mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-28 07:31:15 +00:00
b9dd6215ce
Based on the Tegra TRM, the system clock (which is the AVP clock) can run up to 275MHz. On power on, the default sytem clock source is set to PLLP_OUT0. In function clock_early_init(), PLLP_OUT0 will be set to 408MHz which is beyond system clock's upper limit. The fix is to set the system clock to CLK_M before initializing PLLP, and then switch back to PLLP_OUT4, which has an appropriate divider configured, after PLLP has been configured Implement this logic in new function tegra30_set_up_pllp(), which sets up PLLP and all PLLP_OUT* dividers, and handles the AVP clock switching. Remove the duplicate PLLP setup from pllx_set_rate() and adjust_pllp_out_freqs(). Signed-off-by: Jimmy Zhang <jimmzhang@nvidia.com> [swarren, significantly refactored the change] Signed-off-by: Stephen Warren <swarren@nvidia.com> Reviewed-by: Thierry Reding <treding@nvidia.com> Tested-by: Thierry Reding <treding@nvidia.com> Acked-by: Thierry Reding <treding@nvidia.com> Signed-off-by: Tom Warren <twarren@nvidia.com>
669 lines
18 KiB
C
669 lines
18 KiB
C
/*
|
|
* Copyright (c) 2010-2014, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* Tegra SoC common clock control functions */
|
|
|
|
#include <common.h>
|
|
#include <asm/io.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/tegra.h>
|
|
#include <asm/arch-tegra/clk_rst.h>
|
|
#include <asm/arch-tegra/timer.h>
|
|
#include <div64.h>
|
|
#include <fdtdec.h>
|
|
|
|
/*
|
|
* This is our record of the current clock rate of each clock. We don't
|
|
* fill all of these in since we are only really interested in clocks which
|
|
* we use as parents.
|
|
*/
|
|
static unsigned pll_rate[CLOCK_ID_COUNT];
|
|
|
|
/*
|
|
* The oscillator frequency is fixed to one of four set values. Based on this
|
|
* the other clocks are set up appropriately.
|
|
*/
|
|
static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
|
|
13000000,
|
|
19200000,
|
|
12000000,
|
|
26000000,
|
|
};
|
|
|
|
/* return 1 if a peripheral ID is in range */
|
|
#define clock_type_id_isvalid(id) ((id) >= 0 && \
|
|
(id) < CLOCK_TYPE_COUNT)
|
|
|
|
char pllp_valid = 1; /* PLLP is set up correctly */
|
|
|
|
/* return 1 if a periphc_internal_id is in range */
|
|
#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
|
|
(id) < PERIPHC_COUNT)
|
|
|
|
/* number of clock outputs of a PLL */
|
|
static const u8 pll_num_clkouts[] = {
|
|
1, /* PLLC */
|
|
1, /* PLLM */
|
|
4, /* PLLP */
|
|
1, /* PLLA */
|
|
0, /* PLLU */
|
|
0, /* PLLD */
|
|
};
|
|
|
|
int clock_get_osc_bypass(void)
|
|
{
|
|
struct clk_rst_ctlr *clkrst =
|
|
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
|
u32 reg;
|
|
|
|
reg = readl(&clkrst->crc_osc_ctrl);
|
|
return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
|
|
}
|
|
|
|
/* Returns a pointer to the registers of the given pll */
|
|
static struct clk_pll *get_pll(enum clock_id clkid)
|
|
{
|
|
struct clk_rst_ctlr *clkrst =
|
|
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
|
|
|
assert(clock_id_is_pll(clkid));
|
|
return &clkrst->crc_pll[clkid];
|
|
}
|
|
|
|
int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
|
|
u32 *divp, u32 *cpcon, u32 *lfcon)
|
|
{
|
|
struct clk_pll *pll = get_pll(clkid);
|
|
u32 data;
|
|
|
|
assert(clkid != CLOCK_ID_USB);
|
|
|
|
/* Safety check, adds to code size but is small */
|
|
if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
|
|
return -1;
|
|
data = readl(&pll->pll_base);
|
|
*divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
|
|
*divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
|
|
*divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
|
|
data = readl(&pll->pll_misc);
|
|
*cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
|
|
*lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
|
|
u32 divp, u32 cpcon, u32 lfcon)
|
|
{
|
|
struct clk_pll *pll = get_pll(clkid);
|
|
u32 data;
|
|
|
|
/*
|
|
* We cheat by treating all PLL (except PLLU) in the same fashion.
