c).
*
* @mtdparts: String describing the partition with mtdparts command syntax
* @partition: MTD partition structure to fill
*
* Return: 0 on success, an error otherwise.
*/
static int mtd_parse_partition(const char **_mtdparts,
struct mtd_partition *partition)
{
const char *mtdparts = *_mtdparts;
const char *name = NULL;
int name_len;
char *buf;
/* Ensure the partition structure is empty */
memset(partition, 0, sizeof(struct mtd_partition));
/* Fetch the partition size */
if (*mtdparts == '-') {
/* Assign all remaining space to this partition */
partition->size = MTD_SIZE_REMAINING;
mtdparts++;
} else {
partition->size = ustrtoull(mtdparts, (char **)&mtdparts, 0);
if (partition->size < SZ_4K) {
printf("Minimum partition size 4kiB, %lldB requested\n",
partition->size);
return -EINVAL;
}
}
/* Check for the offset */
partition->offset = MTD_OFFSET_NOT_SPECIFIED;
if (*mtdparts == '@') {
mtdparts++;
partition->offset = ustrtoull(mtdparts, (char **)&mtdparts, 0);
}
/* Now look for the name */
if (*mtdparts == '(') {
name = ++mtdparts;
mtdparts = strchr(name, ')');
if (!mtdparts) {
printf("No closing ')' found in partition name\n");
return -EINVAL;
}
name_len = mtdparts - name + 1;
if ((name_len - 1) == 0) {
printf("Empty partition name\n");
return -EINVAL;
}
mtdparts++;
} else {
/* Name will be of the form size@offset */
name_len = 22;
}
/* Check if the partition is read-only */
if (strncmp(mtdparts, "ro", 2) == 0) {
partition->mask_flags |= MTD_WRITEABLE;
mtdparts += 2;
}
/* Check for a potential next partition definition */
if (*mtdparts == ',') {
if (partition->size == MTD_SIZE_REMAINING) {
printf("No partitions allowed after a fill-up\n");
return -EINVAL;
}
++mtdparts;
} else if ((*mtdparts == ';') || (*mtdparts == '\0')) {
/* NOP */
} else {
printf("Unexpected character '%c' in mtdparts\n", *mtdparts);
return -EINVAL;
}
/*
* Allocate a buffer for the name and either copy the provided name or
* auto-generate it with the form 'size@offset'.
*/
buf = malloc(name_len);
if (!buf)
return -ENOMEM;
if (name)
strncpy(buf, name, name_len - 1);
else
snprintf(buf, name_len, "0x%08llx@0x%08llx",
partition->size, partition->offset);
buf[name_len - 1] = '\0';
partition->name = buf;
*_mtdparts = mtdparts;
return 0;
}
/**
* mtd_parse_partitions - Create a partition array from an mtdparts definition
*
* Stateless function that takes a @parent MTD device, a string @_mtdparts
* describing the partitions (with the "mtdparts" command syntax) and creates
* the corresponding MTD partition structure array @_parts. Both the name and
* the structure partition itself must be freed freed, the caller may use
* @mtd_free_parsed_partitions() for this purpose.
*
* @parent: MTD device which contains the partitions
* @_mtdparts: Pointer to a string describing the partitions with "mtdparts"
* command syntax.
* @_parts: Allocated array containing the partitions, must be freed by the
* caller.
* @_nparts: Size of @_parts array.
*
* Return: 0 on success, an error otherwise.
