mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-25 19:35:17 +00:00
51f1357f34
Commit22191ac353
("drivers/crypto/fsl: assign job-rings to non-TrustZone") breaks HABv4 encrypted boot support in the following i.MX devices: - i.MX6UL - i.MX7S - i.MX7D - i.MX7ULP For preparing a HABv4 encrypted boot image it's necessary to encapsulate the generated DEK in a blob. In devices listed above the blob generation function takes into consideration the Job Ring TrustZone ownership configuration (JROWN_NS) and can be only decapsulated by the same configuration. The ROM code expects DEK blobs encapsulated by the Secure World environments which commonly have JROWN_NS = 0. As U-Boot is running in Secure World we must have JROWN_NS = 0 so the blobs generated by dek_blob tool can be decapsulated by the ROM code. Job-rings assignment is now handled in OP-TEE OS, this commit can be safely reverted. https://github.com/OP-TEE/optee_os/pull/2986 This reverts commit22191ac353
. Signed-off-by: Breno Lima <breno.lima@nxp.com> Reviewed-by: Fabio Estevam <festevam@gmail.com> Acked-by: Bryan O'Donoghue <bryan.odonoghue@linaro.org>
664 lines
16 KiB
C
664 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright 2008-2014 Freescale Semiconductor, Inc.
|
|
*
|
|
* Based on CAAM driver in drivers/crypto/caam in Linux
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <malloc.h>
|
|
#include "fsl_sec.h"
|
|
#include "jr.h"
|
|
#include "jobdesc.h"
|
|
#include "desc_constr.h"
|
|
#ifdef CONFIG_FSL_CORENET
|
|
#include <asm/fsl_pamu.h>
|
|
#endif
|
|
|
|
#define CIRC_CNT(head, tail, size) (((head) - (tail)) & (size - 1))
|
|
#define CIRC_SPACE(head, tail, size) CIRC_CNT((tail), (head) + 1, (size))
|
|
|
|
uint32_t sec_offset[CONFIG_SYS_FSL_MAX_NUM_OF_SEC] = {
|
|
0,
|
|
#if defined(CONFIG_ARCH_C29X)
|
|
CONFIG_SYS_FSL_SEC_IDX_OFFSET,
|
|
2 * CONFIG_SYS_FSL_SEC_IDX_OFFSET
|
|
#endif
|
|
};
|
|
|
|
#define SEC_ADDR(idx) \
|
|
((CONFIG_SYS_FSL_SEC_ADDR + sec_offset[idx]))
|
|
|
|
#define SEC_JR0_ADDR(idx) \
|
|
(SEC_ADDR(idx) + \
|
|
(CONFIG_SYS_FSL_JR0_OFFSET - CONFIG_SYS_FSL_SEC_OFFSET))
|
|
|
|
struct jobring jr0[CONFIG_SYS_FSL_MAX_NUM_OF_SEC];
|
|
|
|
static inline void start_jr0(uint8_t sec_idx)
|
|
{
|
|
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
|
|
u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
|
|
u32 scfgr = sec_in32(&sec->scfgr);
|
|
|
|
if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
|
|
/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
|
|
* VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
|
|
*/
|
|
if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
|
|
(scfgr & SEC_SCFGR_VIRT_EN))
|
|
sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
|
|
} else {
|
|
/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
|
|
if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
|
|
sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
|
|
}
|
|
}
|
|
|
|
static inline void jr_reset_liodn(uint8_t sec_idx)
|
|
{
|
|
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
|
|
sec_out32(&sec->jrliodnr[0].ls, 0);
|
|
}
|
|
|
|
static inline void jr_disable_irq(uint8_t sec_idx)
|
|
{
|
|
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
|
|
uint32_t jrcfg = sec_in32(®s->jrcfg1);
|
|
|
|
jrcfg = jrcfg | JR_INTMASK;
|
|
|
|
sec_out32(®s->jrcfg1, jrcfg);