|
|
* This works only because:
|
|
* - same fields are always mapped at same offsets, except DCCON
|
|
* - DCCON is always 0, doesn't conflict
|
|
* - M,N, P of PLLP values are ignored for PLLP
|
|
*/
|
|
data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
|
|
writel(data, &pll->pll_misc);
|
|
|
|
data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
|
|
(0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
|
|
|
|
if (clkid == CLOCK_ID_USB)
|
|
data |= divp << PLLU_VCO_FREQ_SHIFT;
|
|
else
|
|
data |= divp << PLL_DIVP_SHIFT;
|
|
writel(data, &pll->pll_base);
|
|
|
|
/* calculate the stable time */
|
|
return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
|
|
}
|
|
|
|
void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
|
|
unsigned divisor)
|
|
{
|
|
u32 *reg = get_periph_source_reg(periph_id);
|
|
u32 value;
|
|
|
|
value = readl(reg);
|
|
|
|
value &= ~OUT_CLK_SOURCE_31_30_MASK;
|
|
value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
|
|
|
|
value &= ~OUT_CLK_DIVISOR_MASK;
|
|
value |= divisor << OUT_CLK_DIVISOR_SHIFT;
|
|
|
|
writel(value, reg);
|
|
}
|
|
|
|
void clock_ll_set_source(enum periph_id periph_id, unsigned source)
|
|
{
|
|
u32 *reg = get_periph_source_reg(periph_id);
|
|
|
|
clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
|
|
source << OUT_CLK_SOURCE_31_30_SHIFT);
|
|
}
|
|
|
|
/**
|
|
* Given the parent's rate and the required rate for the children, this works
|
|
* out the peripheral clock divider to use, in 7.1 binary format.
|
|
*
|
|
* @param divider_bits number of divider bits (8 or 16)
|
|
* @param parent_rate clock rate of parent clock in Hz
|
|
* @param rate required clock rate for this clock
|
|
* @return divider which should be used
|
|
*/
|
|
static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
|
|
unsigned long rate)
|
|
{
|
|
u64 divider = parent_rate * 2;
|
|
unsigned max_divider = 1 << divider_bits;
|
|
|
|
divider += rate - 1;
|
|
do_div(divider, rate);
|
|
|
|
if ((s64)divider - 2 < 0)
|
|
return 0;
|
|
|
|
if ((s64)divider - 2 >= max_divider)
|
|
return -1;
|
|
|
|
return divider - 2;
|
|
}
|
|
|
|
int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
|
|
{
|
|
struct clk_pll *pll = get_pll(clkid);
|
|
int data = 0, div = 0, offset = 0;
|
|
|
|
if (!clock_id_is_pll(clkid))
|
|
return -1;
|
|
|
|
if (pllout + 1 > pll_num_clkouts[clkid])
|
|
return -1;
|
|
|
|
div = clk_get_divider(8, pll_rate[clkid], rate);
|
|
|
|
if (div < 0)
|
|
return -1;
|
|
|
|
/* out2 and out4 are in the high part of the register */
|
|
if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
|
|
offset = 16;
|
|
|
|
data = (div << PLL_OUT_RATIO_SHIFT) |
|
|
PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
|
|
clrsetbits_le32(&pll->pll_out[pllout >> 1],
|
|
PLL_OUT_RATIO_MASK << offset, data << offset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Given the parent's rate and the divider in 7.1 format, this works out the
|
|
* resulting peripheral clock rate.
|
|
*
|
|
* @param parent_rate clock rate of parent clock in Hz
|
|
* @param divider which should be used in 7.1 format
|
|
* @return effective clock rate of peripheral
|
|
*/
|
|
static unsigned long get_rate_from_divider(unsigned long parent_rate,
|
|
int divider)
|
|
{
|
|
u64 rate;
|
|
|
|
rate = (u64)parent_rate * 2;
|
|
do_div(rate, divider + 2);
|
|
return rate;
|
|
}
|
|
|
|
unsigned long clock_get_periph_rate(enum periph_id periph_id,
|
|
enum clock_id parent)
|
|
{
|
|
u32 *reg = get_periph_source_reg(periph_id);
|
|
|
|
return get_rate_from_divider(pll_rate[parent],
|
|
(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
|
|
}
|
|
|
|
/**
|
|
* Find the best available 7.1 format divisor given a parent clock rate and
|
|
* required child clock rate. This function assumes that a second-stage
|
|
* divisor is available which can divide by powers of 2 from 1 to 256.
|
|
*
|
|
* @param divider_bits number of divider bits (8 or 16)
|
|
* @param parent_rate clock rate of parent clock in Hz
|
|
* @param rate required clock rate for this clock
|
|
* @param extra_div value for the second-stage divisor (not set if this
|
|
* function returns -1.
