mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-26 03:45:12 +00:00
84d6cbd302
Add support for driver model if enabled. This involves minimal changes to the code, mostly just plumbing around the edges. Signed-off-by: Simon Glass <sjg@chromium.org> Acked-by: Jagannadha Sutradharudu Teki <jagannadh.teki@gmail.com>
1894 lines
46 KiB
C
1894 lines
46 KiB
C
/*
|
|
* Chromium OS cros_ec driver
|
|
*
|
|
* Copyright (c) 2012 The Chromium OS Authors.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
/*
|
|
* This is the interface to the Chrome OS EC. It provides keyboard functions,
|
|
* power control and battery management. Quite a few other functions are
|
|
* provided to enable the EC software to be updated, talk to the EC's I2C bus
|
|
* and store a small amount of data in a memory which persists while the EC
|
|
* is not reset.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <command.h>
|
|
#include <dm.h>
|
|
#include <i2c.h>
|
|
#include <cros_ec.h>
|
|
#include <fdtdec.h>
|
|
#include <malloc.h>
|
|
#include <spi.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/io.h>
|
|
#include <asm-generic/gpio.h>
|
|
#include <dm/device-internal.h>
|
|
#include <dm/uclass-internal.h>
|
|
|
|
#ifdef DEBUG_TRACE
|
|
#define debug_trace(fmt, b...) debug(fmt, #b)
|
|
#else
|
|
#define debug_trace(fmt, b...)
|
|
#endif
|
|
|
|
enum {
|
|
/* Timeout waiting for a flash erase command to complete */
|
|
CROS_EC_CMD_TIMEOUT_MS = 5000,
|
|
/* Timeout waiting for a synchronous hash to be recomputed */
|
|
CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
|
|
};
|
|
|
|
#ifndef CONFIG_DM_CROS_EC
|
|
static struct cros_ec_dev static_dev, *last_dev;
|
|
#endif
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
/* Note: depends on enum ec_current_image */
|
|
static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"};
|
|
|
|
void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
|
|
{
|
|
#ifdef DEBUG
|
|
int i;
|
|
|
|
printf("%s: ", name);
|
|
if (cmd != -1)
|
|
printf("cmd=%#x: ", cmd);
|
|
for (i = 0; i < len; i++)
|
|
printf("%02x ", data[i]);
|
|
printf("\n");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Calculate a simple 8-bit checksum of a data block
|
|
*
|
|
* @param data Data block to checksum
|
|
* @param size Size of data block in bytes
|
|
* @return checksum value (0 to 255)
|
|
*/
|
|
int cros_ec_calc_checksum(const uint8_t *data, int size)
|
|
{
|
|
int csum, i;
|
|
|
|
for (i = csum = 0; i < size; i++)
|
|
csum += data[i];
|
|
return csum & 0xff;
|
|
}
|
|
|
|
/**
|
|
* Create a request packet for protocol version 3.
|
|
*
|
|
* The packet is stored in the device's internal output buffer.
|
|
*
|
|
* @param dev CROS-EC device
|
|
* @param cmd Command to send (EC_CMD_...)
|
|
* @param cmd_version Version of command to send (EC_VER_...)
|
|
* @param dout Output data (may be NULL If dout_len=0)
|
|
* @param dout_len Size of output data in bytes
|
|
* @return packet size in bytes, or <0 if error.
|
|
*/
|
|
static int create_proto3_request(struct cros_ec_dev *dev,
|
|
int cmd, int cmd_version,
|
|
const void *dout, int dout_len)
|
|
{
|
|
struct ec_host_request *rq = (struct ec_host_request *)dev->dout;
|
|
int out_bytes = dout_len + sizeof(*rq);
|
|
|
|
/* Fail if output size is too big */
|
|
if (out_bytes > (int)sizeof(dev->dout)) {
|
|
debug("%s: Cannot send %d bytes\n", __func__, dout_len);
|
|
return -EC_RES_REQUEST_TRUNCATED;
|
|
}
|
|
|
|
/* Fill in request packet */
|
|
rq->struct_version = EC_HOST_REQUEST_VERSION;
|
|
rq->checksum = 0;
|
|
rq->command = cmd;
|
|
rq->command_version = cmd_version;
|
|
rq->reserved = 0;
|
|
rq->data_len = dout_len;
|
|
|
|
/* Copy data after header */
|
|
memcpy(rq + 1, dout, dout_len);
|
|
|
|
/* Write checksum field so the entire packet sums to 0 */
|
|
rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes));
|
|
|
|
cros_ec_dump_data("out", cmd, dev->dout, out_bytes);
|
|
|
|
/* Return size of request packet */
|
|
return out_bytes;
|
|
}
|
|
|
|
/**
|
|
* Prepare the device to receive a protocol version 3 response.