|
|
}
|
|
|
|
static void jr_initregs(uint8_t sec_idx)
|
|
{
|
|
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
|
|
struct jobring *jr = &jr0[sec_idx];
|
|
phys_addr_t ip_base = virt_to_phys((void *)jr->input_ring);
|
|
phys_addr_t op_base = virt_to_phys((void *)jr->output_ring);
|
|
|
|
#ifdef CONFIG_PHYS_64BIT
|
|
sec_out32(®s->irba_h, ip_base >> 32);
|
|
#else
|
|
sec_out32(®s->irba_h, 0x0);
|
|
#endif
|
|
sec_out32(®s->irba_l, (uint32_t)ip_base);
|
|
#ifdef CONFIG_PHYS_64BIT
|
|
sec_out32(®s->orba_h, op_base >> 32);
|
|
#else
|
|
sec_out32(®s->orba_h, 0x0);
|
|
#endif
|
|
sec_out32(®s->orba_l, (uint32_t)op_base);
|
|
sec_out32(®s->ors, JR_SIZE);
|
|
sec_out32(®s->irs, JR_SIZE);
|
|
|
|
if (!jr->irq)
|
|
jr_disable_irq(sec_idx);
|
|
}
|
|
|
|
static int jr_init(uint8_t sec_idx)
|
|
{
|
|
struct jobring *jr = &jr0[sec_idx];
|
|
|
|
memset(jr, 0, sizeof(struct jobring));
|
|
|
|
jr->jq_id = DEFAULT_JR_ID;
|
|
jr->irq = DEFAULT_IRQ;
|
|
|
|
#ifdef CONFIG_FSL_CORENET
|
|
jr->liodn = DEFAULT_JR_LIODN;
|
|
#endif
|
|
jr->size = JR_SIZE;
|
|
jr->input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN,
|
|
JR_SIZE * sizeof(dma_addr_t));
|
|
if (!jr->input_ring)
|
|
return -1;
|
|
|
|
jr->op_size = roundup(JR_SIZE * sizeof(struct op_ring),
|
|
ARCH_DMA_MINALIGN);
|
|
jr->output_ring =
|
|
(struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr->op_size);
|
|
if (!jr->output_ring)
|
|
return -1;
|
|
|
|
memset(jr->input_ring, 0, JR_SIZE * sizeof(dma_addr_t));
|
|
memset(jr->output_ring, 0, jr->op_size);
|
|
|
|
start_jr0(sec_idx);
|
|
|
|
jr_initregs(sec_idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int jr_sw_cleanup(uint8_t sec_idx)
|
|
{
|
|
struct jobring *jr = &jr0[sec_idx];
|
|
|
|
jr->head = 0;
|
|
jr->tail = 0;
|
|
jr->read_idx = 0;
|
|
jr->write_idx = 0;
|
|
memset(jr->info, 0, sizeof(jr->info));
|
|
memset(jr->input_ring, 0, jr->size * sizeof(dma_addr_t));
|
|
memset(jr->output_ring, 0, jr->size * sizeof(struct op_ring));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int jr_hw_reset(uint8_t sec_idx)
|
|
{
|
|
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
|
|
uint32_t timeout = 100000;
|
|
uint32_t jrint, jrcr;
|
|
|
|
sec_out32(®s->jrcr, JRCR_RESET);
|
|
do {
|
|
jrint = sec_in32(®s->jrint);
|
|
} while (((jrint & JRINT_ERR_HALT_MASK) ==
|
|
JRINT_ERR_HALT_INPROGRESS) && --timeout);
|
|
|
|
jrint = sec_in32(®s->jrint);
|
|
if (((jrint & JRINT_ERR_HALT_MASK) !=
|
|
JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
|
|
return -1;
|
|
|
|
timeout = 100000;
|
|
sec_out32(®s->jrcr, JRCR_RESET);
|
|
do {
|
|
jrcr = sec_in32(®s->jrcr);
|
|
} while ((jrcr & JRCR_RESET) && --timeout);
|
|
|
|
if (timeout == 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* -1 --- error, can't enqueue -- no space available */
|
|
static int jr_enqueue(uint32_t *desc_addr,
|
|
void (*callback)(uint32_t status, void *arg),
|
|
void *arg, uint8_t sec_idx)
|
|
{
|
|
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
|
|
struct jobring *jr = &jr0[sec_idx];
|
|
int head = jr->head;
|
|
uint32_t desc_word;
|
|
int length = desc_len(desc_addr);
|
|
int i;
|
|
#ifdef CONFIG_PHYS_64BIT
|
|
uint32_t *addr_hi, *addr_lo;
|
|
#endif
|
|
|
|
/* The descriptor must be submitted to SEC block as per endianness
|
|
* of the SEC Block.