*/
int mtd_parse_partitions(struct mtd_info *parent, const char **_mtdparts,
struct mtd_partition **_parts, int *_nparts)
{
struct mtd_partition partition = {}, *parts;
const char *mtdparts = *_mtdparts;
uint64_t cur_off = 0, cur_sz = 0;
int nparts = 0;
int ret, idx;
u64 sz;
/* First, iterate over the partitions until we know their number */
while (mtdparts[0] != '\0' && mtdparts[0] != ';') {
ret = mtd_parse_partition(&mtdparts, &partition);
if (ret)
return ret;
free((char *)partition.name);
nparts++;
}
/* Allocate an array of partitions to give back to the caller */
parts = malloc(sizeof(*parts) * nparts);
if (!parts) {
printf("Not enough space to save partitions meta-data\n");
return -ENOMEM;
}
/* Iterate again over each partition to save the data in our array */
for (idx = 0; idx < nparts; idx++) {
ret = mtd_parse_partition(_mtdparts, &parts[idx]);
if (ret)
return ret;
if (parts[idx].size == MTD_SIZE_REMAINING)
parts[idx].size = parent->size - cur_sz;
cur_sz += parts[idx].size;
sz = parts[idx].size;
if (sz < parent->writesize || do_div(sz, parent->writesize)) {
printf("Partition size must be a multiple of %d\n",
parent->writesize);
return -EINVAL;
}
if (parts[idx].offset == MTD_OFFSET_NOT_SPECIFIED)
parts[idx].offset = cur_off;
cur_off += parts[idx].size;
parts[idx].ecclayout = parent->ecclayout;
}
/* Offset by one mtdparts to point to the next device if any */
if (*_mtdparts[0] == ';')
(*_mtdparts)++;
*_parts = parts;
*_nparts = nparts;
return 0;
}
/**
* mtd_free_parsed_partitions - Free dynamically allocated partitions
*
* Each successful call to @mtd_parse_partitions must be followed by a call to
* @mtd_free_parsed_partitions to free any allocated array during the parsing
* process.
*
* @parts: Array containing the partitions that will be freed.
* @nparts: Size of @parts array.
*/
void mtd_free_parsed_partitions(struct mtd_partition *parts,
unsigned int nparts)
{
int i;
for (i = 0; i < nparts; i++)
free((char *)parts[i].name);
free(parts);
}
/*
* MTD methods which simply translate the effective address and pass through
* to the _real_ device.
*/
static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct mtd_ecc_stats stats;
int res;
stats = mtd->parent->ecc_stats;
res = mtd->parent->_read(mtd->parent, from + mtd->offset, len,
retlen, buf);
if (unlikely(mtd_is_eccerr(res)))
mtd->ecc_stats.failed +=
mtd->parent->ecc_stats.failed - stats.failed;
else
mtd->ecc_stats.corrected +=
mtd->parent->ecc_stats.corrected - stats.corrected;
return res;
}
#ifndef __UBOOT__
static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, void **virt, resource_size_t *phys)
{
return mtd->parent->_point(mtd->parent, from + mtd->offset, len,
retlen, virt, phys);
}
static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
return mtd->parent->_unpoint(mtd->parent, from + mtd->offset, len);
}
#endif
static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
unsigned long len,
unsigned long offset,
unsigned long flags)
{
offset += mtd->offset;
return mtd->parent->_get_unmapped_area(mtd->parent, len, offset, flags);
}
static int part_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int res;
if (from >= mtd->size)
return -EINVAL;
if (ops->datbuf && from + ops->len > mtd->size)
return -EINVAL;
/*
* If OOB is also requested, make sure that we do not read past the end
* of this partition.
*/
if (ops->oobbuf) {
size_t len, pages;
if (ops->mode == MTD_OPS_AUTO_OOB)
len = mtd->oobavail;
else
len = mtd->oobsize;
pages = mtd_div_by_ws(mtd->size, mtd);
pages -= mtd_div_by_ws(from, mtd);
if (ops->ooboffs + ops->ooblen > pages * len)
return -EINVAL;
}
res = mtd->parent->_read_oob(mtd->parent, from + mtd->offset, ops);
if (unlikely(res)) {
if (mtd_is_bitflip(res))
mtd->ecc_stats.corrected++;
if (mtd_is_eccerr(res))
mtd->ecc_stats.failed++;
}
return res;
}
static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
return mtd->parent->_read_user_prot_reg(mtd->parent, from, len,
retlen, buf);
}
static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
return mtd->parent->_get_user_prot_info(mtd->parent, len, retlen,
buf);
}
static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
return mtd->parent->_read_fact_prot_reg(mtd->parent, from, len,
retlen, buf);
}
static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
return mtd->parent->_get_fact_prot_info(mtd->parent, len, retlen,
buf);
}
