u-boot/test/dm/ofnode.c
Simon Glass 0b58eaa89c dm: core: Allow copying ofnode property data when writing
At present ofnode_write_prop() is inconsistent between livetree and
flattree, in that livetree requires the caller to ensure the property
value is stable (e.g. in rodata or allocated) but flattree does not, since
it makes a copy.

This makes the API call a bit painful to use, since the caller must do
different things depending on OF_LIVE.

Add a new 'copy' argument which tells the function to make a copy if
needed. Add some tests to cover this behaviour.

Signed-off-by: Simon Glass <sjg@chromium.org>
2022-09-29 22:43:43 -04:00

1178 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2022 Google LLC
*
* There are two types of tests in this file:
* - normal ones which act on the control FDT (gd->fdt_blob or gd->of_root)
* - 'other' ones which act on the 'other' FDT (other.dts)
*
* The 'other' ones have an _ot suffix.
*
* The latter are used to check behaviour with multiple device trees,
* particularly with flat tree, where a tree ID is included in ofnode as part of
* the node offset. These tests are typically just for making sure that the
* offset makes it to libfdt correctly and that the resulting return value is
* correctly turned into an ofnode. The 'other' tests do not fully check the
* behaviour of each ofnode function, since that is done by the normal ones.
*/
#include <common.h>
#include <dm.h>
#include <log.h>
#include <of_live.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/of_extra.h>
#include <dm/root.h>
#include <dm/test.h>
#include <dm/uclass-internal.h>
#include <test/test.h>
#include <test/ut.h>
/**
* get_other_oftree() - Convert a flat tree into an oftree object
*
* @uts: Test state
* @return: oftree object for the 'other' FDT (see sandbox' other.dts)
*/
oftree get_other_oftree(struct unit_test_state *uts)
{
oftree tree;
if (of_live_active())
tree = oftree_from_np(uts->of_other);
else
tree = oftree_from_fdt(uts->other_fdt);
/* An invalid tree may cause failure or crashes */
if (!oftree_valid(tree))
ut_reportf("test needs the UT_TESTF_OTHER_FDT flag");
return tree;
}
/**
* get_oftree() - Convert a flat tree into an oftree object
*
* @uts: Test state
* @fdt: Pointer to flat tree
* @treep: Returns the tree, on success
* Return: 0 if OK, 1 if the tree failed to unflatten, -EOVERFLOW if there are
* too many flat trees to allow another one to be registers (see
* oftree_ensure())
*/
int get_oftree(struct unit_test_state *uts, void *fdt, oftree *treep)
{
oftree tree;
if (of_live_active()) {
struct device_node *root;
ut_assertok(unflatten_device_tree(fdt, &root));
tree = oftree_from_np(root);
} else {
tree = oftree_from_fdt(fdt);
if (!oftree_valid(tree))
return -EOVERFLOW;
}
*treep = tree;
return 0;
}
/**
* free_oftree() - Free memory used by get_oftree()
*
* @tree: Tree to free
*/
void free_oftree(oftree tree)
{
if (of_live_active())
free(tree.np);
}
static int dm_test_ofnode_compatible(struct unit_test_state *uts)
{
ofnode root_node = ofnode_path("/");
ut_assert(ofnode_valid(root_node));
ut_assert(ofnode_device_is_compatible(root_node, "sandbox"));
return 0;
}
DM_TEST(dm_test_ofnode_compatible,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
/* check ofnode_device_is_compatible() with the 'other' FDT */
static int dm_test_ofnode_compatible_ot(struct unit_test_state *uts)
{
oftree otree = get_other_oftree(uts);
ofnode oroot = oftree_root(otree);
ut_assert(ofnode_valid(oroot));
ut_assert(ofnode_device_is_compatible(oroot, "sandbox-other"));
return 0;
}
DM_TEST(dm_test_ofnode_compatible_ot, UT_TESTF_OTHER_FDT);
static int dm_test_ofnode_get_by_phandle(struct unit_test_state *uts)
{
/* test invalid phandle */
ut_assert(!ofnode_valid(ofnode_get_by_phandle(0)));
ut_assert(!ofnode_valid(ofnode_get_by_phandle(-1)));
/* test first valid phandle */
ut_assert(ofnode_valid(ofnode_get_by_phandle(1)));
/* test unknown phandle */
ut_assert(!ofnode_valid(ofnode_get_by_phandle(0x1000000)));
