mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-13 08:27:23 +00:00
9eefe2a2b3
The U-Boot UBIFS implementation is largely a direct copy from the current Linux version (2.6.29-rc6). As already done in the UBI version we have an "abstraction layer" to redefine or remove some OS calls (e.g. mutex_lock() ...). This makes it possible to use the original Linux code with very little changes. And by this we can better update to later Linux versions. I removed some of the Linux features that are not used in the U-Boot version (e.g. garbage-collection, write support). Signed-off-by: Stefan Roese <sr@denx.de> CC: Artem Bityutskiy <dedekind@infradead.org> CC: Adrian Hunter <ext-Adrian.Hunter@nokia.com>
316 lines
9.8 KiB
C
316 lines
9.8 KiB
C
/*
|
|
* This file is part of UBIFS.
|
|
*
|
|
* Copyright (C) 2006-2008 Nokia Corporation.
|
|
* Copyright (C) 2006, 2007 University of Szeged, Hungary
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 51
|
|
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Authors: Artem Bityutskiy (Битюцкий Артём)
|
|
* Adrian Hunter
|
|
* Zoltan Sogor
|
|
*/
|
|
|
|
/*
|
|
* This file implements UBIFS I/O subsystem which provides various I/O-related
|
|
* helper functions (reading/writing/checking/validating nodes) and implements
|
|
* write-buffering support. Write buffers help to save space which otherwise
|
|
* would have been wasted for padding to the nearest minimal I/O unit boundary.
|
|
* Instead, data first goes to the write-buffer and is flushed when the
|
|
* buffer is full or when it is not used for some time (by timer). This is
|
|
* similar to the mechanism is used by JFFS2.
|
|
*
|
|
* Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
|
|
* mutexes defined inside these objects. Since sometimes upper-level code
|
|
* has to lock the write-buffer (e.g. journal space reservation code), many
|
|
* functions related to write-buffers have "nolock" suffix which means that the
|
|
* caller has to lock the write-buffer before calling this function.
|
|
*
|
|
* UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
|
|
* aligned, UBIFS starts the next node from the aligned address, and the padded
|
|
* bytes may contain any rubbish. In other words, UBIFS does not put padding
|
|
* bytes in those small gaps. Common headers of nodes store real node lengths,
|
|
* not aligned lengths. Indexing nodes also store real lengths in branches.
|
|
*
|
|
* UBIFS uses padding when it pads to the next min. I/O unit. In this case it
|
|
* uses padding nodes or padding bytes, if the padding node does not fit.
|
|
*
|
|
* All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
|
|
* every time they are read from the flash media.
|
|
*/
|
|
|
|
#include "ubifs.h"
|
|
|
|
/**
|
|
* ubifs_ro_mode - switch UBIFS to read read-only mode.
|
|
* @c: UBIFS file-system description object
|
|
* @err: error code which is the reason of switching to R/O mode
|
|
*/
|
|
void ubifs_ro_mode(struct ubifs_info *c, int err)
|
|
{
|
|
if (!c->ro_media) {
|
|
c->ro_media = 1;
|
|
c->no_chk_data_crc = 0;
|
|
ubifs_warn("switched to read-only mode, error %d", err);
|
|
dbg_dump_stack();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ubifs_check_node - check node.
|
|
* @c: UBIFS file-system description object
|
|
* @buf: node to check
|
|
* @lnum: logical eraseblock number
|
|
* @offs: offset within the logical eraseblock
|
|
* @quiet: print no messages
|
|
* @must_chk_crc: indicates whether to always check the CRC
|
|
*
|
|
* This function checks node magic number and CRC checksum. This function also
|
|
* validates node length to prevent UBIFS from becoming crazy when an attacker
|
|
* feeds it a file-system image with incorrect nodes. For example, too large
|
|
* node length in the common header could cause UBIFS to read memory outside of
|
|
* allocated buffer when checking the CRC checksum.