|
|
*
|
|
* @param dev CROS-EC device
|
|
* @param din_len Maximum size of response in bytes
|
|
* @return maximum expected number of bytes in response, or <0 if error.
|
|
*/
|
|
static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len)
|
|
{
|
|
int in_bytes = din_len + sizeof(struct ec_host_response);
|
|
|
|
/* Fail if input size is too big */
|
|
if (in_bytes > (int)sizeof(dev->din)) {
|
|
debug("%s: Cannot receive %d bytes\n", __func__, din_len);
|
|
return -EC_RES_RESPONSE_TOO_BIG;
|
|
}
|
|
|
|
/* Return expected size of response packet */
|
|
return in_bytes;
|
|
}
|
|
|
|
/**
|
|
* Handle a protocol version 3 response packet.
|
|
*
|
|
* The packet must already be stored in the device's internal input buffer.
|
|
*
|
|
* @param dev CROS-EC device
|
|
* @param dinp Returns pointer to response data
|
|
* @param din_len Maximum size of response in bytes
|
|
* @return number of bytes of response data, or <0 if error
|
|
*/
|
|
static int handle_proto3_response(struct cros_ec_dev *dev,
|
|
uint8_t **dinp, int din_len)
|
|
{
|
|
struct ec_host_response *rs = (struct ec_host_response *)dev->din;
|
|
int in_bytes;
|
|
int csum;
|
|
|
|
cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
|
|
|
|
/* Check input data */
|
|
if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
|
|
debug("%s: EC response version mismatch\n", __func__);
|
|
return -EC_RES_INVALID_RESPONSE;
|
|
}
|
|
|
|
if (rs->reserved) {
|
|
debug("%s: EC response reserved != 0\n", __func__);
|
|
return -EC_RES_INVALID_RESPONSE;
|
|
}
|
|
|
|
if (rs->data_len > din_len) {
|
|
debug("%s: EC returned too much data\n", __func__);
|
|
return -EC_RES_RESPONSE_TOO_BIG;
|
|
}
|
|
|
|
cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
|
|
|
|
/* Update in_bytes to actual data size */
|
|
in_bytes = sizeof(*rs) + rs->data_len;
|
|
|
|
/* Verify checksum */
|
|
csum = cros_ec_calc_checksum(dev->din, in_bytes);
|
|
if (csum) {
|
|
debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
|
|
csum);
|
|
return -EC_RES_INVALID_CHECKSUM;
|
|
}
|
|
|
|
/* Return error result, if any */
|
|
if (rs->result)
|
|
return -(int)rs->result;
|
|
|
|
/* If we're still here, set response data pointer and return length */
|
|
*dinp = (uint8_t *)(rs + 1);
|
|
|
|
return rs->data_len;
|
|
}
|
|
|
|
static int send_command_proto3(struct cros_ec_dev *dev,
|
|
int cmd, int cmd_version,
|
|
const void *dout, int dout_len,
|
|
uint8_t **dinp, int din_len)
|
|
{
|
|
#ifdef CONFIG_DM_CROS_EC
|
|
struct dm_cros_ec_ops *ops;
|
|
#endif
|
|
int out_bytes, in_bytes;
|
|
int rv;
|
|
|
|
/* Create request packet */
|
|
out_bytes = create_proto3_request(dev, cmd, cmd_version,
|
|
dout, dout_len);
|
|
if (out_bytes < 0)
|
|
return out_bytes;
|
|
|
|
/* Prepare response buffer */
|
|
in_bytes = prepare_proto3_response_buffer(dev, din_len);
|
|
if (in_bytes < 0)
|
|
return in_bytes;
|
|
|
|
#ifdef CONFIG_DM_CROS_EC
|
|
ops = dm_cros_ec_get_ops(dev->dev);
|
|
rv = ops->packet(dev->dev, out_bytes, in_bytes);
|
|
#else
|
|
switch (dev->interface) {
|
|
#ifdef CONFIG_CROS_EC_SPI
|
|
case CROS_EC_IF_SPI:
|
|
rv = cros_ec_spi_packet(dev, out_bytes, in_bytes);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_CROS_EC_SANDBOX
|
|
case CROS_EC_IF_SANDBOX:
|
|
rv = cros_ec_sandbox_packet(dev, out_bytes, in_bytes);
|
|
break;
|
|
#endif
|
|
case CROS_EC_IF_NONE:
|
|
/* TODO: support protocol 3 for LPC, I2C; for now fall through */
|
|
default:
|
|
debug("%s: Unsupported interface\n", __func__);
|
|
rv = -1;
|
|
}
|
|
#endif
|
|
if (rv < 0)
|
|
return rv;
|
|
|