|
|
* So, if the endianness of Core and SEC block is different, each word
|
|
* of the descriptor will be byte-swapped.
|
|
*/
|
|
for (i = 0; i < length; i++) {
|
|
desc_word = desc_addr[i];
|
|
sec_out32((uint32_t *)&desc_addr[i], desc_word);
|
|
}
|
|
|
|
phys_addr_t desc_phys_addr = virt_to_phys(desc_addr);
|
|
|
|
jr->info[head].desc_phys_addr = desc_phys_addr;
|
|
jr->info[head].callback = (void *)callback;
|
|
jr->info[head].arg = arg;
|
|
jr->info[head].op_done = 0;
|
|
|
|
unsigned long start = (unsigned long)&jr->info[head] &
|
|
~(ARCH_DMA_MINALIGN - 1);
|
|
unsigned long end = ALIGN((unsigned long)&jr->info[head] +
|
|
sizeof(struct jr_info), ARCH_DMA_MINALIGN);
|
|
flush_dcache_range(start, end);
|
|
|
|
#ifdef CONFIG_PHYS_64BIT
|
|
/* Write the 64 bit Descriptor address on Input Ring.
|
|
* The 32 bit hign and low part of the address will
|
|
* depend on endianness of SEC block.
|
|
*/
|
|
#ifdef CONFIG_SYS_FSL_SEC_LE
|
|
addr_lo = (uint32_t *)(&jr->input_ring[head]);
|
|
addr_hi = (uint32_t *)(&jr->input_ring[head]) + 1;
|
|
#elif defined(CONFIG_SYS_FSL_SEC_BE)
|
|
addr_hi = (uint32_t *)(&jr->input_ring[head]);
|
|
addr_lo = (uint32_t *)(&jr->input_ring[head]) + 1;
|
|
#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
|
|
|
|
sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
|
|
sec_out32(addr_lo, (uint32_t)(desc_phys_addr));
|
|
|
|
#else
|
|
/* Write the 32 bit Descriptor address on Input Ring. */
|
|
sec_out32(&jr->input_ring[head], desc_phys_addr);
|
|
#endif /* ifdef CONFIG_PHYS_64BIT */
|
|
|
|
start = (unsigned long)&jr->input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
|
|
end = ALIGN((unsigned long)&jr->input_ring[head] +
|
|
sizeof(dma_addr_t), ARCH_DMA_MINALIGN);
|
|
flush_dcache_range(start, end);
|
|
|
|
jr->head = (head + 1) & (jr->size - 1);
|
|
|
|
/* Invalidate output ring */
|
|
start = (unsigned long)jr->output_ring &
|
|
~(ARCH_DMA_MINALIGN - 1);
|
|
end = ALIGN((unsigned long)jr->output_ring + jr->op_size,
|
|
ARCH_DMA_MINALIGN);
|
|
invalidate_dcache_range(start, end);
|
|
|
|
sec_out32(®s->irja, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int jr_dequeue(int sec_idx)
|
|
{
|
|
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
|
|
struct jobring *jr = &jr0[sec_idx];
|
|
int head = jr->head;
|
|
int tail = jr->tail;
|
|
int idx, i, found;
|
|
void (*callback)(uint32_t status, void *arg);
|
|
void *arg = NULL;
|
|
#ifdef CONFIG_PHYS_64BIT
|
|
uint32_t *addr_hi, *addr_lo;
|
|
#else
|
|
uint32_t *addr;
|
|
#endif
|
|
|
|
while (sec_in32(®s->orsf) && CIRC_CNT(jr->head, jr->tail,
|
|
jr->size)) {
|
|
|
|
found = 0;
|
|
|
|
phys_addr_t op_desc;
|
|
#ifdef CONFIG_PHYS_64BIT
|
|
/* Read the 64 bit Descriptor address from Output Ring.
|
|
* The 32 bit hign and low part of the address will
|
|
* depend on endianness of SEC block.
