mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-25 11:25:17 +00:00
3765b3e7bd
Signed-off-by: Wolfgang Denk <wd@denx.de>
927 lines
25 KiB
C
927 lines
25 KiB
C
/*
|
|
* (C) Copyright 2006-2007 Freescale Semiconductor, Inc.
|
|
*
|
|
* (C) Copyright 2006
|
|
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
*
|
|
* Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
|
|
* (C) Copyright 2003 Motorola Inc.
|
|
* Xianghua Xiao (X.Xiao@motorola.com)
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/io.h>
|
|
#include <i2c.h>
|
|
#include <spd.h>
|
|
#include <asm/mmu.h>
|
|
#include <spd_sdram.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
void board_add_ram_info(int use_default)
|
|
{
|
|
volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
|
|
volatile ddr83xx_t *ddr = &immap->ddr;
|
|
char buf[32];
|
|
|
|
printf(" (DDR%d", ((ddr->sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK)
|
|
>> SDRAM_CFG_SDRAM_TYPE_SHIFT) - 1);
|
|
|
|
#if defined(CONFIG_MPC8308) || defined(CONFIG_MPC831x)
|
|
if ((ddr->sdram_cfg & SDRAM_CFG_DBW_MASK) == SDRAM_CFG_DBW_16)
|
|
puts(", 16-bit");
|
|
else if ((ddr->sdram_cfg & SDRAM_CFG_DBW_MASK) == SDRAM_CFG_DBW_32)
|
|
puts(", 32-bit");
|
|
else
|
|
puts(", unknown width");
|
|
#else
|
|
if (ddr->sdram_cfg & SDRAM_CFG_32_BE)
|
|
puts(", 32-bit");
|
|
else
|
|
puts(", 64-bit");
|
|
#endif
|
|
|
|
if (ddr->sdram_cfg & SDRAM_CFG_ECC_EN)
|
|
puts(", ECC on");
|
|
else
|
|
puts(", ECC off");
|
|
|
|
printf(", %s MHz)", strmhz(buf, gd->mem_clk));
|
|
|
|
#if defined(CONFIG_SYS_LB_SDRAM) && defined(CONFIG_SYS_LBC_SDRAM_SIZE)
|
|
puts("\nSDRAM: ");
|
|
print_size (CONFIG_SYS_LBC_SDRAM_SIZE * 1024 * 1024, " (local bus)");
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SPD_EEPROM
|
|
#ifndef CONFIG_SYS_READ_SPD
|
|
#define CONFIG_SYS_READ_SPD i2c_read
|
|
#endif
|
|
#ifndef SPD_EEPROM_OFFSET
|
|
#define SPD_EEPROM_OFFSET 0
|
|
#endif
|
|
#ifndef SPD_EEPROM_ADDR_LEN
|
|
#define SPD_EEPROM_ADDR_LEN 1
|
|
#endif
|
|
|
|
/*
|
|
* Convert picoseconds into clock cycles (rounding up if needed).
|
|
*/
|
|
int
|
|
picos_to_clk(int picos)
|
|
{
|
|
unsigned int mem_bus_clk;
|
|
int clks;
|
|
|
|
mem_bus_clk = gd->mem_clk >> 1;
|
|
clks = picos / (1000000000 / (mem_bus_clk / 1000));
|
|
if (picos % (1000000000 / (mem_bus_clk / 1000)) != 0)
|
|
clks++;
|
|
|
|
return clks;
|
|
}
|
|
|
|
unsigned int banksize(unsigned char row_dens)
|
|
{
|
|
return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
|
|
}
|
|
|
|
int read_spd(uint addr)
|
|
{
|
|
return ((int) addr);
|
|
}
|
|
|
|
#undef SPD_DEBUG
|
|
#ifdef SPD_DEBUG
|
|
static void spd_debug(spd_eeprom_t *spd)
|
|
{
|
|
printf ("\nDIMM type: %-18.18s\n", spd->mpart);
|
|
printf ("SPD size: %d\n", spd->info_size);
|
|
printf ("EEPROM size: %d\n", 1 << spd->chip_size);
|
|
printf ("Memory type: %d\n", spd->mem_type);
|
|
printf ("Row addr: %d\n", spd->nrow_addr);
|
|
printf ("Column addr: %d\n", spd->ncol_addr);
|
|
printf ("# of rows: %d\n", spd->nrows);
|
|
printf ("Row density: %d\n", spd->row_dens);
|
|
printf ("# of banks: %d\n", spd->nbanks);
|
|