static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
return mtd->parent->_write(mtd->parent, to + mtd->offset, len,
retlen, buf);
}
static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
return mtd->parent->_panic_write(mtd->parent, to + mtd->offset, len,
retlen, buf);
}
static int part_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
if (to >= mtd->size)
return -EINVAL;
if (ops->datbuf && to + ops->len > mtd->size)
return -EINVAL;
return mtd->parent->_write_oob(mtd->parent, to + mtd->offset, ops);
}
static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
return mtd->parent->_write_user_prot_reg(mtd->parent, from, len,
retlen, buf);
}
static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len)
{
return mtd->parent->_lock_user_prot_reg(mtd->parent, from, len);
}
#ifndef __UBOOT__
static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen)
{
return mtd->parent->_writev(mtd->parent, vecs, count,
to + mtd->offset, retlen);
}
#endif
static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
{
int ret;
instr->addr += mtd->offset;
ret = mtd->parent->_erase(mtd->parent, instr);
if (ret && instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
instr->fail_addr -= mtd->offset;
instr->addr -= mtd->offset;
return ret;
}
static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
return mtd->parent->_lock(mtd->parent, ofs + mtd->offset, len);
}
static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
return mtd->parent->_unlock(mtd->parent, ofs + mtd->offset, len);
}
static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
return mtd->parent->_is_locked(mtd->parent, ofs + mtd->offset, len);
}
static void part_sync(struct mtd_info *mtd)
{
mtd->parent->_sync(mtd->parent);
}
#ifndef __UBOOT__
static int part_suspend(struct mtd_info *mtd)
{
return mtd->parent->_suspend(mtd->parent);
}
static void part_resume(struct mtd_info *mtd)
{
mtd->parent->_resume(mtd->parent);
}
#endif
static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
ofs += mtd->offset;
return mtd->parent->_block_isreserved(mtd->parent, ofs);
}
static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
ofs += mtd->offset;
return mtd->parent->_block_isbad(mtd->parent, ofs);
}
static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
int res;
ofs += mtd->offset;
res = mtd->parent->_block_markbad(mtd->parent, ofs);
if (!res)
mtd->ecc_stats.badblocks++;
return res;
}
static inline void free_partition(struct mtd_info *p)
{
kfree(p->name);
kfree(p);
}
/*
* This function unregisters and destroy all slave MTD objects which are
* attached to the given master MTD object, recursively.
*/
static int do_del_mtd_partitions(struct mtd_info *master)
{
struct mtd_info *slave, *next;
int ret, err = 0;
list_for_each_entry_safe(slave, next, &master->partitions, node) {
if (mtd_has_partitions(slave))
del_mtd_partitions(slave);
debug("Deleting %s MTD partition\n", slave->name);
ret = del_mtd_device(slave);
if (ret < 0) {
printf("Error when deleting partition \"%s\" (%d)\n",
slave->name, ret);
err = ret;
continue;
}
list_del(&slave->node);
free_partition(slave);
}
return err;
}
int del_mtd_partitions(struct mtd_info *master)
{
int ret;
debug("Deleting MTD partitions on \"%s\":\n", master->name);
mutex_lock(&mtd_partitions_mutex);
ret = do_del_mtd_partitions(master);
mutex_unlock(&mtd_partitions_mutex);
return ret;
}
static struct mtd_info *allocate_partition(struct mtd_info *master,
const struct mtd_partition *part,
int partno, uint64_t cur_offset)
{
struct mtd_info *slave;
char *name;
/* allocate the partition structure */
slave = kzalloc(sizeof(*slave), GFP_KERNEL);
name = kstrdup(part->name, GFP_KERNEL);
if (!name || !slave) {
printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
master->name);
kfree(name);
kfree(slave);
return ERR_PTR(-ENOMEM);
}
/* set up the MTD object for this partition */
slave->type = master->type;
slave->flags = master->flags & ~part->mask_flags;
slave->size = part->size;
slave->writesize = master->writesize;
slave->writebufsize = master->writebufsize;
slave->oobsize = master->oobsize;
slave->oobavail = master->oobavail;
slave->subpage_sft = master->subpage_sft;
slave->name = name;
slave->owner = master->owner;
#ifndef __UBOOT__
slave->backing_dev_info = master->backing_dev_info;
/* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
* to have the same data be in two different partitions.