|
|
*/
|
|
#ifdef CONFIG_SYS_FSL_SEC_LE
|
|
addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc);
|
|
addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
|
|
#elif defined(CONFIG_SYS_FSL_SEC_BE)
|
|
addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc);
|
|
addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
|
|
#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
|
|
|
|
op_desc = ((u64)sec_in32(addr_hi) << 32) |
|
|
((u64)sec_in32(addr_lo));
|
|
|
|
#else
|
|
/* Read the 32 bit Descriptor address from Output Ring. */
|
|
addr = (uint32_t *)&jr->output_ring[jr->tail].desc;
|
|
op_desc = sec_in32(addr);
|
|
#endif /* ifdef CONFIG_PHYS_64BIT */
|
|
|
|
uint32_t status = sec_in32(&jr->output_ring[jr->tail].status);
|
|
|
|
for (i = 0; CIRC_CNT(head, tail + i, jr->size) >= 1; i++) {
|
|
idx = (tail + i) & (jr->size - 1);
|
|
if (op_desc == jr->info[idx].desc_phys_addr) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Error condition if match not found */
|
|
if (!found)
|
|
return -1;
|
|
|
|
jr->info[idx].op_done = 1;
|
|
callback = (void *)jr->info[idx].callback;
|
|
arg = jr->info[idx].arg;
|
|
|
|
/* When the job on tail idx gets done, increment
|
|
* tail till the point where job completed out of oredr has
|
|
* been taken into account
|
|
*/
|
|
if (idx == tail)
|
|
do {
|
|
tail = (tail + 1) & (jr->size - 1);
|
|
} while (jr->info[tail].op_done);
|
|
|
|
jr->tail = tail;
|
|
jr->read_idx = (jr->read_idx + 1) & (jr->size - 1);
|
|
|
|
sec_out32(®s->orjr, 1);
|
|
jr->info[idx].op_done = 0;
|
|
|
|
callback(status, arg);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void desc_done(uint32_t status, void *arg)
|
|
{
|
|
struct result *x = arg;
|
|
x->status = status;
|
|
#ifndef CONFIG_SPL_BUILD
|
|
caam_jr_strstatus(status);
|
|
#endif
|
|
x->done = 1;
|
|
}
|
|
|
|
static inline int run_descriptor_jr_idx(uint32_t *desc, uint8_t sec_idx)
|
|
{
|
|
unsigned long long timeval = get_ticks();
|
|
unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
|
|
struct result op;
|
|
int ret = 0;
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
|
|
ret = jr_enqueue(desc, desc_done, &op, sec_idx);
|
|
if (ret) {
|
|
debug("Error in SEC enq\n");
|
|
ret = JQ_ENQ_ERR;
|
|
goto out;
|
|
}
|
|
|
|
timeval = get_ticks();
|
|
timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
|
|
while (op.done != 1) {
|
|
ret = jr_dequeue(sec_idx);
|
|
if (ret) {
|
|
debug("Error in SEC deq\n");
|
|
ret = JQ_DEQ_ERR;
|
|
goto out;
|
|
}
|
|
|
|
if ((get_ticks() - timeval) > timeout) {
|
|
debug("SEC Dequeue timed out\n");
|
|
ret = JQ_DEQ_TO_ERR;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (op.status) {
|
|
debug("Error %x\n", op.status);
|
|
ret = op.status;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int run_descriptor_jr(uint32_t *desc)
|
|
{
|
|
return run_descriptor_jr_idx(desc, 0);
|
|
}
|
|
|
|
static inline int jr_reset_sec(uint8_t sec_idx)
|
|
{
|
|
if (jr_hw_reset(sec_idx) < 0)
|
|
return -1;
|
|
|
|
/* Clean up the jobring structure maintained by software */
|
|
jr_sw_cleanup(sec_idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int jr_reset(void)
|
|
{
|
|
return jr_reset_sec(0);
|
|
}
|
|
|
|
static inline int sec_reset_idx(uint8_t sec_idx)
|
|
{
|
|
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
|
|
uint32_t mcfgr = sec_in32(&sec->mcfgr);
|
|
uint32_t timeout = 100000;
|
|
|
|
mcfgr |= MCFGR_SWRST;
|
|
sec_out32(&sec->mcfgr, mcfgr);
|
|
|
|
mcfgr |= MCFGR_DMA_RST;
|
|
sec_out32(&sec->mcfgr, mcfgr);
|
|
do {
|
|
mcfgr = sec_in32(&sec->mcfgr);
|
|
} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);
|
|
|