printf ("Data width: %d\n",
|
|
256 * spd->dataw_msb + spd->dataw_lsb);
|
|
printf ("Chip width: %d\n", spd->primw);
|
|
printf ("Refresh rate: %02X\n", spd->refresh);
|
|
printf ("CAS latencies: %02X\n", spd->cas_lat);
|
|
printf ("Write latencies: %02X\n", spd->write_lat);
|
|
printf ("tRP: %d\n", spd->trp);
|
|
printf ("tRCD: %d\n", spd->trcd);
|
|
printf ("\n");
|
|
}
|
|
#endif /* SPD_DEBUG */
|
|
|
|
long int spd_sdram()
|
|
{
|
|
volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
|
|
volatile ddr83xx_t *ddr = &immap->ddr;
|
|
volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0];
|
|
spd_eeprom_t spd;
|
|
unsigned int n_ranks;
|
|
unsigned int odt_rd_cfg, odt_wr_cfg;
|
|
unsigned char twr_clk, twtr_clk;
|
|
unsigned int sdram_type;
|
|
unsigned int memsize;
|
|
unsigned int law_size;
|
|
unsigned char caslat, caslat_ctrl;
|
|
unsigned int trfc, trfc_clk, trfc_low;
|
|
unsigned int trcd_clk, trtp_clk;
|
|
unsigned char cke_min_clk;
|
|
unsigned char add_lat, wr_lat;
|
|
unsigned char wr_data_delay;
|
|
unsigned char four_act;
|
|
unsigned char cpo;
|
|
unsigned char burstlen;
|
|
unsigned char odt_cfg, mode_odt_enable;
|
|
unsigned int max_bus_clk;
|
|
unsigned int max_data_rate, effective_data_rate;
|
|
unsigned int ddrc_clk;
|
|
unsigned int refresh_clk;
|
|
unsigned int sdram_cfg;
|
|
unsigned int ddrc_ecc_enable;
|
|
unsigned int pvr = get_pvr();
|
|
|
|
/*
|
|
* First disable the memory controller (could be enabled
|
|
* by the debugger)
|
|
*/
|
|
clrsetbits_be32(&ddr->sdram_cfg, SDRAM_CFG_MEM_EN, 0);
|
|
sync();
|
|
isync();
|
|
|
|
/* Read SPD parameters with I2C */
|
|
CONFIG_SYS_READ_SPD(SPD_EEPROM_ADDRESS, SPD_EEPROM_OFFSET,
|
|
SPD_EEPROM_ADDR_LEN, (uchar *) &spd, sizeof(spd));
|
|
#ifdef SPD_DEBUG
|
|
spd_debug(&spd);
|
|
#endif
|
|
/* Check the memory type */
|
|
if (spd.mem_type != SPD_MEMTYPE_DDR && spd.mem_type != SPD_MEMTYPE_DDR2) {
|
|
debug("DDR: Module mem type is %02X\n", spd.mem_type);
|
|
return 0;
|
|
}
|
|
|
|
/* Check the number of physical bank */
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
n_ranks = spd.nrows;
|
|
} else {
|
|
n_ranks = (spd.nrows & 0x7) + 1;
|
|
}
|
|
|
|
if (n_ranks > 2) {
|
|
printf("DDR: The number of physical bank is %02X\n", n_ranks);
|
|
return 0;
|
|
}
|
|
|
|
/* Check if the number of row of the module is in the range of DDRC */
|
|
if (spd.nrow_addr < 12 || spd.nrow_addr > 15) {
|
|
printf("DDR: Row number is out of range of DDRC, row=%02X\n",
|
|
spd.nrow_addr);
|
|
return 0;
|
|
}
|
|
|
|
/* Check if the number of col of the module is in the range of DDRC */
|
|
if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
|
|
printf("DDR: Col number is out of range of DDRC, col=%02X\n",
|
|
spd.ncol_addr);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_DDRCDR_VALUE
|
|
/*
|
|
* Adjust DDR II IO voltage biasing. It just makes it work.
|
|
*/
|
|
if(spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
immap->sysconf.ddrcdr = CONFIG_SYS_DDRCDR_VALUE;
|
|
}
|
|
udelay(50000);
|
|
#endif
|
|
|
|
/*
|
|
* ODT configuration recommendation from DDR Controller Chapter.