|
/* Process the response */
|
|
return handle_proto3_response(dev, dinp, din_len);
|
|
}
|
|
|
|
static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
|
|
const void *dout, int dout_len,
|
|
uint8_t **dinp, int din_len)
|
|
{
|
|
#ifdef CONFIG_DM_CROS_EC
|
|
struct dm_cros_ec_ops *ops;
|
|
#endif
|
|
int ret = -1;
|
|
|
|
/* Handle protocol version 3 support */
|
|
if (dev->protocol_version == 3) {
|
|
return send_command_proto3(dev, cmd, cmd_version,
|
|
dout, dout_len, dinp, din_len);
|
|
}
|
|
|
|
#ifdef CONFIG_DM_CROS_EC
|
|
ops = dm_cros_ec_get_ops(dev->dev);
|
|
ret = ops->command(dev->dev, cmd, cmd_version,
|
|
(const uint8_t *)dout, dout_len, dinp, din_len);
|
|
#else
|
|
switch (dev->interface) {
|
|
#ifdef CONFIG_CROS_EC_SPI
|
|
case CROS_EC_IF_SPI:
|
|
ret = cros_ec_spi_command(dev, cmd, cmd_version,
|
|
(const uint8_t *)dout, dout_len,
|
|
dinp, din_len);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_CROS_EC_I2C
|
|
case CROS_EC_IF_I2C:
|
|
ret = cros_ec_i2c_command(dev, cmd, cmd_version,
|
|
(const uint8_t *)dout, dout_len,
|
|
dinp, din_len);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_CROS_EC_LPC
|
|
case CROS_EC_IF_LPC:
|
|
ret = cros_ec_lpc_command(dev, cmd, cmd_version,
|
|
(const uint8_t *)dout, dout_len,
|
|
dinp, din_len);
|
|
break;
|
|
#endif
|
|
case CROS_EC_IF_NONE:
|
|
default:
|
|
ret = -1;
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Send a command to the CROS-EC device and return the reply.
|
|
*
|
|
* The device's internal input/output buffers are used.
|
|
*
|
|
* @param dev CROS-EC device
|
|
* @param cmd Command to send (EC_CMD_...)
|
|
* @param cmd_version Version of command to send (EC_VER_...)
|
|
* @param dout Output data (may be NULL If dout_len=0)
|
|
* @param dout_len Size of output data in bytes
|
|
* @param dinp Response data (may be NULL If din_len=0).
|
|
* If not NULL, it will be updated to point to the data
|
|
* and will always be double word aligned (64-bits)
|
|
* @param din_len Maximum size of response in bytes
|
|
* @return number of bytes in response, or -1 on error
|
|
*/
|
|
static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
|
|
int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
|
|
int din_len)
|
|
{
|
|
uint8_t *din = NULL;
|
|
int len;
|
|
|
|
len = send_command(dev, cmd, cmd_version, dout, dout_len,
|
|
&din, din_len);
|
|
|
|
/* If the command doesn't complete, wait a while */
|
|
if (len == -EC_RES_IN_PROGRESS) {
|
|
struct ec_response_get_comms_status *resp = NULL;
|
|
ulong start;
|
|
|
|
/* Wait for command to complete */
|
|
start = get_timer(0);
|
|
do {
|
|
int ret;
|
|
|
|
mdelay(50); /* Insert some reasonable delay */
|
|
ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
|
|
NULL, 0,
|
|
(uint8_t **)&resp, sizeof(*resp));
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
|
|
debug("%s: Command %#02x timeout\n",
|
|
__func__, cmd);
|
|
return -EC_RES_TIMEOUT;
|
|
}
|
|
} while (resp->flags & EC_COMMS_STATUS_PROCESSING);
|
|
|
|
/* OK it completed, so read the status response */
|
|
/* not sure why it was 0 for the last argument */
|
|
len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
|
|
NULL, 0, &din, din_len);
|
|
}
|
|
|
|
debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp,
|
|
dinp ? *dinp : NULL);
|
|
if (dinp) {
|
|
/* If we have any data to return, it must be 64bit-aligned */
|
|
assert(len <= 0 || !((uintptr_t)din & 7));
|
|
*dinp = din;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* Send a command to the CROS-EC device and return the reply.