ut_assert(ofnode_valid(oftree_get_by_phandle(oftree_default(), 1)));
return 0;
}
DM_TEST(dm_test_ofnode_get_by_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_get_by_phandle_ot(struct unit_test_state *uts)
{
oftree otree = get_other_oftree(uts);
ofnode node;
ut_assert(ofnode_valid(oftree_get_by_phandle(oftree_default(), 1)));
node = oftree_get_by_phandle(otree, 1);
ut_assert(ofnode_valid(node));
ut_asserteq_str("target", ofnode_get_name(node));
return 0;
}
DM_TEST(dm_test_ofnode_get_by_phandle_ot, UT_TESTF_OTHER_FDT);
static int check_prop_values(struct unit_test_state *uts, ofnode start,
const char *propname, const char *propval,
int expect_count)
{
int proplen = strlen(propval) + 1;
const char *str;
ofnode node;
int count;
/* Find first matching node, there should be at least one */
node = ofnode_by_prop_value(start, propname, propval, proplen);
ut_assert(ofnode_valid(node));
str = ofnode_read_string(node, propname);
ut_assert(str && !strcmp(str, propval));
/* Find the rest of the matching nodes */
count = 1;
while (true) {
node = ofnode_by_prop_value(node, propname, propval, proplen);
if (!ofnode_valid(node))
break;
str = ofnode_read_string(node, propname);
ut_asserteq_str(propval, str);
count++;
}
ut_asserteq(expect_count, count);
return 0;
}
static int dm_test_ofnode_by_prop_value(struct unit_test_state *uts)
{
ut_assertok(check_prop_values(uts, ofnode_null(), "compatible",
"denx,u-boot-fdt-test", 11));
return 0;
}
DM_TEST(dm_test_ofnode_by_prop_value, UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_by_prop_value_ot(struct unit_test_state *uts)
{
oftree otree = get_other_oftree(uts);
ut_assertok(check_prop_values(uts, oftree_root(otree), "str-prop",
"other", 2));
return 0;
}
DM_TEST(dm_test_ofnode_by_prop_value_ot, UT_TESTF_OTHER_FDT);
static int dm_test_ofnode_fmap(struct unit_test_state *uts)
{
struct fmap_entry entry;
ofnode node;
node = ofnode_path("/cros-ec/flash");
ut_assert(ofnode_valid(node));
ut_assertok(ofnode_read_fmap_entry(node, &entry));
ut_asserteq(0x08000000, entry.offset);
ut_asserteq(0x20000, entry.length);
return 0;
}
DM_TEST(dm_test_ofnode_fmap, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_read(struct unit_test_state *uts)
{
const u32 *val;
ofnode node;
int size;
node = ofnode_path("/a-test");
ut_assert(ofnode_valid(node));
val = ofnode_read_prop(node, "int-value", &size);
ut_assertnonnull(val);
ut_asserteq(4, size);
ut_asserteq(1234, fdt32_to_cpu(val[0]));
val = ofnode_read_prop(node, "missing", &size);
ut_assertnull(val);
ut_asserteq(-FDT_ERR_NOTFOUND, size);
/* Check it works without a size parameter */
val = ofnode_read_prop(node, "missing", NULL);
ut_assertnull(val);
return 0;
}
DM_TEST(dm_test_ofnode_read, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_read_ot(struct unit_test_state *uts)
{
oftree otree = get_other_oftree(uts);
const char *val;
ofnode node;
int size;
node = oftree_path(otree, "/node/subnode");
ut_assert(ofnode_valid(node));
val = ofnode_read_prop(node, "str-prop", &size);
ut_assertnonnull(val);
ut_asserteq_str("other", val);
ut_asserteq(6, size);
return 0;
}
DM_TEST(dm_test_ofnode_read_ot, UT_TESTF_OTHER_FDT);
static int dm_test_ofnode_phandle(struct unit_test_state *uts)
{
struct ofnode_phandle_args args;
ofnode node;
int ret;
const char prop[] = "test-gpios";
const char cell[] = "#gpio-cells";
const char prop2[] = "phandle-value";
node = ofnode_path("/a-test");
ut_assert(ofnode_valid(node));
/* Test ofnode_count_phandle_with_args with cell name */
ret = ofnode_count_phandle_with_args(node, "missing", cell, 0);
ut_asserteq(-ENOENT, ret);
ret = ofnode_count_phandle_with_args(node, prop, "#invalid", 0);
ut_asserteq(-EINVAL, ret);
ret = ofnode_count_phandle_with_args(node, prop, cell, 0);
ut_asserteq(5, ret);
/* Test ofnode_parse_phandle_with_args with cell name */
ret = ofnode_parse_phandle_with_args(node, "missing", cell, 0, 0,
&args);
ut_asserteq(-ENOENT, ret);