|
if (timeout == 0)
|
|
return -1;
|
|
|
|
timeout = 100000;
|
|
do {
|
|
mcfgr = sec_in32(&sec->mcfgr);
|
|
} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);
|
|
|
|
if (timeout == 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
int sec_reset(void)
|
|
{
|
|
return sec_reset_idx(0);
|
|
}
|
|
#ifndef CONFIG_SPL_BUILD
|
|
static int instantiate_rng(uint8_t sec_idx)
|
|
{
|
|
u32 *desc;
|
|
u32 rdsta_val;
|
|
int ret = 0, sh_idx, size;
|
|
ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
|
|
struct rng4tst __iomem *rng =
|
|
(struct rng4tst __iomem *)&sec->rng;
|
|
|
|
desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
|
|
if (!desc) {
|
|
printf("cannot allocate RNG init descriptor memory\n");
|
|
return -1;
|
|
}
|
|
|
|
for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
|
|
/*
|
|
* If the corresponding bit is set, this state handle
|
|
* was initialized by somebody else, so it's left alone.
|
|
*/
|
|
rdsta_val = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
|
|
if (rdsta_val & (1 << sh_idx))
|
|
continue;
|
|
|
|
inline_cnstr_jobdesc_rng_instantiation(desc, sh_idx);
|
|
size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
|
|
flush_dcache_range((unsigned long)desc,
|
|
(unsigned long)desc + size);
|
|
|
|
ret = run_descriptor_jr_idx(desc, sec_idx);
|
|
|
|
if (ret)
|
|
printf("RNG: Instantiation failed with error 0x%x\n",
|
|
ret);
|
|
|
|
rdsta_val = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
|
|
if (!(rdsta_val & (1 << sh_idx))) {
|
|
free(desc);
|
|
return -1;
|
|
}
|
|
|
|
memset(desc, 0, sizeof(uint32_t) * 6);
|
|
}
|
|
|
|
free(desc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u8 get_rng_vid(uint8_t sec_idx)
|
|
{
|
|
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
|
|
u32 cha_vid = sec_in32(&sec->chavid_ls);
|
|
|
|
return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* By default, the TRNG runs for 200 clocks per sample;
|
|
* 1200 clocks per sample generates better entropy.
|
|
*/
|
|
static void kick_trng(int ent_delay, uint8_t sec_idx)
|
|
{
|
|
ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
|
|
struct rng4tst __iomem *rng =
|
|
(struct rng4tst __iomem *)&sec->rng;
|
|
u32 val;
|
|
|
|
/* put RNG4 into program mode */
|
|
sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
|
|
/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
|
|
* length (in system clocks) of each Entropy sample taken
|
|
* */
|
|
val = sec_in32(&rng->rtsdctl);
|
|
val = (val & ~RTSDCTL_ENT_DLY_MASK) |
|
|
(ent_delay << RTSDCTL_ENT_DLY_SHIFT);
|
|
sec_out32(&rng->rtsdctl, val);
|
|
/* min. freq. count, equal to 1/4 of the entropy sample length */
|
|
sec_out32(&rng->rtfreqmin, ent_delay >> 2);
|
|
/* disable maximum frequency count */
|
|
sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
|
|
/*
|
|
* select raw sampling in both entropy shifter
|
|
* and statistical checker
|
|
*/
|
|
sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC);
|
|
/* put RNG4 into run mode */
|
|
sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM);
|
|
}
|
|
|
|
static int rng_init(uint8_t sec_idx)
|
|
{
|
|
int ret, ent_delay = RTSDCTL_ENT_DLY_MIN;
|
|
ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
|
|
struct rng4tst __iomem *rng =
|
|
(struct rng4tst __iomem *)&sec->rng;
|
|
u32 inst_handles;
|
|
|
|
do {
|
|
inst_handles = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
|
|
|
|
/*
|
|
* If either of the SH's were instantiated by somebody else
|
|
* then it is assumed that the entropy
|
|
* parameters are properly set and thus the function
|
|
* setting these (kick_trng(...)) is skipped.