|
|
*
|
|
* The device's internal input/output buffers are used.
|
|
*
|
|
* @param dev CROS-EC device
|
|
* @param cmd Command to send (EC_CMD_...)
|
|
* @param cmd_version Version of command to send (EC_VER_...)
|
|
* @param dout Output data (may be NULL If dout_len=0)
|
|
* @param dout_len Size of output data in bytes
|
|
* @param din Response data (may be NULL If din_len=0).
|
|
* It not NULL, it is a place for ec_command() to copy the
|
|
* data to.
|
|
* @param din_len Maximum size of response in bytes
|
|
* @return number of bytes in response, or -1 on error
|
|
*/
|
|
static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
|
|
const void *dout, int dout_len,
|
|
void *din, int din_len)
|
|
{
|
|
uint8_t *in_buffer;
|
|
int len;
|
|
|
|
assert((din_len == 0) || din);
|
|
len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
|
|
&in_buffer, din_len);
|
|
if (len > 0) {
|
|
/*
|
|
* If we were asked to put it somewhere, do so, otherwise just
|
|
* disregard the result.
|
|
*/
|
|
if (din && in_buffer) {
|
|
assert(len <= din_len);
|
|
memmove(din, in_buffer, len);
|
|
}
|
|
}
|
|
return len;
|
|
}
|
|
|
|
int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan)
|
|
{
|
|
if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
|
|
sizeof(scan->data)) != sizeof(scan->data))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
|
|
{
|
|
struct ec_response_get_version *r;
|
|
|
|
if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
|
|
(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
|
|
return -1;
|
|
|
|
if (maxlen > (int)sizeof(r->version_string_ro))
|
|
maxlen = sizeof(r->version_string_ro);
|
|
|
|
switch (r->current_image) {
|
|
case EC_IMAGE_RO:
|
|
memcpy(id, r->version_string_ro, maxlen);
|
|
break;
|
|
case EC_IMAGE_RW:
|
|
memcpy(id, r->version_string_rw, maxlen);
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
id[maxlen - 1] = '\0';
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_read_version(struct cros_ec_dev *dev,
|
|
struct ec_response_get_version **versionp)
|
|
{
|
|
if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
|
|
(uint8_t **)versionp, sizeof(**versionp))
|
|
!= sizeof(**versionp))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
|
|
{
|
|
if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
|
|
(uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_read_current_image(struct cros_ec_dev *dev,
|
|
enum ec_current_image *image)
|
|
{
|
|
struct ec_response_get_version *r;
|
|
|
|
if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
|
|
(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
|
|
return -1;
|
|
|
|
*image = r->current_image;
|
|
return 0;
|
|
}
|
|
|
|
static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
|
|
struct ec_response_vboot_hash *hash)
|
|
{
|
|
struct ec_params_vboot_hash p;
|
|
ulong start;
|
|
|
|
start = get_timer(0);
|
|
while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
|
|
mdelay(50); /* Insert some reasonable delay */
|
|
|
|
p.cmd = EC_VBOOT_HASH_GET;
|
|
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
|
|
hash, sizeof(*hash)) < 0)
|
|
return -1;
|
|
|
|
if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
|
|
debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
|
|
return -EC_RES_TIMEOUT;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int cros_ec_read_hash(struct cros_ec_dev *dev,
|
|
struct ec_response_vboot_hash *hash)
|
|
{
|
|
struct ec_params_vboot_hash p;
|
|
int rv;
|
|
|
|
p.cmd = EC_VBOOT_HASH_GET;
|
|
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
|
|
hash, sizeof(*hash)) < 0)
|
|
return -1;
|
|
|
|
/* If the EC is busy calculating the hash, fidget until it's done. */
|
|
rv = cros_ec_wait_on_hash_done(dev, hash);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* If the hash is valid, we're done. Otherwise, we have to kick it off
|
|
* again and wait for it to complete. Note that we explicitly assume
|
|
* that hashing zero bytes is always wrong, even though that would
|
|
* produce a valid hash value. */
|
|
if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
|
|
return 0;
|
|
|
|
debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
|
|
__func__, hash->status, hash->size);
|
|
|
|
p.cmd = EC_VBOOT_HASH_START;
|
|
p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
|
|
p.nonce_size = 0;
|
|
p.offset = EC_VBOOT_HASH_OFFSET_RW;
|
|
|
|
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
|
|
hash, sizeof(*hash)) < 0)
|
|
return -1;
|
|
|
|
rv = cros_ec_wait_on_hash_done(dev, hash);
|
|
if (rv)
|
|
return rv;
|
|
|
|
debug("%s: hash done\n", __func__);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
|
|
{
|
|
struct ec_params_vboot_hash p;
|
|
struct ec_response_vboot_hash *hash;
|
|
|
|
/* We don't have an explict command for the EC to discard its current
|
|
* hash value, so we'll just tell it to calculate one that we know is
|
|
* wrong (we claim that hashing zero bytes is always invalid).