|
|
*/
|
|
odt_rd_cfg = 0; /* Never assert ODT */
|
|
odt_wr_cfg = 0; /* Never assert ODT */
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
odt_wr_cfg = 1; /* Assert ODT on writes to CSn */
|
|
}
|
|
|
|
/* Setup DDR chip select register */
|
|
#ifdef CONFIG_SYS_83XX_DDR_USES_CS0
|
|
ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1;
|
|
ddr->cs_config[0] = ( 1 << 31
|
|
| (odt_rd_cfg << 20)
|
|
| (odt_wr_cfg << 16)
|
|
| ((spd.nbanks == 8 ? 1 : 0) << 14)
|
|
| ((spd.nrow_addr - 12) << 8)
|
|
| (spd.ncol_addr - 8) );
|
|
debug("\n");
|
|
debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds);
|
|
debug("cs0_config = 0x%08x\n",ddr->cs_config[0]);
|
|
|
|
if (n_ranks == 2) {
|
|
ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8)
|
|
| ((banksize(spd.row_dens) >> 23) - 1) );
|
|
ddr->cs_config[1] = ( 1<<31
|
|
| (odt_rd_cfg << 20)
|
|
| (odt_wr_cfg << 16)
|
|
| ((spd.nbanks == 8 ? 1 : 0) << 14)
|
|
| ((spd.nrow_addr - 12) << 8)
|
|
| (spd.ncol_addr - 8) );
|
|
debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds);
|
|
debug("cs1_config = 0x%08x\n",ddr->cs_config[1]);
|
|
}
|
|
|
|
#else
|
|
ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1;
|
|
ddr->cs_config[2] = ( 1 << 31
|
|
| (odt_rd_cfg << 20)
|
|
| (odt_wr_cfg << 16)
|
|
| ((spd.nbanks == 8 ? 1 : 0) << 14)
|
|
| ((spd.nrow_addr - 12) << 8)
|
|
| (spd.ncol_addr - 8) );
|
|
debug("\n");
|
|
debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds);
|
|
debug("cs2_config = 0x%08x\n",ddr->cs_config[2]);
|
|
|
|
if (n_ranks == 2) {
|
|
ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8)
|
|
| ((banksize(spd.row_dens) >> 23) - 1) );
|
|
ddr->cs_config[3] = ( 1<<31
|
|
| (odt_rd_cfg << 20)
|
|
| (odt_wr_cfg << 16)
|
|
| ((spd.nbanks == 8 ? 1 : 0) << 14)
|
|
| ((spd.nrow_addr - 12) << 8)
|
|
| (spd.ncol_addr - 8) );
|
|
debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds);
|
|
debug("cs3_config = 0x%08x\n",ddr->cs_config[3]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Figure out memory size in Megabytes.
|
|
*/
|
|
memsize = n_ranks * banksize(spd.row_dens) / 0x100000;
|
|
|
|
/*
|
|
* First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.
|
|
*/
|
|
law_size = 19 + __ilog2(memsize);
|
|
|
|
/*
|
|
* Set up LAWBAR for all of DDR.
|
|
*/
|
|
ecm->bar = CONFIG_SYS_DDR_SDRAM_BASE & 0xfffff000;
|
|
ecm->ar = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
|
|
debug("DDR:bar=0x%08x\n", ecm->bar);
|
|
debug("DDR:ar=0x%08x\n", ecm->ar);
|
|
|
|
/*
|
|
* Find the largest CAS by locating the highest 1 bit
|
|
* in the spd.cas_lat field. Translate it to a DDR
|
|
* controller field value:
|
|
*
|
|
* CAS Lat DDR I DDR II Ctrl
|
|
* Clocks SPD Bit SPD Bit Value
|
|
* ------- ------- ------- -----
|
|
* 1.0 0 0001
|
|
* 1.5 1 0010
|
|
* 2.0 2 2 0011
|
|
* 2.5 3 0100
|
|
* 3.0 4 3 0101
|
|
* 3.5 5 0110
|
|
* 4.0 6 4 0111
|
|
* 4.5 1000
|
|
* 5.0 5 1001
|
|
*/
|
|
caslat = __ilog2(spd.cas_lat);
|
|
if ((spd.mem_type == SPD_MEMTYPE_DDR)
|
|
&& (caslat > 6)) {
|
|
printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
|
|
return 0;
|
|
} else if (spd.mem_type == SPD_MEMTYPE_DDR2
|
|
&& (caslat < 2 || caslat > 5)) {
|
|
printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
|
|
spd.cas_lat);
|
|
return 0;
|
|
}
|
|
debug("DDR: caslat SPD bit is %d\n", caslat);
|
|
|
|
max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10
|
|
+ (spd.clk_cycle & 0x0f));
|
|
max_data_rate = max_bus_clk * 2;
|
|
|
|
debug("DDR:Module maximum data rate is: %d MHz\n", max_data_rate);