|
|
* @return divider which should be used, or -1 if nothing is valid
|
|
*
|
|
*/
|
|
static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
|
|
unsigned long rate, int *extra_div)
|
|
{
|
|
int shift;
|
|
int best_divider = -1;
|
|
int best_error = rate;
|
|
|
|
/* try dividers from 1 to 256 and find closest match */
|
|
for (shift = 0; shift <= 8 && best_error > 0; shift++) {
|
|
unsigned divided_parent = parent_rate >> shift;
|
|
int divider = clk_get_divider(divider_bits, divided_parent,
|
|
rate);
|
|
unsigned effective_rate = get_rate_from_divider(divided_parent,
|
|
divider);
|
|
int error = rate - effective_rate;
|
|
|
|
/* Given a valid divider, look for the lowest error */
|
|
if (divider != -1 && error < best_error) {
|
|
best_error = error;
|
|
*extra_div = 1 << shift;
|
|
best_divider = divider;
|
|
}
|
|
}
|
|
|
|
/* return what we found - *extra_div will already be set */
|
|
return best_divider;
|
|
}
|
|
|
|
/**
|
|
* Adjust peripheral PLL to use the given divider and source.
|
|
*
|
|
* @param periph_id peripheral to adjust
|
|
* @param source Source number (0-3 or 0-7)
|
|
* @param mux_bits Number of mux bits (2 or 4)
|
|
* @param divider Required divider in 7.1 or 15.1 format
|
|
* @return 0 if ok, -1 on error (requesting a parent clock which is not valid
|
|
* for this peripheral)
|
|
*/
|
|
static int adjust_periph_pll(enum periph_id periph_id, int source,
|
|
int mux_bits, unsigned divider)
|
|
{
|
|
u32 *reg = get_periph_source_reg(periph_id);
|
|
|
|
clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
|
|
divider << OUT_CLK_DIVISOR_SHIFT);
|
|
udelay(1);
|
|
|
|
/* work out the source clock and set it */
|
|
if (source < 0)
|
|
return -1;
|
|
|
|
switch (mux_bits) {
|
|
case MASK_BITS_31_30:
|
|
clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
|
|
source << OUT_CLK_SOURCE_31_30_SHIFT);
|
|
break;
|
|
|
|
case MASK_BITS_31_29:
|
|
clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
|
|
source << OUT_CLK_SOURCE_31_29_SHIFT);
|
|
break;
|
|
|
|
case MASK_BITS_31_28:
|
|
clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
|
|
source << OUT_CLK_SOURCE_31_28_SHIFT);
|
|
break;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
udelay(2);
|
|
return 0;
|
|
}
|
|
|
|
unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
|
|
enum clock_id parent, unsigned rate, int *extra_div)
|
|
{
|
|
unsigned effective_rate;
|
|
int mux_bits, divider_bits, source;
|
|
int divider;
|
|
int xdiv = 0;
|
|
|
|
/* work out the source clock and set it */
|
|
source = get_periph_clock_source(periph_id, parent, &mux_bits,
|
|
÷r_bits);
|
|
|
|
divider = find_best_divider(divider_bits, pll_rate[parent],
|
|
rate, &xdiv);
|
|
if (extra_div)
|
|
*extra_div = xdiv;
|
|
|
|
assert(divider >= 0);
|
|
if (adjust_periph_pll(periph_id, source, mux_bits, divider))
|
|
return -1U;
|
|
debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
|
|
get_periph_source_reg(periph_id),
|
|
readl(get_periph_source_reg(periph_id)));
|
|
|
|
/* Check what we ended up with. This shouldn't matter though */
|
|
effective_rate = clock_get_periph_rate(periph_id, parent);
|
|
if (extra_div)
|
|
effective_rate /= *extra_div;
|
|
if (rate != effective_rate)
|
|
debug("Requested clock rate %u not honored (got %u)\n",
|
|
rate, effective_rate);
|
|
return effective_rate;
|
|
}
|
|
|
|