|
|
*/
|
|
p.cmd = EC_VBOOT_HASH_RECALC;
|
|
p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
|
|
p.nonce_size = 0;
|
|
p.offset = 0;
|
|
p.size = 0;
|
|
|
|
debug("%s:\n", __func__);
|
|
|
|
if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
|
|
(uint8_t **)&hash, sizeof(*hash)) < 0)
|
|
return -1;
|
|
|
|
/* No need to wait for it to finish */
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
|
|
uint8_t flags)
|
|
{
|
|
struct ec_params_reboot_ec p;
|
|
|
|
p.cmd = cmd;
|
|
p.flags = flags;
|
|
|
|
if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
|
|
< 0)
|
|
return -1;
|
|
|
|
if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
|
|
/*
|
|
* EC reboot will take place immediately so delay to allow it
|
|
* to complete. Note that some reboot types (EC_REBOOT_COLD)
|
|
* will reboot the AP as well, in which case we won't actually
|
|
* get to this point.
|
|
*/
|
|
/*
|
|
* TODO(rspangler@chromium.org): Would be nice if we had a
|
|
* better way to determine when the reboot is complete. Could
|
|
* we poll a memory-mapped LPC value?
|
|
*/
|
|
udelay(50000);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_interrupt_pending(struct cros_ec_dev *dev)
|
|
{
|
|
/* no interrupt support : always poll */
|
|
if (!fdt_gpio_isvalid(&dev->ec_int))
|
|
return -ENOENT;
|
|
|
|
return !gpio_get_value(dev->ec_int.gpio);
|
|
}
|
|
|
|
int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info)
|
|
{
|
|
if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
|
|
sizeof(*info)) != sizeof(*info))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
|
|
{
|
|
struct ec_response_host_event_mask *resp;
|
|
|
|
/*
|
|
* Use the B copy of the event flags, because the main copy is already
|
|
* used by ACPI/SMI.
|
|
*/
|
|
if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
|
|
(uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
|
|
return -1;
|
|
|
|
if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
|
|
return -1;
|
|
|
|
*events_ptr = resp->mask;
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
|
|
{
|
|
struct ec_params_host_event_mask params;
|
|
|
|
params.mask = events;
|
|
|
|
/*
|
|
* Use the B copy of the event flags, so it affects the data returned
|
|
* by cros_ec_get_host_events().
|
|
*/
|
|
if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
|
|
¶ms, sizeof(params), NULL, 0) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_flash_protect(struct cros_ec_dev *dev,
|
|
uint32_t set_mask, uint32_t set_flags,
|
|
struct ec_response_flash_protect *resp)
|
|
{
|
|
struct ec_params_flash_protect params;
|
|
|
|
params.mask = set_mask;
|
|
params.flags = set_flags;
|
|
|
|
if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
|
|
¶ms, sizeof(params),
|
|
resp, sizeof(*resp)) != sizeof(*resp))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cros_ec_check_version(struct cros_ec_dev *dev)
|
|
{
|
|
struct ec_params_hello req;
|
|
struct ec_response_hello *resp;
|
|
|
|
#ifdef CONFIG_CROS_EC_LPC
|
|
/* LPC has its own way of doing this */
|
|
if (dev->interface == CROS_EC_IF_LPC)
|
|
return cros_ec_lpc_check_version(dev);
|
|
#endif
|
|
|
|
/*
|
|
* TODO(sjg@chromium.org).