|
|
|
|
ddrc_clk = gd->mem_clk / 1000000;
|
|
effective_data_rate = 0;
|
|
|
|
if (max_data_rate >= 460) { /* it is DDR2-800, 667, 533 */
|
|
if (spd.cas_lat & 0x08)
|
|
caslat = 3;
|
|
else
|
|
caslat = 4;
|
|
if (ddrc_clk <= 460 && ddrc_clk > 350)
|
|
effective_data_rate = 400;
|
|
else if (ddrc_clk <=350 && ddrc_clk > 280)
|
|
effective_data_rate = 333;
|
|
else if (ddrc_clk <= 280 && ddrc_clk > 230)
|
|
effective_data_rate = 266;
|
|
else
|
|
effective_data_rate = 200;
|
|
} else if (max_data_rate >= 390 && max_data_rate < 460) { /* it is DDR 400 */
|
|
if (ddrc_clk <= 460 && ddrc_clk > 350) {
|
|
/* DDR controller clk at 350~460 */
|
|
effective_data_rate = 400; /* 5ns */
|
|
caslat = caslat;
|
|
} else if (ddrc_clk <= 350 && ddrc_clk > 280) {
|
|
/* DDR controller clk at 280~350 */
|
|
effective_data_rate = 333; /* 6ns */
|
|
if (spd.clk_cycle2 == 0x60)
|
|
caslat = caslat - 1;
|
|
else
|
|
caslat = caslat;
|
|
} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
|
|
/* DDR controller clk at 230~280 */
|
|
effective_data_rate = 266; /* 7.5ns */
|
|
if (spd.clk_cycle3 == 0x75)
|
|
caslat = caslat - 2;
|
|
else if (spd.clk_cycle2 == 0x75)
|
|
caslat = caslat - 1;
|
|
else
|
|
caslat = caslat;
|
|
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
|
|
/* DDR controller clk at 90~230 */
|
|
effective_data_rate = 200; /* 10ns */
|
|
if (spd.clk_cycle3 == 0xa0)
|
|
caslat = caslat - 2;
|
|
else if (spd.clk_cycle2 == 0xa0)
|
|
caslat = caslat - 1;
|
|
else
|
|
caslat = caslat;
|
|
}
|
|
} else if (max_data_rate >= 323) { /* it is DDR 333 */
|
|
if (ddrc_clk <= 350 && ddrc_clk > 280) {
|
|
/* DDR controller clk at 280~350 */
|
|
effective_data_rate = 333; /* 6ns */
|
|
caslat = caslat;
|
|
} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
|
|
/* DDR controller clk at 230~280 */
|
|
effective_data_rate = 266; /* 7.5ns */
|
|
if (spd.clk_cycle2 == 0x75)
|
|
caslat = caslat - 1;
|
|
else
|
|
caslat = caslat;
|
|
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
|
|
/* DDR controller clk at 90~230 */
|
|
effective_data_rate = 200; /* 10ns */
|
|
if (spd.clk_cycle3 == 0xa0)
|
|
caslat = caslat - 2;
|
|
else if (spd.clk_cycle2 == 0xa0)
|
|
caslat = caslat - 1;
|
|
else
|
|
caslat = caslat;
|
|
}
|
|
} else if (max_data_rate >= 256) { /* it is DDR 266 */
|
|
if (ddrc_clk <= 350 && ddrc_clk > 280) {
|
|
/* DDR controller clk at 280~350 */
|
|
printf("DDR: DDR controller freq is more than "
|
|
"max data rate of the module\n");
|
|
return 0;
|
|
} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
|
|
/* DDR controller clk at 230~280 */
|
|
effective_data_rate = 266; /* 7.5ns */
|
|
caslat = caslat;
|
|
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
|
|
/* DDR controller clk at 90~230 */
|
|
effective_data_rate = 200; /* 10ns */
|
|
if (spd.clk_cycle2 == 0xa0)
|
|
caslat = caslat - 1;
|
|
}
|
|
} else if (max_data_rate >= 190) { /* it is DDR 200 */
|
|
if (ddrc_clk <= 350 && ddrc_clk > 230) {
|
|
/* DDR controller clk at 230~350 */
|
|
printf("DDR: DDR controller freq is more than "
|
|
"max data rate of the module\n");
|
|
return 0;
|
|
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
|
|
/* DDR controller clk at 90~230 */
|
|
effective_data_rate = 200; /* 10ns */
|
|
caslat = caslat;
|
|
}
|
|
}
|
|
|
|
debug("DDR:Effective data rate is: %dMHz\n", effective_data_rate);
|
|
debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat);
|
|
|
|
/*
|
|
* Errata DDR6 work around: input enable 2 cycles earlier.