ret = ofnode_parse_phandle_with_args(node, prop, "#invalid", 0, 0,
&args);
ut_asserteq(-EINVAL, ret);
ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 0, &args);
ut_assertok(ret);
ut_asserteq(1, args.args_count);
ut_asserteq(1, args.args[0]);
ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 1, &args);
ut_assertok(ret);
ut_asserteq(1, args.args_count);
ut_asserteq(4, args.args[0]);
ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 2, &args);
ut_assertok(ret);
ut_asserteq(5, args.args_count);
ut_asserteq(5, args.args[0]);
ut_asserteq(1, args.args[4]);
ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 3, &args);
ut_asserteq(-ENOENT, ret);
ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 4, &args);
ut_assertok(ret);
ut_asserteq(1, args.args_count);
ut_asserteq(12, args.args[0]);
ret = ofnode_parse_phandle_with_args(node, prop, cell, 0, 5, &args);
ut_asserteq(-ENOENT, ret);
/* Test ofnode_count_phandle_with_args with cell count */
ret = ofnode_count_phandle_with_args(node, "missing", NULL, 2);
ut_asserteq(-ENOENT, ret);
ret = ofnode_count_phandle_with_args(node, prop2, NULL, 1);
ut_asserteq(3, ret);
/* Test ofnode_parse_phandle_with_args with cell count */
ret = ofnode_parse_phandle_with_args(node, prop2, NULL, 1, 0, &args);
ut_assertok(ret);
ut_asserteq(1, ofnode_valid(args.node));
ut_asserteq(1, args.args_count);
ut_asserteq(10, args.args[0]);
ret = ofnode_parse_phandle_with_args(node, prop2, NULL, 1, 1, &args);
ut_asserteq(-EINVAL, ret);
ret = ofnode_parse_phandle_with_args(node, prop2, NULL, 1, 2, &args);
ut_assertok(ret);
ut_asserteq(1, ofnode_valid(args.node));
ut_asserteq(1, args.args_count);
ut_asserteq(30, args.args[0]);
ret = ofnode_parse_phandle_with_args(node, prop2, NULL, 1, 3, &args);
ut_asserteq(-ENOENT, ret);
return 0;
}
DM_TEST(dm_test_ofnode_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_phandle_ot(struct unit_test_state *uts)
{
oftree otree = get_other_oftree(uts);
struct ofnode_phandle_args args;
ofnode node;
int ret;
node = oftree_path(otree, "/node");
/* Test ofnode_count_phandle_with_args with cell name */
ret = ofnode_count_phandle_with_args(node, "missing", "#gpio-cells", 0);
ut_asserteq(-ENOENT, ret);
ret = ofnode_count_phandle_with_args(node, "target", "#invalid", 0);
ut_asserteq(-EINVAL, ret);
ret = ofnode_count_phandle_with_args(node, "target", "#gpio-cells", 0);
ut_asserteq(1, ret);
ret = ofnode_parse_phandle_with_args(node, "target", "#gpio-cells", 0,
0, &args);
ut_assertok(ret);
ut_asserteq(2, args.args_count);
ut_asserteq(3, args.args[0]);
ut_asserteq(4, args.args[1]);
return 0;
}
DM_TEST(dm_test_ofnode_phandle_ot, UT_TESTF_OTHER_FDT);
static int dm_test_ofnode_read_chosen(struct unit_test_state *uts)
{
const char *str;
const u32 *val;
ofnode node;
int size;
str = ofnode_read_chosen_string("setting");
ut_assertnonnull(str);
ut_asserteq_str("sunrise ohoka", str);
ut_asserteq_ptr(NULL, ofnode_read_chosen_string("no-setting"));
node = ofnode_get_chosen_node("other-node");
ut_assert(ofnode_valid(node));
ut_asserteq_str("c-test@5", ofnode_get_name(node));
node = ofnode_get_chosen_node("setting");
ut_assert(!ofnode_valid(node));
val = ofnode_read_chosen_prop("int-values", &size);
ut_assertnonnull(val);
ut_asserteq(8, size);
ut_asserteq(0x1937, fdt32_to_cpu(val[0]));
ut_asserteq(72993, fdt32_to_cpu(val[1]));
return 0;
}
DM_TEST(dm_test_ofnode_read_chosen, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_read_aliases(struct unit_test_state *uts)
{
const void *val;
ofnode node;
int size;
node = ofnode_get_aliases_node("ethernet3");
ut_assert(ofnode_valid(node));
ut_asserteq_str("sbe5", ofnode_get_name(node));
node = ofnode_get_aliases_node("unknown");
ut_assert(!ofnode_valid(node));
val = ofnode_read_aliases_prop("spi0", &size);
ut_assertnonnull(val);
ut_asserteq(7, size);
ut_asserteq_str("/spi@0", (const char *)val);
return 0;
}
DM_TEST(dm_test_ofnode_read_aliases, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_get_child_count(struct unit_test_state *uts)