*/
slave->dev.parent = master->dev.parent;
#endif
if (master->_read)
slave->_read = part_read;
if (master->_write)
slave->_write = part_write;
if (master->_panic_write)
slave->_panic_write = part_panic_write;
#ifndef __UBOOT__
if (master->_point && master->_unpoint) {
slave->_point = part_point;
slave->_unpoint = part_unpoint;
}
#endif
if (master->_get_unmapped_area)
slave->_get_unmapped_area = part_get_unmapped_area;
if (master->_read_oob)
slave->_read_oob = part_read_oob;
if (master->_write_oob)
slave->_write_oob = part_write_oob;
if (master->_read_user_prot_reg)
slave->_read_user_prot_reg = part_read_user_prot_reg;
if (master->_read_fact_prot_reg)
slave->_read_fact_prot_reg = part_read_fact_prot_reg;
if (master->_write_user_prot_reg)
slave->_write_user_prot_reg = part_write_user_prot_reg;
if (master->_lock_user_prot_reg)
slave->_lock_user_prot_reg = part_lock_user_prot_reg;
if (master->_get_user_prot_info)
slave->_get_user_prot_info = part_get_user_prot_info;
if (master->_get_fact_prot_info)
slave->_get_fact_prot_info = part_get_fact_prot_info;
if (master->_sync)
slave->_sync = part_sync;
#ifndef __UBOOT__
if (!partno && !master->dev.class && master->_suspend &&
master->_resume) {
slave->_suspend = part_suspend;
slave->_resume = part_resume;
}
if (master->_writev)
slave->_writev = part_writev;
#endif
if (master->_lock)
slave->_lock = part_lock;
if (master->_unlock)
slave->_unlock = part_unlock;
if (master->_is_locked)
slave->_is_locked = part_is_locked;
if (master->_block_isreserved)
slave->_block_isreserved = part_block_isreserved;
if (master->_block_isbad)
slave->_block_isbad = part_block_isbad;
if (master->_block_markbad)
slave->_block_markbad = part_block_markbad;
slave->_erase = part_erase;
slave->parent = master;
slave->offset = part->offset;
INIT_LIST_HEAD(&slave->partitions);
INIT_LIST_HEAD(&slave->node);
if (slave->offset == MTDPART_OFS_APPEND)
slave->offset = cur_offset;
if (slave->offset == MTDPART_OFS_NXTBLK) {
slave->offset = cur_offset;
if (mtd_mod_by_eb(cur_offset, master) != 0) {
/* Round up to next erasesize */
slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
debug("Moving partition %d: "
"0x%012llx -> 0x%012llx\n", partno,
(unsigned long long)cur_offset, (unsigned long long)slave->offset);
}
}
if (slave->offset == MTDPART_OFS_RETAIN) {
slave->offset = cur_offset;
if (master->size - slave->offset >= slave->size) {
slave->size = master->size - slave->offset
- slave->size;
} else {
debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
part->name, master->size - slave->offset,
slave->size);
/* register to preserve ordering */
goto out_register;
}
}
if (slave->size == MTDPART_SIZ_FULL)
slave->size = master->size - slave->offset;
debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
(unsigned long long)(slave->offset + slave->size), slave->name);
/* let's do some sanity checks */
if (slave->offset >= master->size) {
/* let's register it anyway to preserve ordering */
slave->offset = 0;
slave->size = 0;
printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
part->name);
goto out_register;
}
if (slave->offset + slave->size > master->size) {
slave->size = master->size - slave->offset;
printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
part->name, master->name, slave->size);
}
if (master->numeraseregions > 1) {
/* Deal with variable erase size stuff */
int i, max = master->numeraseregions;
u64 end = slave->offset + slave->size;
struct mtd_erase_region_info *regions = master->eraseregions;
/* Find the first erase regions which is part of this
* partition. */
for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
;
/* The loop searched for the region _behind_ the first one */
if (i > 0)
i--;
/* Pick biggest erasesize */
for (; i < max && regions[i].offset < end; i++) {
if (slave->erasesize < regions[i].erasesize)
slave->erasesize = regions[i].erasesize;
}
WARN_ON(slave->erasesize == 0);
} else {