|
|
* including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2.
|
|
*/
|
|
if(PVR_MAJ(pvr) <= 1 && spd.mem_type == SPD_MEMTYPE_DDR){
|
|
if (caslat == 2)
|
|
ddr->debug_reg = 0x201c0000; /* CL=2 */
|
|
else if (caslat == 3)
|
|
ddr->debug_reg = 0x202c0000; /* CL=2.5 */
|
|
else if (caslat == 4)
|
|
ddr->debug_reg = 0x202c0000; /* CL=3.0 */
|
|
|
|
__asm__ __volatile__ ("sync");
|
|
|
|
debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg);
|
|
}
|
|
|
|
/*
|
|
* Convert caslat clocks to DDR controller value.
|
|
* Force caslat_ctrl to be DDR Controller field-sized.
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
caslat_ctrl = (caslat + 1) & 0x07;
|
|
} else {
|
|
caslat_ctrl = (2 * caslat - 1) & 0x0f;
|
|
}
|
|
|
|
debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
|
|
debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
|
|
caslat, caslat_ctrl);
|
|
|
|
/*
|
|
* Timing Config 0.
|
|
* Avoid writing for DDR I.
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
unsigned char taxpd_clk = 8; /* By the book. */
|
|
unsigned char tmrd_clk = 2; /* By the book. */
|
|
unsigned char act_pd_exit = 2; /* Empirical? */
|
|
unsigned char pre_pd_exit = 6; /* Empirical? */
|
|
|
|
ddr->timing_cfg_0 = (0
|
|
| ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
|
|
| ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
|
|
| ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
|
|
| ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
|
|
);
|
|
debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
|
|
}
|
|
|
|
/*
|
|
* For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
|
|
* use conservative value.
|
|
* For DDR II, they are bytes 36 and 37, in quarter nanos.
|
|
*/
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
twr_clk = 3; /* Clocks */
|
|
twtr_clk = 1; /* Clocks */
|
|
} else {
|
|
twr_clk = picos_to_clk(spd.twr * 250);
|
|
twtr_clk = picos_to_clk(spd.twtr * 250);
|
|
if (twtr_clk < 2)
|
|
twtr_clk = 2;
|
|
}
|
|
|
|
/*
|
|
* Calculate Trfc, in picos.
|
|
* DDR I: Byte 42 straight up in ns.
|
|
* DDR II: Byte 40 and 42 swizzled some, in ns.
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
trfc = spd.trfc * 1000; /* up to ps */
|
|
} else {
|
|
unsigned int byte40_table_ps[8] = {
|
|
0,
|
|
250,
|
|
330,
|
|
500,
|
|
660,
|
|
750,
|
|
0,
|
|
0
|
|
};
|
|
|
|
trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
|
|
+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
|
|
}
|
|
trfc_clk = picos_to_clk(trfc);
|
|
|
|
/*
|
|
* Trcd, Byte 29, from quarter nanos to ps and clocks.
|
|
*/
|
|
trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
|
|
|
|
/*
|
|
* Convert trfc_clk to DDR controller fields. DDR I should
|
|
* fit in the REFREC field (16-19) of TIMING_CFG_1, but the
|
|
* 83xx controller has an extended REFREC field of three bits.
|
|
* The controller automatically adds 8 clocks to this value,
|
|
* so preadjust it down 8 first before splitting it up.
|
|
*/
|
|
trfc_low = (trfc_clk - 8) & 0xf;
|
|
|
|
ddr->timing_cfg_1 =
|
|
(((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | /* PRETOACT */
|
|
((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | /* ACTTOPRE */
|
|
(trcd_clk << 20 ) | /* ACTTORW */
|
|
(caslat_ctrl << 16 ) | /* CASLAT */
|
|
(trfc_low << 12 ) | /* REFEC */
|
|
((twr_clk & 0x07) << 8) | /* WRRREC */
|
|
((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | /* ACTTOACT */
|
|
((twtr_clk & 0x07) << 0) /* WRTORD */
|
|
);
|
|
|
|
/*
|
|
* Additive Latency
|
|
* For DDR I, 0.
|
|
* For DDR II, with ODT enabled, use "a value" less than ACTTORW,
|
|
* which comes from Trcd, and also note that:
|
|
* add_lat + caslat must be >= 4
|
|
*/
|
|
add_lat = 0;
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2
|
|
&& (odt_wr_cfg || odt_rd_cfg)
|
|
&& (caslat < 4)) {
|
|
add_lat = 4 - caslat;
|
|
if ((add_lat + caslat) < 4) {
|
|
add_lat = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write Data Delay
|
|
* Historically 0x2 == 4/8 clock delay.