{
ofnode node, child_node;
u32 val;
node = ofnode_path("/i-test");
ut_assert(ofnode_valid(node));
val = ofnode_get_child_count(node);
ut_asserteq(3, val);
child_node = ofnode_first_subnode(node);
ut_assert(ofnode_valid(child_node));
val = ofnode_get_child_count(child_node);
ut_asserteq(0, val);
return 0;
}
DM_TEST(dm_test_ofnode_get_child_count,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_get_child_count_ot(struct unit_test_state *uts)
{
oftree otree = get_other_oftree(uts);
ofnode node, child_node;
u32 val;
node = oftree_path(otree, "/node");
ut_assert(ofnode_valid(node));
val = ofnode_get_child_count(node);
ut_asserteq(2, val);
child_node = ofnode_first_subnode(node);
ut_assert(ofnode_valid(child_node));
val = ofnode_get_child_count(child_node);
ut_asserteq(0, val);
return 0;
}
DM_TEST(dm_test_ofnode_get_child_count_ot, UT_TESTF_OTHER_FDT);
static int dm_test_ofnode_is_enabled(struct unit_test_state *uts)
{
ofnode root_node = ofnode_path("/");
ofnode node = ofnode_path("/usb@0");
ut_assert(ofnode_is_enabled(root_node));
ut_assert(!ofnode_is_enabled(node));
return 0;
}
DM_TEST(dm_test_ofnode_is_enabled, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_is_enabled_ot(struct unit_test_state *uts)
{
oftree otree = get_other_oftree(uts);
ofnode root_node = oftree_root(otree);
ofnode node = oftree_path(otree, "/target");
ut_assert(ofnode_is_enabled(root_node));
ut_assert(!ofnode_is_enabled(node));
return 0;
}
DM_TEST(dm_test_ofnode_is_enabled_ot, UT_TESTF_OTHER_FDT);
static int dm_test_ofnode_get_reg(struct unit_test_state *uts)
{
ofnode node;
fdt_addr_t addr;
fdt_size_t size;
node = ofnode_path("/translation-test@8000");
ut_assert(ofnode_valid(node));
addr = ofnode_get_addr(node);
size = ofnode_get_size(node);
ut_asserteq(0x8000, addr);
ut_asserteq(0x4000, size);
node = ofnode_path("/translation-test@8000/dev@1,100");
ut_assert(ofnode_valid(node));
addr = ofnode_get_addr(node);
size = ofnode_get_size(node);
ut_asserteq(0x9000, addr);
ut_asserteq(0x1000, size);
node = ofnode_path("/emul-mux-controller");
ut_assert(ofnode_valid(node));
addr = ofnode_get_addr(node);
size = ofnode_get_size(node);
ut_asserteq_64(FDT_ADDR_T_NONE, addr);
ut_asserteq(FDT_SIZE_T_NONE, size);
node = ofnode_path("/translation-test@8000/noxlatebus@3,300/dev@42");
ut_assert(ofnode_valid(node));
addr = ofnode_get_addr_size_index_notrans(node, 0, &size);
ut_asserteq_64(0x42, addr);
return 0;
}
DM_TEST(dm_test_ofnode_get_reg, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_get_reg_ot(struct unit_test_state *uts)
{
oftree otree = get_other_oftree(uts);
ofnode node = oftree_path(otree, "/target");
fdt_addr_t addr;
addr = ofnode_get_addr(node);
ut_asserteq(0x8000, addr);
return 0;
}
DM_TEST(dm_test_ofnode_get_reg_ot, UT_TESTF_OTHER_FDT);
static int dm_test_ofnode_get_path(struct unit_test_state *uts)
{
const char *path = "/translation-test@8000/noxlatebus@3,300/dev@42";
char buf[64];
ofnode node;
node = ofnode_path(path);
ut_assert(ofnode_valid(node));
ut_assertok(ofnode_get_path(node, buf, sizeof(buf)));
ut_asserteq_str(path, buf);
ut_asserteq(-ENOSPC, ofnode_get_path(node, buf, 32));
ut_assertok(ofnode_get_path(ofnode_root(), buf, 32));
ut_asserteq_str("/", buf);
return 0;
}
DM_TEST(dm_test_ofnode_get_path, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_get_path_ot(struct unit_test_state *uts)
{
oftree otree = get_other_oftree(uts);
const char *path = "/node/subnode";
ofnode node = oftree_path(otree, path);
char buf[64];
ut_assert(ofnode_valid(node));
ut_assertok(ofnode_get_path(node, buf, sizeof(buf)));
ut_asserteq_str(path, buf);
ut_assertok(ofnode_get_path(oftree_root(otree), buf, 32));
ut_asserteq_str("/", buf);
return 0;
}
DM_TEST(dm_test_ofnode_get_path_ot, UT_TESTF_OTHER_FDT);
static int dm_test_ofnode_conf(struct unit_test_state *uts)
{
ut_assert(!ofnode_conf_read_bool("missing"));
ut_assert(ofnode_conf_read_bool("testing-bool"));
ut_asserteq(123, ofnode_conf_read_int("testing-int", 0));