|
|
* There is a strange oddity here with the EC. We could just ignore
|
|
* the response, i.e. pass the last two parameters as NULL and 0.
|
|
* In this case we won't read back very many bytes from the EC.
|
|
* On the I2C bus the EC gets upset about this and will try to send
|
|
* the bytes anyway. This means that we will have to wait for that
|
|
* to complete before continuing with a new EC command.
|
|
*
|
|
* This problem is probably unique to the I2C bus.
|
|
*
|
|
* So for now, just read all the data anyway.
|
|
*/
|
|
|
|
/* Try sending a version 3 packet */
|
|
dev->protocol_version = 3;
|
|
if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
|
|
(uint8_t **)&resp, sizeof(*resp)) > 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Try sending a version 2 packet */
|
|
dev->protocol_version = 2;
|
|
if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
|
|
(uint8_t **)&resp, sizeof(*resp)) > 0) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fail if we're still here, since the EC doesn't understand any
|
|
* protcol version we speak. Version 1 interface without command
|
|
* version is no longer supported, and we don't know about any new
|
|
* protocol versions.
|
|
*/
|
|
dev->protocol_version = 0;
|
|
printf("%s: ERROR: old EC interface not supported\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
int cros_ec_test(struct cros_ec_dev *dev)
|
|
{
|
|
struct ec_params_hello req;
|
|
struct ec_response_hello *resp;
|
|
|
|
req.in_data = 0x12345678;
|
|
if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
|
|
(uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
|
|
printf("ec_command_inptr() returned error\n");
|
|
return -1;
|
|
}
|
|
if (resp->out_data != req.in_data + 0x01020304) {
|
|
printf("Received invalid handshake %x\n", resp->out_data);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
|
|
uint32_t *offset, uint32_t *size)
|
|
{
|
|
struct ec_params_flash_region_info p;
|
|
struct ec_response_flash_region_info *r;
|
|
int ret;
|
|
|
|
p.region = region;
|
|
ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
|
|
EC_VER_FLASH_REGION_INFO,
|
|
&p, sizeof(p), (uint8_t **)&r, sizeof(*r));
|
|
if (ret != sizeof(*r))
|
|
return -1;
|
|
|
|
if (offset)
|
|
*offset = r->offset;
|
|
if (size)
|
|
*size = r->size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
|
|
{
|
|
struct ec_params_flash_erase p;
|
|
|
|
p.offset = offset;
|
|
p.size = size;
|
|
return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
|
|
NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* Write a single block to the flash
|
|
*
|
|
* Write a block of data to the EC flash. The size must not exceed the flash
|
|
* write block size which you can obtain from cros_ec_flash_write_burst_size().
|
|
*
|
|
* The offset starts at 0. You can obtain the region information from
|
|
* cros_ec_flash_offset() to find out where to write for a particular region.
|
|
*
|
|
* Attempting to write to the region where the EC is currently running from
|
|
* will result in an error.
|
|
*
|
|
* @param dev CROS-EC device
|
|
* @param data Pointer to data buffer to write
|
|
* @param offset Offset within flash to write to.
|
|
* @param size Number of bytes to write
|
|
* @return 0 if ok, -1 on error
|
|
*/
|
|
static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
|
|
const uint8_t *data, uint32_t offset, uint32_t size)
|
|
{
|
|
struct ec_params_flash_write p;
|
|
|
|
p.offset = offset;
|
|
p.size = size;
|
|
assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE);
|
|
memcpy(&p + 1, data, p.size);
|
|
|
|
return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
|
|
&p, sizeof(p), NULL, 0) >= 0 ? 0 : -1;
|
|
}
|
|
|
|
/**
|
|
* Return optimal flash write burst size
|
|
*/
|
|
static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
|
|
{
|
|
return EC_FLASH_WRITE_VER0_SIZE;
|
|
}
|
|
|
|
/**
|
|
* Check if a block of data is erased (all 0xff)
|
|
*
|
|
* This function is useful when dealing with flash, for checking whether a
|
|
* data block is erased and thus does not need to be programmed.