|
|
* Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
|
|
*/
|
|
wr_data_delay = 2;
|
|
#ifdef CONFIG_SYS_DDR_WRITE_DATA_DELAY
|
|
wr_data_delay = CONFIG_SYS_DDR_WRITE_DATA_DELAY;
|
|
#endif
|
|
|
|
/*
|
|
* Write Latency
|
|
* Read to Precharge
|
|
* Minimum CKE Pulse Width.
|
|
* Four Activate Window
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
/*
|
|
* This is a lie. It should really be 1, but if it is
|
|
* set to 1, bits overlap into the old controller's
|
|
* otherwise unused ACSM field. If we leave it 0, then
|
|
* the HW will magically treat it as 1 for DDR 1. Oh Yea.
|
|
*/
|
|
wr_lat = 0;
|
|
|
|
trtp_clk = 2; /* By the book. */
|
|
cke_min_clk = 1; /* By the book. */
|
|
four_act = 1; /* By the book. */
|
|
|
|
} else {
|
|
wr_lat = caslat - 1;
|
|
|
|
/* Convert SPD value from quarter nanos to picos. */
|
|
trtp_clk = picos_to_clk(spd.trtp * 250);
|
|
if (trtp_clk < 2)
|
|
trtp_clk = 2;
|
|
trtp_clk += add_lat;
|
|
|
|
cke_min_clk = 3; /* By the book. */
|
|
four_act = picos_to_clk(37500); /* By the book. 1k pages? */
|
|
}
|
|
|
|
/*
|
|
* Empirically set ~MCAS-to-preamble override for DDR 2.
|
|
* Your milage will vary.
|
|
*/
|
|
cpo = 0;
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
#ifdef CONFIG_SYS_DDR_CPO
|
|
cpo = CONFIG_SYS_DDR_CPO;
|
|
#else
|
|
if (effective_data_rate == 266) {
|
|
cpo = 0x4; /* READ_LAT + 1/2 */
|
|
} else if (effective_data_rate == 333) {
|
|
cpo = 0x6; /* READ_LAT + 1 */
|
|
} else if (effective_data_rate == 400) {
|
|
cpo = 0x7; /* READ_LAT + 5/4 */
|
|
} else {
|
|
/* Automatic calibration */
|
|
cpo = 0x1f;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ddr->timing_cfg_2 = (0
|
|
| ((add_lat & 0x7) << 28) /* ADD_LAT */
|
|
| ((cpo & 0x1f) << 23) /* CPO */
|
|
| ((wr_lat & 0x7) << 19) /* WR_LAT */
|
|
| ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
|
|
| ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
|
|
| ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
|
|
| ((four_act & 0x1f) << 0) /* FOUR_ACT */
|
|
);
|
|
|
|
debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
|
|
debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);
|
|
|
|
/* Check DIMM data bus width */
|
|
if (spd.dataw_lsb < 64) {
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR)
|
|
burstlen = 0x03; /* 32 bit data bus, burst len is 8 */
|
|
else
|
|
burstlen = 0x02; /* 32 bit data bus, burst len is 4 */
|
|
debug("\n DDR DIMM: data bus width is 32 bit");
|
|
} else {
|
|
burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */
|
|
debug("\n DDR DIMM: data bus width is 64 bit");
|
|
}
|
|
|
|
/* Is this an ECC DDR chip? */
|
|
if (spd.config == 0x02)
|
|
debug(" with ECC\n");
|
|
else
|
|
debug(" without ECC\n");
|
|
|
|
/* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus,
|
|
Burst type is sequential
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
switch (caslat) {
|
|
case 1:
|
|
ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */
|
|
break;
|
|
case 2:
|
|
ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */
|
|
break;
|
|
case 3:
|
|
ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */
|
|
break;
|
|
case 4:
|
|
ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */
|
|
break;
|
|
default:
|
|
printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n");
|
|
return 0;
|
|
}
|
|
} else {
|
|
mode_odt_enable = 0x0; /* Default disabled */
|
|
if (odt_wr_cfg || odt_rd_cfg) {
|
|
/*
|
|
* Bits 6 and 2 in Extended MRS(1)
|
|
* Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
|
|
* Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
|
|
*/
|
|
mode_odt_enable = 0x40; /* 150 Ohm */
|
|
}
|
|
|
|
ddr->sdram_mode =
|
|
(0
|
|
| (1 << (16 + 10)) /* DQS Differential disable */
|
|
#ifdef CONFIG_SYS_DDR_MODE_WEAK
|
|
| (1 << (16 + 1)) /* weak driver (~60%) */
|
|
#endif
|
|
| (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
|
|
| (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
|
|
| ((twr_clk - 1) << 9) /* Write Recovery Autopre */
|
|
| (caslat << 4) /* caslat */
|
|
| (burstlen << 0) /* Burst length */
|
|
);
|
|
}
|
|
debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);
|
|
|
|
/*
|
|
* Clear EMRS2 and EMRS3.