ut_asserteq(6, ofnode_conf_read_int("missing", 6));
ut_assertnull(ofnode_conf_read_str("missing"));
ut_asserteq_str("testing", ofnode_conf_read_str("testing-str"));
return 0;
}
DM_TEST(dm_test_ofnode_conf, 0);
static int dm_test_ofnode_for_each_compatible_node(struct unit_test_state *uts)
{
const char compatible[] = "denx,u-boot-fdt-test";
bool found = false;
ofnode node;
ofnode_for_each_compatible_node(node, compatible) {
ut_assert(ofnode_device_is_compatible(node, compatible));
found = true;
}
/* There should be at least one matching node */
ut_assert(found);
return 0;
}
DM_TEST(dm_test_ofnode_for_each_compatible_node, UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_string(struct unit_test_state *uts)
{
const char **val;
const char *out;
ofnode node;
node = ofnode_path("/a-test");
ut_assert(ofnode_valid(node));
/* single string */
ut_asserteq(1, ofnode_read_string_count(node, "str-value"));
ut_assertok(ofnode_read_string_index(node, "str-value", 0, &out));
ut_asserteq_str("test string", out);
ut_asserteq(0, ofnode_stringlist_search(node, "str-value",
"test string"));
ut_asserteq(1, ofnode_read_string_list(node, "str-value", &val));
ut_asserteq_str("test string", val[0]);
ut_assertnull(val[1]);
free(val);
/* list of strings */
ut_asserteq(5, ofnode_read_string_count(node, "mux-control-names"));
ut_assertok(ofnode_read_string_index(node, "mux-control-names", 0,
&out));
ut_asserteq_str("mux0", out);
ut_asserteq(0, ofnode_stringlist_search(node, "mux-control-names",
"mux0"));
ut_asserteq(5, ofnode_read_string_list(node, "mux-control-names",
&val));
ut_asserteq_str("mux0", val[0]);
ut_asserteq_str("mux1", val[1]);
ut_asserteq_str("mux2", val[2]);
ut_asserteq_str("mux3", val[3]);
ut_asserteq_str("mux4", val[4]);
ut_assertnull(val[5]);
free(val);
ut_assertok(ofnode_read_string_index(node, "mux-control-names", 4,
&out));
ut_asserteq_str("mux4", out);
ut_asserteq(4, ofnode_stringlist_search(node, "mux-control-names",
"mux4"));
return 0;
}
DM_TEST(dm_test_ofnode_string, 0);
static int dm_test_ofnode_string_err(struct unit_test_state *uts)
{
const char **val;
const char *out;
ofnode node;
/*
* Test error codes only on livetree, as they are different with
* flattree
*/
node = ofnode_path("/a-test");
ut_assert(ofnode_valid(node));
/* non-existent property */
ut_asserteq(-EINVAL, ofnode_read_string_count(node, "missing"));
ut_asserteq(-EINVAL, ofnode_read_string_index(node, "missing", 0,
&out));
ut_asserteq(-EINVAL, ofnode_read_string_list(node, "missing", &val));
/* empty property */
ut_asserteq(-ENODATA, ofnode_read_string_count(node, "bool-value"));
ut_asserteq(-ENODATA, ofnode_read_string_index(node, "bool-value", 0,
&out));
ut_asserteq(-ENODATA, ofnode_read_string_list(node, "bool-value",
&val));
/* badly formatted string list */
ut_asserteq(-EILSEQ, ofnode_read_string_count(node, "int64-value"));
ut_asserteq(-EILSEQ, ofnode_read_string_index(node, "int64-value", 0,
&out));
ut_asserteq(-EILSEQ, ofnode_read_string_list(node, "int64-value",
&val));
/* out of range / not found */
ut_asserteq(-ENODATA, ofnode_read_string_index(node, "str-value", 1,
&out));
ut_asserteq(-ENODATA, ofnode_stringlist_search(node, "str-value",
"other"));
/* negative value for index is not allowed, so don't test for that */
ut_asserteq(-ENODATA, ofnode_read_string_index(node,
"mux-control-names", 5,
&out));
return 0;
}
DM_TEST(dm_test_ofnode_string_err, UT_TESTF_LIVE_TREE);
static int dm_test_ofnode_get_phy(struct unit_test_state *uts)
{
ofnode eth_node, phy_node;
phy_interface_t mode;
u32 reg;
eth_node = ofnode_path("/phy-test-eth");
ut_assert(ofnode_valid(eth_node));
mode = ofnode_read_phy_mode(eth_node);
ut_assert(mode == PHY_INTERFACE_MODE_2500BASEX);
phy_node = ofnode_get_phy_node(eth_node);
ut_assert(ofnode_valid(phy_node));
reg = ofnode_read_u32_default(phy_node, "reg", -1U);
ut_asserteq_64(0x1, reg);
return 0;
}
DM_TEST(dm_test_ofnode_get_phy, 0);
/**