|
|
*
|
|
* This function may skip data nodes CRC checking if @c->no_chk_data_crc is
|
|
* true, which is controlled by corresponding UBIFS mount option. However, if
|
|
* @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
|
|
* checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
|
|
* ignored and CRC is checked.
|
|
*
|
|
* This function returns zero in case of success and %-EUCLEAN in case of bad
|
|
* CRC or magic.
|
|
*/
|
|
int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
|
|
int offs, int quiet, int must_chk_crc)
|
|
{
|
|
int err = -EINVAL, type, node_len;
|
|
uint32_t crc, node_crc, magic;
|
|
const struct ubifs_ch *ch = buf;
|
|
|
|
ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
|
|
ubifs_assert(!(offs & 7) && offs < c->leb_size);
|
|
|
|
magic = le32_to_cpu(ch->magic);
|
|
if (magic != UBIFS_NODE_MAGIC) {
|
|
if (!quiet)
|
|
ubifs_err("bad magic %#08x, expected %#08x",
|
|
magic, UBIFS_NODE_MAGIC);
|
|
err = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
|
|
type = ch->node_type;
|
|
if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
|
|
if (!quiet)
|
|
ubifs_err("bad node type %d", type);
|
|
goto out;
|
|
}
|
|
|
|
node_len = le32_to_cpu(ch->len);
|
|
if (node_len + offs > c->leb_size)
|
|
goto out_len;
|
|
|
|
if (c->ranges[type].max_len == 0) {
|
|
if (node_len != c->ranges[type].len)
|
|
goto out_len;
|
|
} else if (node_len < c->ranges[type].min_len ||
|
|
node_len > c->ranges[type].max_len)
|
|
goto out_len;
|
|
|
|
if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc &&
|
|
c->no_chk_data_crc)
|
|
return 0;
|
|
|
|
crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
|
|
node_crc = le32_to_cpu(ch->crc);
|
|
if (crc != node_crc) {
|
|
if (!quiet)
|
|
ubifs_err("bad CRC: calculated %#08x, read %#08x",
|
|
crc, node_crc);
|
|
err = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_len:
|
|
if (!quiet)
|
|
ubifs_err("bad node length %d", node_len);
|
|
out:
|
|
if (!quiet) {
|
|
ubifs_err("bad node at LEB %d:%d", lnum, offs);
|
|
dbg_dump_node(c, buf);
|
|
dbg_dump_stack();
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubifs_pad - pad flash space.
|
|
* @c: UBIFS file-system description object
|
|
* @buf: buffer to put padding to
|
|
* @pad: how many bytes to pad
|
|
*
|
|
* The flash media obliges us to write only in chunks of %c->min_io_size and
|
|
* when we have to write less data we add padding node to the write-buffer and
|
|
* pad it to the next minimal I/O unit's boundary. Padding nodes help when the
|
|
* media is being scanned. If the amount of wasted space is not enough to fit a
|
|
* padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
|
|
* pattern (%UBIFS_PADDING_BYTE).
|
|
*
|
|
* Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
|
|
* used.
|
|
*/
|
|
void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
|
|
{
|
|
uint32_t crc;
|
|
|
|
ubifs_assert(pad >= 0 && !(pad & 7));
|
|
|
|
if (pad >= UBIFS_PAD_NODE_SZ) {
|
|
struct ubifs_ch *ch = buf;
|
|
struct ubifs_pad_node *pad_node = buf;
|
|
|
|
ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
|
|
ch->node_type = UBIFS_PAD_NODE;
|
|
ch->group_type = UBIFS_NO_NODE_GROUP;
|
|
ch->padding[0] = ch->padding[1] = 0;
|
|
ch->sqnum = 0;
|
|
ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
|
|
pad -= UBIFS_PAD_NODE_SZ;
|
|
pad_node->pad_len = cpu_to_le32(pad);
|
|
crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
|
|
ch->crc = cpu_to_le32(crc);
|
|
memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
|
|
} else if (pad > 0)
|
|
/* Too little space, padding node won't fit */
|
|
memset(buf, UBIFS_PADDING_BYTE, pad);
|
|
}
|
|
|
|
/**
|
|
* next_sqnum - get next sequence number.