|
|
*/
|
|
ddr->sdram_mode2 = 0;
|
|
debug("DDR: sdram_mode2 = 0x%08x\n", ddr->sdram_mode2);
|
|
|
|
switch (spd.refresh) {
|
|
case 0x00:
|
|
case 0x80:
|
|
refresh_clk = picos_to_clk(15625000);
|
|
break;
|
|
case 0x01:
|
|
case 0x81:
|
|
refresh_clk = picos_to_clk(3900000);
|
|
break;
|
|
case 0x02:
|
|
case 0x82:
|
|
refresh_clk = picos_to_clk(7800000);
|
|
break;
|
|
case 0x03:
|
|
case 0x83:
|
|
refresh_clk = picos_to_clk(31300000);
|
|
break;
|
|
case 0x04:
|
|
case 0x84:
|
|
refresh_clk = picos_to_clk(62500000);
|
|
break;
|
|
case 0x05:
|
|
case 0x85:
|
|
refresh_clk = picos_to_clk(125000000);
|
|
break;
|
|
default:
|
|
refresh_clk = 0x512;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Set BSTOPRE to 0x100 for page mode
|
|
* If auto-charge is used, set BSTOPRE = 0
|
|
*/
|
|
ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100;
|
|
debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);
|
|
|
|
/*
|
|
* SDRAM Cfg 2
|
|
*/
|
|
odt_cfg = 0;
|
|
#ifndef CONFIG_NEVER_ASSERT_ODT_TO_CPU
|
|
if (odt_rd_cfg | odt_wr_cfg) {
|
|
odt_cfg = 0x2; /* ODT to IOs during reads */
|
|
}
|
|
#endif
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
ddr->sdram_cfg2 = (0
|
|
| (0 << 26) /* True DQS */
|
|
| (odt_cfg << 21) /* ODT only read */
|
|
| (1 << 12) /* 1 refresh at a time */
|
|
);
|
|
|
|
debug("DDR: sdram_cfg2 = 0x%08x\n", ddr->sdram_cfg2);
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_DDR_SDRAM_CLK_CNTL /* Optional platform specific value */
|
|
ddr->sdram_clk_cntl = CONFIG_SYS_DDR_SDRAM_CLK_CNTL;
|
|
#endif
|
|
debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl);
|
|
|
|
asm("sync;isync");
|
|
|
|
udelay(600);
|
|
|
|
/*
|
|
* Figure out the settings for the sdram_cfg register. Build up
|
|
* the value in 'sdram_cfg' before writing since the write into
|
|
* the register will actually enable the memory controller, and all
|
|
* settings must be done before enabling.
|
|
*
|
|
* sdram_cfg[0] = 1 (ddr sdram logic enable)
|
|
* sdram_cfg[1] = 1 (self-refresh-enable)
|
|
* sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
|
|
* 010 DDR 1 SDRAM
|
|
* 011 DDR 2 SDRAM
|
|
* sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode)
|
|
* sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts)
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR)
|
|
sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR1;
|
|
else
|
|
sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR2;
|
|
|
|
sdram_cfg = (0
|
|
| SDRAM_CFG_MEM_EN /* DDR enable */
|
|
| SDRAM_CFG_SREN /* Self refresh */
|
|
| sdram_type /* SDRAM type */
|
|
);
|
|
|
|
/* sdram_cfg[3] = RD_EN - registered DIMM enable */
|
|
if (spd.mod_attr & 0x02)
|
|
sdram_cfg |= SDRAM_CFG_RD_EN;
|
|
|
|
/* The DIMM is 32bit width */
|
|
if (spd.dataw_lsb < 64) {
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR)
|
|
sdram_cfg |= SDRAM_CFG_32_BE | SDRAM_CFG_8_BE;
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2)
|
|
sdram_cfg |= SDRAM_CFG_32_BE;
|
|
}
|
|
|
|
ddrc_ecc_enable = 0;
|
|
|
|
#if defined(CONFIG_DDR_ECC)
|
|
/* Enable ECC with sdram_cfg[2] */
|
|
if (spd.config == 0x02) {
|
|
sdram_cfg |= 0x20000000;
|
|
ddrc_ecc_enable = 1;
|
|
/* disable error detection */
|
|
ddr->err_disable = ~ECC_ERROR_ENABLE;
|
|
/* set single bit error threshold to maximum value,
|
|
* reset counter to zero */
|
|
ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) |
|
|
(0 << ECC_ERROR_MAN_SBEC_SHIFT);
|
|
}
|
|
|
|
debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
|
|
debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
|
|
#endif
|
|
debug(" DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF");
|
|
|
|
#if defined(CONFIG_DDR_2T_TIMING)
|
|
/*
|
|
* Enable 2T timing by setting sdram_cfg[16].