unsigned clock_start_periph_pll(enum periph_id periph_id,
|
|
enum clock_id parent, unsigned rate)
|
|
{
|
|
unsigned effective_rate;
|
|
|
|
reset_set_enable(periph_id, 1);
|
|
clock_enable(periph_id);
|
|
|
|
effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
|
|
NULL);
|
|
|
|
reset_set_enable(periph_id, 0);
|
|
return effective_rate;
|
|
}
|
|
|
|
void clock_enable(enum periph_id clkid)
|
|
{
|
|
clock_set_enable(clkid, 1);
|
|
}
|
|
|
|
void clock_disable(enum periph_id clkid)
|
|
{
|
|
clock_set_enable(clkid, 0);
|
|
}
|
|
|
|
void reset_periph(enum periph_id periph_id, int us_delay)
|
|
{
|
|
/* Put peripheral into reset */
|
|
reset_set_enable(periph_id, 1);
|
|
udelay(us_delay);
|
|
|
|
/* Remove reset */
|
|
reset_set_enable(periph_id, 0);
|
|
|
|
udelay(us_delay);
|
|
}
|
|
|
|
void reset_cmplx_set_enable(int cpu, int which, int reset)
|
|
{
|
|
struct clk_rst_ctlr *clkrst =
|
|
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
|
u32 mask;
|
|
|
|
/* Form the mask, which depends on the cpu chosen (2 or 4) */
|
|
assert(cpu >= 0 && cpu < MAX_NUM_CPU);
|
|
mask = which << cpu;
|
|
|
|
/* either enable or disable those reset for that CPU */
|
|
if (reset)
|
|
writel(mask, &clkrst->crc_cpu_cmplx_set);
|
|
else
|
|
writel(mask, &clkrst->crc_cpu_cmplx_clr);
|
|
}
|
|
|
|
unsigned clock_get_rate(enum clock_id clkid)
|
|
{
|
|
struct clk_pll *pll;
|
|
u32 base;
|
|
u32 divm;
|
|
u64 parent_rate;
|
|
u64 rate;
|
|
|
|
parent_rate = osc_freq[clock_get_osc_freq()];
|
|
if (clkid == CLOCK_ID_OSC)
|
|
return parent_rate;
|
|
|
|
pll = get_pll(clkid);
|
|
base = readl(&pll->pll_base);
|
|
|
|
/* Oh for bf_unpack()... */
|
|
rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
|
|
divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
|
|
if (clkid == CLOCK_ID_USB)
|
|
divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
|
|
else
|
|
divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
|
|
do_div(rate, divm);
|
|
return rate;
|
|
}
|
|
|
|
/**
|
|
* Set the output frequency you want for each PLL clock.
|
|
* PLL output frequencies are programmed by setting their N, M and P values.
|
|
* The governing equations are:
|
|
* VCO = (Fi / m) * n, Fo = VCO / (2^p)
|
|
* where Fo is the output frequency from the PLL.
|
|
* Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
|
|
* 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
|
|
* Please see Tegra TRM section 5.3 to get the detail for PLL Programming
|
|
*
|
|
* @param n PLL feedback divider(DIVN)
|
|
* @param m PLL input divider(DIVN)
|
|
* @param p post divider(DIVP)
|
|
* @param cpcon base PLL charge pump(CPCON)
|
|
* @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
|
|
* be overriden), 1 if PLL is already correct
|
|
*/
|
|
int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
|
|
{
|
|
u32 base_reg;
|
|
u32 misc_reg;
|
|
struct clk_pll *pll;
|
|
|
|
pll = get_pll(clkid);
|
|
|
|
base_reg = readl(&pll->pll_base);
|
|
|
|
/* Set BYPASS, m, n and p to PLL_BASE */
|
|
base_reg &= ~PLL_DIVM_MASK;
|
|
base_reg |= m << PLL_DIVM_SHIFT;
|
|
|
|
base_reg &= ~PLL_DIVN_MASK;
|
|
base_reg |= n << PLL_DIVN_SHIFT;
|
|
|
|
base_reg &= ~PLL_DIVP_MASK;
|
|
base_reg |= p << PLL_DIVP_SHIFT;
|
|
|
|
if (clkid == CLOCK_ID_PERIPH) {
|
|
/*
|
|
* If the PLL is already set up, check that it is correct
|
|
* and record this info for clock_verify() to check.