* make_ofnode_fdt() - Create an FDT for testing with ofnode
*
* The size is set to the minimum needed
*
* @uts: Test state
* @fdt: Place to write FDT
* @size: Maximum size of space for fdt
* @id: id value to add to the tree ('id' property in root node)
*/
static int make_ofnode_fdt(struct unit_test_state *uts, void *fdt, int size,
int id)
{
ut_assertok(fdt_create(fdt, size));
ut_assertok(fdt_finish_reservemap(fdt));
ut_assert(fdt_begin_node(fdt, "") >= 0);
ut_assertok(fdt_property_u32(fdt, "id", id));
ut_assert(fdt_begin_node(fdt, "aliases") >= 0);
ut_assertok(fdt_property_string(fdt, "mmc0", "/new-mmc"));
ut_assertok(fdt_end_node(fdt));
ut_assert(fdt_begin_node(fdt, "new-mmc") >= 0);
ut_assertok(fdt_end_node(fdt));
ut_assertok(fdt_end_node(fdt));
ut_assertok(fdt_finish(fdt));
return 0;
}
static int dm_test_ofnode_root(struct unit_test_state *uts)
{
char fdt[256];
oftree tree;
ofnode node;
int ret;
/* Check that aliases work on the control FDT */
node = ofnode_get_aliases_node("ethernet3");
ut_assert(ofnode_valid(node));
ut_asserteq_str("sbe5", ofnode_get_name(node));
ut_assert(!oftree_valid(oftree_null()));
ut_assertok(make_ofnode_fdt(uts, fdt, sizeof(fdt), 0));
ret = get_oftree(uts, fdt, &tree);
/* skip the rest of this test if multiple FDTs are not supported */
if (ret == -EOVERFLOW)
return 0;
ut_assertok(ret);
ut_assert(oftree_valid(tree));
/* Make sure they don't work on this new tree */
node = oftree_path(tree, "mmc0");
ut_assert(!ofnode_valid(node));
/* It should appear in the new tree */
node = oftree_path(tree, "/new-mmc");
ut_assert(ofnode_valid(node));
/* ...and not in the control FDT */
node = oftree_path(oftree_default(), "/new-mmc");
ut_assert(!ofnode_valid(node));
free_oftree(tree);
return 0;
}
DM_TEST(dm_test_ofnode_root, UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_livetree_writing(struct unit_test_state *uts)
{
struct udevice *dev;
ofnode node;
/* Test enabling devices */
node = ofnode_path("/usb@2");
ut_assert(!ofnode_is_enabled(node));
ut_assertok(ofnode_set_enabled(node, true));
ut_asserteq(true, ofnode_is_enabled(node));
device_bind_driver_to_node(dm_root(), "usb_sandbox", "usb@2", node,
&dev);
ut_assertok(uclass_find_device_by_seq(UCLASS_USB, 2, &dev));
/* Test string property setting */
ut_assert(device_is_compatible(dev, "sandbox,usb"));
ofnode_write_string(node, "compatible", "gdsys,super-usb");
ut_assert(device_is_compatible(dev, "gdsys,super-usb"));
ofnode_write_string(node, "compatible", "sandbox,usb");
ut_assert(device_is_compatible(dev, "sandbox,usb"));
/* Test setting generic properties */
/* Non-existent in DTB */
ut_asserteq_64(FDT_ADDR_T_NONE, dev_read_addr(dev));
/* reg = 0x42, size = 0x100 */
ut_assertok(ofnode_write_prop(node, "reg",
"\x00\x00\x00\x42\x00\x00\x01\x00", 8,
false));
ut_asserteq(0x42, dev_read_addr(dev));
/* Test disabling devices */
device_remove(dev, DM_REMOVE_NORMAL);
device_unbind(dev);
ut_assert(ofnode_is_enabled(node));
ut_assertok(ofnode_set_enabled(node, false));
ut_assert(!ofnode_is_enabled(node));
return 0;
}
DM_TEST(dm_test_ofnode_livetree_writing,
UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int check_write_prop(struct unit_test_state *uts, ofnode node)
{
char prop[] = "middle-name";
char name[10];
int len;
strcpy(name, "cecil");
len = strlen(name) + 1;
ut_assertok(ofnode_write_prop(node, prop, name, len, false));
ut_asserteq_str(name, ofnode_read_string(node, prop));
/* change the underlying value, this should mess up the live tree */
strcpy(name, "tony");
if (of_live_active()) {
ut_asserteq_str(name, ofnode_read_string(node, prop));
} else {
ut_asserteq_str("cecil", ofnode_read_string(node, prop));
}
/* try again, this time copying the property */
strcpy(name, "mary");
ut_assertok(ofnode_write_prop(node, prop, name, len, true));
ut_asserteq_str(name, ofnode_read_string(node, prop));
strcpy(name, "leah");
/* both flattree and livetree behave the same */
ut_asserteq_str("mary", ofnode_read_string(node, prop));
return 0;
}