|
|
*/
|
|
sdram_cfg |= SDRAM_CFG_2T_EN;
|
|
#endif
|
|
/* Enable controller, and GO! */
|
|
ddr->sdram_cfg = sdram_cfg;
|
|
asm("sync;isync");
|
|
udelay(500);
|
|
|
|
debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);
|
|
return memsize; /*in MBytes*/
|
|
}
|
|
#endif /* CONFIG_SPD_EEPROM */
|
|
|
|
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
|
|
/*
|
|
* Use timebase counter, get_timer() is not availabe
|
|
* at this point of initialization yet.
|
|
*/
|
|
static __inline__ unsigned long get_tbms (void)
|
|
{
|
|
unsigned long tbl;
|
|
unsigned long tbu1, tbu2;
|
|
unsigned long ms;
|
|
unsigned long long tmp;
|
|
|
|
ulong tbclk = get_tbclk();
|
|
|
|
/* get the timebase ticks */
|
|
do {
|
|
asm volatile ("mftbu %0":"=r" (tbu1):);
|
|
asm volatile ("mftb %0":"=r" (tbl):);
|
|
asm volatile ("mftbu %0":"=r" (tbu2):);
|
|
} while (tbu1 != tbu2);
|
|
|
|
/* convert ticks to ms */
|
|
tmp = (unsigned long long)(tbu1);
|
|
tmp = (tmp << 32);
|
|
tmp += (unsigned long long)(tbl);
|
|
ms = tmp/(tbclk/1000);
|
|
|
|
return ms;
|
|
}
|
|
|
|
/*
|
|
* Initialize all of memory for ECC, then enable errors.
|
|
*/
|
|
void ddr_enable_ecc(unsigned int dram_size)
|
|
{
|
|
volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
|
|
volatile ddr83xx_t *ddr= &immap->ddr;
|
|
unsigned long t_start, t_end;
|
|
register u64 *p;
|
|
register uint size;
|
|
unsigned int pattern[2];
|
|
|
|
icache_enable();
|
|
t_start = get_tbms();
|
|
pattern[0] = 0xdeadbeef;
|
|
pattern[1] = 0xdeadbeef;
|
|
|
|
#if defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
|
|
dma_meminit(pattern[0], dram_size);
|
|
#else
|
|
debug("ddr init: CPU FP write method\n");
|
|
size = dram_size;
|
|
for (p = 0; p < (u64*)(size); p++) {
|
|
ppcDWstore((u32*)p, pattern);
|
|
}
|
|
__asm__ __volatile__ ("sync");
|
|
#endif
|
|
|
|
t_end = get_tbms();
|
|
icache_disable();
|
|
|
|
debug("\nREADY!!\n");
|
|
debug("ddr init duration: %ld ms\n", t_end - t_start);
|
|
|
|
/* Clear All ECC Errors */
|
|
if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME)
|
|
ddr->err_detect |= ECC_ERROR_DETECT_MME;
|
|
if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE)
|
|
ddr->err_detect |= ECC_ERROR_DETECT_MBE;
|
|
if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE)
|
|
ddr->err_detect |= ECC_ERROR_DETECT_SBE;
|
|
if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE)
|
|
ddr->err_detect |= ECC_ERROR_DETECT_MSE;
|
|
|
|
/* Disable ECC-Interrupts */
|
|
ddr->err_int_en &= ECC_ERR_INT_DISABLE;
|
|
|
|
/* Enable errors for ECC */
|
|
ddr->err_disable &= ECC_ERROR_ENABLE;
|
|
|
|
__asm__ __volatile__ ("sync");
|
|
__asm__ __volatile__ ("isync");
|
|
}
|
|
#endif /* CONFIG_DDR_ECC */
|