|
|
*
|
|
* @param data Pointer to data to check (must be word-aligned)
|
|
* @param size Number of bytes to check (must be word-aligned)
|
|
* @return 0 if erased, non-zero if any word is not erased
|
|
*/
|
|
static int cros_ec_data_is_erased(const uint32_t *data, int size)
|
|
{
|
|
assert(!(size & 3));
|
|
size /= sizeof(uint32_t);
|
|
for (; size > 0; size -= 4, data++)
|
|
if (*data != -1U)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
|
|
uint32_t offset, uint32_t size)
|
|
{
|
|
uint32_t burst = cros_ec_flash_write_burst_size(dev);
|
|
uint32_t end, off;
|
|
int ret;
|
|
|
|
/*
|
|
* TODO: round up to the nearest multiple of write size. Can get away
|
|
* without that on link right now because its write size is 4 bytes.
|
|
*/
|
|
end = offset + size;
|
|
for (off = offset; off < end; off += burst, data += burst) {
|
|
uint32_t todo;
|
|
|
|
/* If the data is empty, there is no point in programming it */
|
|
todo = min(end - off, burst);
|
|
if (dev->optimise_flash_write &&
|
|
cros_ec_data_is_erased((uint32_t *)data, todo))
|
|
continue;
|
|
|
|
ret = cros_ec_flash_write_block(dev, data, off, todo);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Read a single block from the flash
|
|
*
|
|
* Read a block of data from the EC flash. The size must not exceed the flash
|
|
* write block size which you can obtain from cros_ec_flash_write_burst_size().
|
|
*
|
|
* The offset starts at 0. You can obtain the region information from
|
|
* cros_ec_flash_offset() to find out where to read for a particular region.
|
|
*
|
|
* @param dev CROS-EC device
|
|
* @param data Pointer to data buffer to read into
|
|
* @param offset Offset within flash to read from
|
|
* @param size Number of bytes to read
|
|
* @return 0 if ok, -1 on error
|
|
*/
|
|
static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
|
|
uint32_t offset, uint32_t size)
|
|
{
|
|
struct ec_params_flash_read p;
|
|
|
|
p.offset = offset;
|
|
p.size = size;
|
|
|
|
return ec_command(dev, EC_CMD_FLASH_READ, 0,
|
|
&p, sizeof(p), data, size) >= 0 ? 0 : -1;
|
|
}
|
|
|
|
int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
|
|
uint32_t size)
|
|
{
|
|
uint32_t burst = cros_ec_flash_write_burst_size(dev);
|
|
uint32_t end, off;
|
|
int ret;
|
|
|
|
end = offset + size;
|
|
for (off = offset; off < end; off += burst, data += burst) {
|
|
ret = cros_ec_flash_read_block(dev, data, off,
|
|
min(end - off, burst));
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
|
|
const uint8_t *image, int image_size)
|
|
{
|
|
uint32_t rw_offset, rw_size;
|
|
int ret;
|
|
|
|
if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
|
|
return -1;
|
|
if (image_size > (int)rw_size)
|
|
return -1;
|
|
|
|
/* Invalidate the existing hash, just in case the AP reboots
|
|
* unexpectedly during the update. If that happened, the EC RW firmware
|
|
* would be invalid, but the EC would still have the original hash.
|
|
*/
|
|
ret = cros_ec_invalidate_hash(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Erase the entire RW section, so that the EC doesn't see any garbage
|
|
* past the new image if it's smaller than the current image.
|
|
*
|
|
* TODO: could optimize this to erase just the current image, since
|
|
* presumably everything past that is 0xff's. But would still need to
|
|
* round up to the nearest multiple of erase size.
|
|
*/
|
|
ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Write the image */
|
|
ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
|
|
{
|
|
struct ec_params_vbnvcontext p;
|
|
int len;
|
|
|
|
p.op = EC_VBNV_CONTEXT_OP_READ;
|
|
|
|
len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
|
|
&p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
|
|
if (len < EC_VBNV_BLOCK_SIZE)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
|
|
{
|
|
struct ec_params_vbnvcontext p;
|
|
int len;
|
|
|
|
p.op = EC_VBNV_CONTEXT_OP_WRITE;
|
|
memcpy(p.block, block, sizeof(p.block));
|
|
|
|
len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
|
|
&p, sizeof(p), NULL, 0);
|
|
if (len < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state)
|
|
{
|
|
struct ec_params_ldo_set params;
|
|
|
|
params.index = index;
|
|
params.state = state;
|
|
|
|
if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0,
|
|
¶ms, sizeof(params),
|
|
NULL, 0))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state)
|
|
{
|
|
struct ec_params_ldo_get params;
|
|
struct ec_response_ldo_get *resp;
|
|
|
|
params.index = index;
|
|
|
|
if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0,
|
|
¶ms, sizeof(params),
|
|
(uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
|
|
return -1;
|
|
|
|
*state = resp->state;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_DM_CROS_EC
|
|
/**
|
|
* Decode EC interface details from the device tree and allocate a suitable
|
|
* device.