|
|
*/
|
|
if (base_reg & PLL_BASE_OVRRIDE_MASK) {
|
|
base_reg |= PLL_ENABLE_MASK;
|
|
if (base_reg != readl(&pll->pll_base))
|
|
pllp_valid = 0;
|
|
return pllp_valid ? 1 : -1;
|
|
}
|
|
base_reg |= PLL_BASE_OVRRIDE_MASK;
|
|
}
|
|
|
|
base_reg |= PLL_BYPASS_MASK;
|
|
writel(base_reg, &pll->pll_base);
|
|
|
|
/* Set cpcon to PLL_MISC */
|
|
misc_reg = readl(&pll->pll_misc);
|
|
misc_reg &= ~PLL_CPCON_MASK;
|
|
misc_reg |= cpcon << PLL_CPCON_SHIFT;
|
|
writel(misc_reg, &pll->pll_misc);
|
|
|
|
/* Enable PLL */
|
|
base_reg |= PLL_ENABLE_MASK;
|
|
writel(base_reg, &pll->pll_base);
|
|
|
|
/* Disable BYPASS */
|
|
base_reg &= ~PLL_BYPASS_MASK;
|
|
writel(base_reg, &pll->pll_base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void clock_ll_start_uart(enum periph_id periph_id)
|
|
{
|
|
/* Assert UART reset and enable clock */
|
|
reset_set_enable(periph_id, 1);
|
|
clock_enable(periph_id);
|
|
clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
|
|
|
|
/* wait for 2us */
|
|
udelay(2);
|
|
|
|
/* De-assert reset to UART */
|
|
reset_set_enable(periph_id, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_OF_CONTROL
|
|
int clock_decode_periph_id(const void *blob, int node)
|
|
{
|
|
enum periph_id id;
|
|
u32 cell[2];
|
|
int err;
|
|
|
|
err = fdtdec_get_int_array(blob, node, "clocks", cell,
|
|
ARRAY_SIZE(cell));
|
|
if (err)
|
|
return -1;
|
|
id = clk_id_to_periph_id(cell[1]);
|
|
assert(clock_periph_id_isvalid(id));
|
|
return id;
|
|
}
|
|
#endif /* CONFIG_OF_CONTROL */
|
|
|
|
int clock_verify(void)
|
|
{
|
|
struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
|
|
u32 reg = readl(&pll->pll_base);
|
|
|
|
if (!pllp_valid) {
|
|
printf("Warning: PLLP %x is not correct\n", reg);
|
|
return -1;
|
|
}
|
|
debug("PLLP %x is correct\n", reg);
|
|
return 0;
|
|
}
|
|
|
|
void clock_init(void)
|
|
{
|
|
pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
|
|
pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
|
|
pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
|
|
pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
|
|
pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
|
|
pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
|
|
debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
|
|
debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
|
|
debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
|
|
debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
|
|
debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
|
|
|
|
/* Do any special system timer/TSC setup */
|
|
arch_timer_init();
|
|
}
|
|
|
|
static void set_avp_clock_source(u32 src)
|
|
{
|
|
struct clk_rst_ctlr *clkrst =
|
|
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
|
u32 val;
|
|
|
|
val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
|
|
(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
|
|
(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
|
|
(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
|
|
(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
|
|
writel(val, &clkrst->crc_sclk_brst_pol);
|
|
udelay(3);
|
|
}
|
|
|
|
/*
|
|
* This function is useful on Tegra30, and any later SoCs that have compatible
|
|
* PLLP configuration registers.
|
|
*/
|
|
void tegra30_set_up_pllp(void)
|
|
{
|
|
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Based on the Tegra TRM, the system clock (which is the AVP clock) can
|
|
* run up to 275MHz. On power on, the default sytem clock source is set
|
|
* to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
|
|
* 408MHz which is beyond system clock's upper limit.
|
|
*
|
|
* The fix is to set the system clock to CLK_M before initializing PLLP,
|
|
* and then switch back to PLLP_OUT4, which has an appropriate divider
|
|
* configured, after PLLP has been configured
|
|
*/
|
|
set_avp_clock_source(SCLK_SOURCE_CLKM);
|
|
|
|
/*
|
|
* PLLP output frequency set to 408Mhz
|
|
* PLLC output frequency set to 228Mhz
|
|
*/
|
|
switch (clock_get_osc_freq()) {
|
|
case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
|
|
clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
|
|
clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
|
|
break;
|
|
|
|
case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
|
|
clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
|
|
clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
|
|
break;
|
|
|
|
case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
|
|
clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
|
|
clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
|
|
break;
|
|
case CLOCK_OSC_FREQ_19_2:
|
|
default:
|
|
/*
|
|
* These are not supported. It is too early to print a
|
|
* message and the UART likely won't work anyway due to the
|
|
* oscillator being wrong.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
|
|
|
|
/* OUT1, 2 */
|
|
/* Assert RSTN before enable */
|
|
reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
|
|
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
|
|
/* Set divisor and reenable */
|
|
reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
|
|
| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
|
|
| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
|
|
| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
|
|
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
|
|
|
|
/* OUT3, 4 */
|
|
/* Assert RSTN before enable */
|
|
reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
|
|
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
|
|
/* Set divisor and reenable */
|
|
reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
|
|
| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
|
|
| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
|
|
| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
|
|
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
|
|
|
|
set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
|
|
}
|