|
|
* Also, if a handle was instantiated, do not change
|
|
* the TRNG parameters.
|
|
*/
|
|
if (!inst_handles) {
|
|
kick_trng(ent_delay, sec_idx);
|
|
ent_delay += 400;
|
|
}
|
|
/*
|
|
* if instantiate_rng(...) fails, the loop will rerun
|
|
* and the kick_trng(...) function will modfiy the
|
|
* upper and lower limits of the entropy sampling
|
|
* interval, leading to a sucessful initialization of
|
|
* the RNG.
|
|
*/
|
|
ret = instantiate_rng(sec_idx);
|
|
} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
|
|
if (ret) {
|
|
printf("RNG: Failed to instantiate RNG\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Enable RDB bit so that RNG works faster */
|
|
sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
int sec_init_idx(uint8_t sec_idx)
|
|
{
|
|
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
|
|
uint32_t mcr = sec_in32(&sec->mcfgr);
|
|
int ret = 0;
|
|
|
|
#ifdef CONFIG_FSL_CORENET
|
|
uint32_t liodnr;
|
|
uint32_t liodn_ns;
|
|
uint32_t liodn_s;
|
|
#endif
|
|
|
|
if (!(sec_idx < CONFIG_SYS_FSL_MAX_NUM_OF_SEC)) {
|
|
printf("SEC initialization failed\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Modifying CAAM Read/Write Attributes
|
|
* For LS2080A
|
|
* For AXI Write - Cacheable, Write Back, Write allocate
|
|
* For AXI Read - Cacheable, Read allocate
|
|
* Only For LS2080a, to solve CAAM coherency issues
|
|
*/
|
|
#ifdef CONFIG_ARCH_LS2080A
|
|
mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT);
|
|
mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT);
|
|
#else
|
|
mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
|
|
#endif
|
|
|
|
#ifdef CONFIG_PHYS_64BIT
|
|
mcr |= (1 << MCFGR_PS_SHIFT);
|
|
#endif
|
|
sec_out32(&sec->mcfgr, mcr);
|
|
|
|
#ifdef CONFIG_FSL_CORENET
|
|
#ifdef CONFIG_SPL_BUILD
|
|
/*
|
|
* For SPL Build, Set the Liodns in SEC JR0 for
|
|
* creating PAMU entries corresponding to these.
|
|
* For normal build, these are set in set_liodns().
|
|
*/
|
|
liodn_ns = CONFIG_SPL_JR0_LIODN_NS & JRNSLIODN_MASK;
|
|
liodn_s = CONFIG_SPL_JR0_LIODN_S & JRSLIODN_MASK;
|
|
|
|
liodnr = sec_in32(&sec->jrliodnr[0].ls) &
|
|
~(JRNSLIODN_MASK | JRSLIODN_MASK);
|
|
liodnr = liodnr |
|
|
(liodn_ns << JRNSLIODN_SHIFT) |
|
|
(liodn_s << JRSLIODN_SHIFT);
|
|
sec_out32(&sec->jrliodnr[0].ls, liodnr);
|
|
#else
|
|
liodnr = sec_in32(&sec->jrliodnr[0].ls);
|
|
liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT;
|
|
liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT;
|
|
#endif
|
|
#endif
|
|
|
|
ret = jr_init(sec_idx);
|
|
if (ret < 0) {
|
|
printf("SEC initialization failed\n");
|
|
return -1;
|
|
}
|
|
|
|
#ifdef CONFIG_FSL_CORENET
|
|
ret = sec_config_pamu_table(liodn_ns, liodn_s);
|
|
if (ret < 0)
|
|
return -1;
|
|
|
|
pamu_enable();
|
|
#endif
|
|
#ifndef CONFIG_SPL_BUILD
|
|
if (get_rng_vid(sec_idx) >= 4) {
|
|
if (rng_init(sec_idx) < 0) {
|
|
printf("SEC%u: RNG instantiation failed\n", sec_idx);
|
|
return -1;
|
|
}
|
|
printf("SEC%u: RNG instantiated\n", sec_idx);
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
int sec_init(void)
|
|
{
|
|
return sec_init_idx(0);
|
|
}
|