/* writing the tree with and without copying the property */
static int dm_test_ofnode_write_copy(struct unit_test_state *uts)
{
ofnode node;
node = ofnode_path("/a-test");
ut_assertok(check_write_prop(uts, node));
return 0;
}
DM_TEST(dm_test_ofnode_write_copy, UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_write_copy_ot(struct unit_test_state *uts)
{
oftree otree = get_other_oftree(uts);
ofnode node, check_node;
node = oftree_path(otree, "/node");
ut_assertok(check_write_prop(uts, node));
/* make sure the control FDT is not touched */
check_node = ofnode_path("/node");
ut_assertnull(ofnode_read_string(check_node, "middle-name"));
return 0;
}
DM_TEST(dm_test_ofnode_write_copy_ot, UT_TESTF_OTHER_FDT);
static int dm_test_ofnode_u32(struct unit_test_state *uts)
{
ofnode node;
u32 val;
node = ofnode_path("/lcd");
ut_assert(ofnode_valid(node));
ut_asserteq(1366, ofnode_read_u32_default(node, "xres", 123));
ut_assertok(ofnode_write_u32(node, "xres", 1367));
ut_asserteq(1367, ofnode_read_u32_default(node, "xres", 123));
ut_assertok(ofnode_write_u32(node, "xres", 1366));
node = ofnode_path("/backlight");
ut_assertok(ofnode_read_u32_index(node, "brightness-levels", 0, &val));
ut_asserteq(0, val);
ut_assertok(ofnode_read_u32_index(node, "brightness-levels", 1, &val));
ut_asserteq(16, val);
ut_assertok(ofnode_read_u32_index(node, "brightness-levels", 8, &val));
ut_asserteq(255, val);
ut_asserteq(-EOVERFLOW,
ofnode_read_u32_index(node, "brightness-levels", 9, &val));
ut_asserteq(-EINVAL, ofnode_read_u32_index(node, "missing", 0, &val));
return 0;
}
DM_TEST(dm_test_ofnode_u32, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_u32_array(struct unit_test_state *uts)
{
ofnode node;
u32 val[10];
node = ofnode_path("/a-test");
ut_assert(ofnode_valid(node));
ut_assertok(ofnode_read_u32_array(node, "int-value", val, 1));
ut_asserteq(-EINVAL, ofnode_read_u32_array(node, "missing", val, 1));
ut_asserteq(-EOVERFLOW, ofnode_read_u32_array(node, "bool-value", val,
1));
memset(val, '\0', sizeof(val));
ut_assertok(ofnode_read_u32_array(node, "int-array", val + 1, 3));
ut_asserteq(0, val[0]);
ut_asserteq(5678, val[1]);
ut_asserteq(9123, val[2]);
ut_asserteq(4567, val[3]);
ut_asserteq(0, val[4]);
ut_asserteq(-EOVERFLOW, ofnode_read_u32_array(node, "int-array", val,
4));
return 0;
}
DM_TEST(dm_test_ofnode_u32_array, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_u64(struct unit_test_state *uts)
{
ofnode node;
u64 val;
node = ofnode_path("/a-test");
ut_assert(ofnode_valid(node));
ut_assertok(ofnode_read_u64(node, "int64-value", &val));
ut_asserteq_64(0x1111222233334444, val);
ut_asserteq(-EINVAL, ofnode_read_u64(node, "missing", &val));
return 0;
}
DM_TEST(dm_test_ofnode_u64, UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_add_subnode(struct unit_test_state *uts)
{
ofnode node, check, subnode;
char buf[128];
node = ofnode_path("/lcd");
ut_assert(ofnode_valid(node));
ut_assertok(ofnode_add_subnode(node, "edmund", &subnode));
check = ofnode_path("/lcd/edmund");
ut_asserteq(subnode.of_offset, check.of_offset);
ut_assertok(ofnode_get_path(subnode, buf, sizeof(buf)));
ut_asserteq_str("/lcd/edmund", buf);
if (of_live_active()) {
struct device_node *child;
ut_assertok(of_add_subnode((void *)ofnode_to_np(node), "edmund",
2, &child));
ut_asserteq_str("ed", child->name);
ut_asserteq_str("/lcd/ed", child->full_name);
check = ofnode_path("/lcd/ed");
ut_asserteq_ptr(child, check.np);
ut_assertok(ofnode_get_path(np_to_ofnode(child), buf,
sizeof(buf)));
ut_asserteq_str("/lcd/ed", buf);
}
/* An existing node should be returned with -EEXIST */
ut_asserteq(-EEXIST, ofnode_add_subnode(node, "edmund", &check));
ut_asserteq(subnode.of_offset, check.of_offset);
/* add a root node */
node = ofnode_path("/");
ut_assert(ofnode_valid(node));
ut_assertok(ofnode_add_subnode(node, "lcd2", &subnode));
check = ofnode_path("/lcd2");
ut_asserteq(subnode.of_offset, check.of_offset);
ut_assertok(ofnode_get_path(subnode, buf, sizeof(buf)));