/* Single erase size */
slave->erasesize = master->erasesize;
}
if ((slave->flags & MTD_WRITEABLE) &&
mtd_mod_by_eb(slave->offset, slave)) {
/* Doesn't start on a boundary of major erase size */
/* FIXME: Let it be writable if it is on a boundary of
* _minor_ erase size though */
slave->flags &= ~MTD_WRITEABLE;
printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
part->name);
}
if ((slave->flags & MTD_WRITEABLE) &&
mtd_mod_by_eb(slave->size, slave)) {
slave->flags &= ~MTD_WRITEABLE;
printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
part->name);
}
slave->ecclayout = master->ecclayout;
slave->ecc_step_size = master->ecc_step_size;
slave->ecc_strength = master->ecc_strength;
slave->bitflip_threshold = master->bitflip_threshold;
if (master->_block_isbad) {
uint64_t offs = 0;
while (offs < slave->size) {
if (mtd_block_isbad(master, offs + slave->offset))
slave->ecc_stats.badblocks++;
offs += slave->erasesize;
}
}
out_register:
return slave;
}
#ifndef __UBOOT__
int mtd_add_partition(struct mtd_info *master, const char *name,
long long offset, long long length)
{
struct mtd_partition part;
struct mtd_info *p, *new;
uint64_t start, end;
int ret = 0;
/* the direct offset is expected */
if (offset == MTDPART_OFS_APPEND ||
offset == MTDPART_OFS_NXTBLK)
return -EINVAL;
if (length == MTDPART_SIZ_FULL)
length = master->size - offset;
if (length <= 0)
return -EINVAL;
part.name = name;
part.size = length;
part.offset = offset;
part.mask_flags = 0;
part.ecclayout = NULL;
new = allocate_partition(master, &part, -1, offset);
if (IS_ERR(new))
return PTR_ERR(new);
start = offset;
end = offset + length;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry(p, &master->partitions, node) {
if (start >= p->offset &&
(start < (p->offset + p->size)))
goto err_inv;
if (end >= p->offset &&
(end < (p->offset + p->size)))
goto err_inv;
}
list_add_tail(&new->node, &master->partitions);
mutex_unlock(&mtd_partitions_mutex);
add_mtd_device(new);
return ret;
err_inv:
mutex_unlock(&mtd_partitions_mutex);
free_partition(new);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(mtd_add_partition);
int mtd_del_partition(struct mtd_info *master, int partno)
{
struct mtd_info *slave, *next;
int ret = -EINVAL;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry_safe(slave, next, &master->partitions, node)
if (slave->index == partno) {
ret = del_mtd_device(slave);
if (ret < 0)
break;
list_del(&slave->node);
free_partition(slave);
break;
}
mutex_unlock(&mtd_partitions_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(mtd_del_partition);
#endif
/*
* This function, given a master MTD object and a partition table, creates
* and registers slave MTD objects which are bound to the master according to
* the partition definitions.
*
* We don't register the master, or expect the caller to have done so,
* for reasons of data integrity.
*/
int add_mtd_partitions(struct mtd_info *master,
const struct mtd_partition *parts,
int nbparts)
{
struct mtd_info *slave;
uint64_t cur_offset = 0;
int i;
debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
for (i = 0; i < nbparts; i++) {
slave = allocate_partition(master, parts + i, i, cur_offset);
if (IS_ERR(slave))
return PTR_ERR(slave);
mutex_lock(&mtd_partitions_mutex);
list_add_tail(&slave->node, &master->partitions);
mutex_unlock(&mtd_partitions_mutex);
add_mtd_device(slave);
cur_offset = slave->offset + slave->size;
}
return 0;
}
#if CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL)
int add_mtd_partitions_of(struct mtd_info *master)
{
ofnode parts, child;
int i = 0;
if (!master->dev && !ofnode_valid(master->flash_node))
return 0;
if (master->dev)
parts = ofnode_find_subnode(mtd_get_ofnode(master), "partitions");
else
parts = ofnode_find_subnode(master->flash_node, "partitions");
if (!ofnode_valid(parts) || !ofnode_is_enabled(parts) ||
!ofnode_device_is_compatible(parts, "fixed-partitions"))
return 0;
ofnode_for_each_subnode(child, parts) {