|
|
* @c: UBIFS file-system description object
|
|
*/
|
|
static unsigned long long next_sqnum(struct ubifs_info *c)
|
|
{
|
|
unsigned long long sqnum;
|
|
|
|
spin_lock(&c->cnt_lock);
|
|
sqnum = ++c->max_sqnum;
|
|
spin_unlock(&c->cnt_lock);
|
|
|
|
if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
|
|
if (sqnum >= SQNUM_WATERMARK) {
|
|
ubifs_err("sequence number overflow %llu, end of life",
|
|
sqnum);
|
|
ubifs_ro_mode(c, -EINVAL);
|
|
}
|
|
ubifs_warn("running out of sequence numbers, end of life soon");
|
|
}
|
|
|
|
return sqnum;
|
|
}
|
|
|
|
/**
|
|
* ubifs_prepare_node - prepare node to be written to flash.
|
|
* @c: UBIFS file-system description object
|
|
* @node: the node to pad
|
|
* @len: node length
|
|
* @pad: if the buffer has to be padded
|
|
*
|
|
* This function prepares node at @node to be written to the media - it
|
|
* calculates node CRC, fills the common header, and adds proper padding up to
|
|
* the next minimum I/O unit if @pad is not zero.
|
|
*/
|
|
void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
|
|
{
|
|
uint32_t crc;
|
|
struct ubifs_ch *ch = node;
|
|
unsigned long long sqnum = next_sqnum(c);
|
|
|
|
ubifs_assert(len >= UBIFS_CH_SZ);
|
|
|
|
ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
|
|
ch->len = cpu_to_le32(len);
|
|
ch->group_type = UBIFS_NO_NODE_GROUP;
|
|
ch->sqnum = cpu_to_le64(sqnum);
|
|
ch->padding[0] = ch->padding[1] = 0;
|
|
crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
|
|
ch->crc = cpu_to_le32(crc);
|
|
|
|
if (pad) {
|
|
len = ALIGN(len, 8);
|
|
pad = ALIGN(len, c->min_io_size) - len;
|
|
ubifs_pad(c, node + len, pad);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ubifs_read_node - read node.
|
|
* @c: UBIFS file-system description object
|
|
* @buf: buffer to read to
|
|
* @type: node type
|
|
* @len: node length (not aligned)
|
|
* @lnum: logical eraseblock number
|
|
* @offs: offset within the logical eraseblock
|
|
*
|
|
* This function reads a node of known type and and length, checks it and
|
|
* stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
|
|
* and a negative error code in case of failure.
|
|
*/
|
|
int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
|
|
int lnum, int offs)
|
|
{
|
|
int err, l;
|
|
struct ubifs_ch *ch = buf;
|
|
|
|
dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
|
|
ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
|
|
ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
|
|
ubifs_assert(!(offs & 7) && offs < c->leb_size);
|
|
ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
|
|
|
|
err = ubi_read(c->ubi, lnum, buf, offs, len);
|
|
if (err && err != -EBADMSG) {
|
|
ubifs_err("cannot read node %d from LEB %d:%d, error %d",
|
|
type, lnum, offs, err);
|
|
return err;
|
|
}
|
|
|
|
if (type != ch->node_type) {
|
|
ubifs_err("bad node type (%d but expected %d)",
|
|
ch->node_type, type);
|
|
goto out;
|
|
}
|
|
|
|
err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
|
|
if (err) {
|
|
ubifs_err("expected node type %d", type);
|
|
return err;
|
|
}
|
|
|
|
l = le32_to_cpu(ch->len);
|
|
if (l != len) {
|
|
ubifs_err("bad node length %d, expected %d", l, len);
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
ubifs_err("bad node at LEB %d:%d", lnum, offs);
|
|
dbg_dump_node(c, buf);
|
|
dbg_dump_stack();
|
|
return -EINVAL;
|
|
}
|