ut_asserteq_str("/lcd2", buf);
if (of_live_active()) {
ulong start;
int i;
/*
* Make sure each of the three malloc()checks in
* of_add_subnode() work
*/
for (i = 0; i < 3; i++) {
malloc_enable_testing(i);
start = ut_check_free();
ut_asserteq(-ENOMEM, ofnode_add_subnode(node, "anthony",
&check));
ut_assertok(ut_check_delta(start));
}
/* This should pass since we allow 3 allocations */
malloc_enable_testing(3);
ut_assertok(ofnode_add_subnode(node, "anthony", &check));
malloc_disable_testing();
}
/* write to the empty node */
ut_assertok(ofnode_write_string(subnode, "example", "text"));
return 0;
}
DM_TEST(dm_test_ofnode_add_subnode, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_for_each_prop(struct unit_test_state *uts)
{
ofnode node, subnode;
struct ofprop prop;
int count;
node = ofnode_path("/buttons");
count = 0;
/* we expect "compatible" for each node */
ofnode_for_each_prop(prop, node)
count++;
ut_asserteq(1, count);
/* there are two nodes, each with 2 properties */
ofnode_for_each_subnode(subnode, node)
ofnode_for_each_prop(prop, subnode)
count++;
ut_asserteq(5, count);
return 0;
}
DM_TEST(dm_test_ofnode_for_each_prop, UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_by_compatible(struct unit_test_state *uts)
{
const char *compat = "denx,u-boot-fdt-test";
ofnode node;
int count;
count = 0;
for (node = ofnode_null();
node = ofnode_by_compatible(node, compat), ofnode_valid(node);)
count++;
ut_asserteq(11, count);
return 0;
}
DM_TEST(dm_test_ofnode_by_compatible, UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_by_compatible_ot(struct unit_test_state *uts)
{
const char *compat = "sandbox-other2";
oftree otree = get_other_oftree(uts);
ofnode node;
int count;
count = 0;
for (node = oftree_root(otree);
node = ofnode_by_compatible(node, compat), ofnode_valid(node);)
count++;
ut_asserteq(2, count);
return 0;
}
DM_TEST(dm_test_ofnode_by_compatible_ot, UT_TESTF_OTHER_FDT);
static int dm_test_ofnode_find_subnode(struct unit_test_state *uts)
{
ofnode node, subnode;
node = ofnode_path("/buttons");
subnode = ofnode_find_subnode(node, "btn1");
ut_assert(ofnode_valid(subnode));
ut_asserteq_str("btn1", ofnode_get_name(subnode));
subnode = ofnode_find_subnode(node, "btn");
ut_assert(!ofnode_valid(subnode));
return 0;
}
DM_TEST(dm_test_ofnode_find_subnode, UT_TESTF_SCAN_FDT);
static int dm_test_ofnode_find_subnode_ot(struct unit_test_state *uts)
{
oftree otree = get_other_oftree(uts);
ofnode node, subnode;
node = oftree_path(otree, "/node");
subnode = ofnode_find_subnode(node, "subnode");
ut_assert(ofnode_valid(subnode));
ut_asserteq_str("subnode", ofnode_get_name(subnode));
subnode = ofnode_find_subnode(node, "btn");
ut_assert(!ofnode_valid(subnode));
return 0;
}
DM_TEST(dm_test_ofnode_find_subnode_ot, UT_TESTF_OTHER_FDT);
static int dm_test_ofnode_get_name(struct unit_test_state *uts)
{
ofnode node;
node = ofnode_path("/buttons");
ut_assert(ofnode_valid(node));
ut_asserteq_str("buttons", ofnode_get_name(node));
ut_asserteq_str("", ofnode_get_name(ofnode_root()));
return 0;
}
DM_TEST(dm_test_ofnode_get_name, UT_TESTF_SCAN_FDT);
/* try to access more FDTs than is supported */
static int dm_test_ofnode_too_many(struct unit_test_state *uts)
{
const int max_trees = CONFIG_IS_ENABLED(OFNODE_MULTI_TREE,
(CONFIG_OFNODE_MULTI_TREE_MAX), (1));
const int fdt_size = 256;
const int num_trees = max_trees + 1;
char fdt[num_trees][fdt_size];
int i;
for (i = 0; i < num_trees; i++) {
oftree tree;
int ret;
ut_assertok(make_ofnode_fdt(uts, fdt[i], fdt_size, i));
ret = get_oftree(uts, fdt[i], &tree);
/*
* With flat tree we have the control FDT using one slot. Live
* tree has no limit since it uses pointers, not integer tree
* IDs
*/
if (of_live_active() || i < max_trees - 1) {
ut_assertok(ret);
} else {
/*
* tree should be invalid when we try to register too
* many trees
*/
ut_asserteq(-EOVERFLOW, ret);
}
}
return 0;
}
DM_TEST(dm_test_ofnode_too_many, UT_TESTF_SCAN_FDT);