struct mtd_partition part = { 0 };
struct mtd_info *slave;
fdt_addr_t offset;
fdt_size_t size;
if (!ofnode_is_enabled(child))
continue;
offset = ofnode_get_addr_size_index_notrans(child, 0, &size);
if (offset == FDT_ADDR_T_NONE || !size) {
debug("Missing partition offset/size on \"%s\" partition\n",
master->name);
continue;
}
part.name = ofnode_read_string(child, "label");
if (!part.name)
part.name = ofnode_read_string(child, "name");
/*
* .mask_flags is used to remove flags in allocate_partition(),
* so when "read-only" is present, we add MTD_WRITABLE to the
* mask, and so MTD_WRITABLE will be removed on partition
* allocation
*/
if (ofnode_read_bool(child, "read-only"))
part.mask_flags |= MTD_WRITEABLE;
if (ofnode_read_bool(child, "lock"))
part.mask_flags |= MTD_POWERUP_LOCK;
part.offset = offset;
part.size = size;
part.ecclayout = master->ecclayout;
slave = allocate_partition(master, &part, i++, 0);
if (IS_ERR(slave))
return PTR_ERR(slave);
mutex_lock(&mtd_partitions_mutex);
list_add_tail(&slave->node, &master->partitions);
mutex_unlock(&mtd_partitions_mutex);
add_mtd_device(slave);
}
return 0;
}
#endif /* CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL) */
#ifndef __UBOOT__
static DEFINE_SPINLOCK(part_parser_lock);
static LIST_HEAD(part_parsers);
static struct mtd_part_parser *get_partition_parser(const char *name)
{
struct mtd_part_parser *p, *ret = NULL;
spin_lock(&part_parser_lock);
list_for_each_entry(p, &part_parsers, list)
if (!strcmp(p->name, name) && try_module_get(p->owner)) {
ret = p;
break;
}
spin_unlock(&part_parser_lock);
return ret;
}
#define put_partition_parser(p) do { module_put((p)->owner); } while (0)
void register_mtd_parser(struct mtd_part_parser *p)
{
spin_lock(&part_parser_lock);
list_add(&p->list, &part_parsers);
spin_unlock(&part_parser_lock);
}
EXPORT_SYMBOL_GPL(register_mtd_parser);
void deregister_mtd_parser(struct mtd_part_parser *p)
{
spin_lock(&part_parser_lock);
list_del(&p->list);
spin_unlock(&part_parser_lock);
}
EXPORT_SYMBOL_GPL(deregister_mtd_parser);
/*
* Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
* are changing this array!
*/
static const char * const default_mtd_part_types[] = {
"cmdlinepart",
"ofpart",
NULL
};
/**
* parse_mtd_partitions - parse MTD partitions
* @master: the master partition (describes whole MTD device)
* @types: names of partition parsers to try or %NULL
* @pparts: array of partitions found is returned here
* @data: MTD partition parser-specific data
*
* This function tries to find partition on MTD device @master. It uses MTD
* partition parsers, specified in @types. However, if @types is %NULL, then
* the default list of parsers is used. The default list contains only the
* "cmdlinepart" and "ofpart" parsers ATM.
* Note: If there are more then one parser in @types, the kernel only takes the
* partitions parsed out by the first parser.
*
* This function may return:
* o a negative error code in case of failure
* o zero if no partitions were found
* o a positive number of found partitions, in which case on exit @pparts will
* point to an array containing this number of &struct mtd_info objects.
*/
int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct mtd_part_parser *parser;
int ret = 0;
if (!types)
types = default_mtd_part_types;
for ( ; ret <= 0 && *types; types++) {
parser = get_partition_parser(*types);
if (!parser && !request_module("%s", *types))
parser = get_partition_parser(*types);
if (!parser)
continue;
ret = (*parser->parse_fn)(master, pparts, data);
put_partition_parser(parser);
if (ret > 0) {
printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
ret, parser->name, master->name);
break;
}
}
return ret;
}
#endif
/* Returns the size of the entire flash chip */
uint64_t mtd_get_device_size(const struct mtd_info *mtd)
{
if (mtd_is_partition(mtd))
return mtd->parent->size;
return mtd->size;
}
EXPORT_SYMBOL_GPL(mtd_get_device_size);