|
|
*
|
|
* @param blob Device tree blob
|
|
* @param node Node to decode from
|
|
* @param devp Returns a pointer to the new allocated device
|
|
* @return 0 if ok, -1 on error
|
|
*/
|
|
static int cros_ec_decode_fdt(const void *blob, int node,
|
|
struct cros_ec_dev **devp)
|
|
{
|
|
enum fdt_compat_id compat;
|
|
struct cros_ec_dev *dev;
|
|
int parent;
|
|
|
|
/* See what type of parent we are inside (this is expensive) */
|
|
parent = fdt_parent_offset(blob, node);
|
|
if (parent < 0) {
|
|
debug("%s: Cannot find node parent\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
dev = &static_dev;
|
|
dev->node = node;
|
|
dev->parent_node = parent;
|
|
|
|
compat = fdtdec_lookup(blob, parent);
|
|
switch (compat) {
|
|
#ifdef CONFIG_CROS_EC_SPI
|
|
case COMPAT_SAMSUNG_EXYNOS_SPI:
|
|
dev->interface = CROS_EC_IF_SPI;
|
|
if (cros_ec_spi_decode_fdt(dev, blob))
|
|
return -1;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_CROS_EC_I2C
|
|
case COMPAT_SAMSUNG_S3C2440_I2C:
|
|
dev->interface = CROS_EC_IF_I2C;
|
|
if (cros_ec_i2c_decode_fdt(dev, blob))
|
|
return -1;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_CROS_EC_LPC
|
|
case COMPAT_INTEL_LPC:
|
|
dev->interface = CROS_EC_IF_LPC;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_CROS_EC_SANDBOX
|
|
case COMPAT_SANDBOX_HOST_EMULATION:
|
|
dev->interface = CROS_EC_IF_SANDBOX;
|
|
break;
|
|
#endif
|
|
default:
|
|
debug("%s: Unknown compat id %d\n", __func__, compat);
|
|
return -1;
|
|
}
|
|
|
|
fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int);
|
|
dev->optimise_flash_write = fdtdec_get_bool(blob, node,
|
|
"optimise-flash-write");
|
|
*devp = dev;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_DM_CROS_EC
|
|
int cros_ec_register(struct udevice *dev)
|
|
{
|
|
struct cros_ec_dev *cdev = dev->uclass_priv;
|
|
const void *blob = gd->fdt_blob;
|
|
int node = dev->of_offset;
|
|
char id[MSG_BYTES];
|
|
|
|
cdev->dev = dev;
|
|
fdtdec_decode_gpio(blob, node, "ec-interrupt", &cdev->ec_int);
|
|
cdev->optimise_flash_write = fdtdec_get_bool(blob, node,
|
|
"optimise-flash-write");
|
|
|
|
/* we will poll the EC interrupt line */
|
|
fdtdec_setup_gpio(&cdev->ec_int);
|
|
if (fdt_gpio_isvalid(&cdev->ec_int)) {
|
|
gpio_request(cdev->ec_int.gpio, "cros-ec-irq");
|
|
gpio_direction_input(cdev->ec_int.gpio);
|
|
}
|
|
|
|
if (cros_ec_check_version(cdev)) {
|
|
debug("%s: Could not detect CROS-EC version\n", __func__);
|
|
return -CROS_EC_ERR_CHECK_VERSION;
|
|
}
|
|
|
|
if (cros_ec_read_id(cdev, id, sizeof(id))) {
|
|
debug("%s: Could not read KBC ID\n", __func__);
|
|
return -CROS_EC_ERR_READ_ID;
|
|
}
|
|
|
|
/* Remember this device for use by the cros_ec command */
|
|
debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp)
|
|
{
|
|
struct cros_ec_dev *dev;
|
|
char id[MSG_BYTES];
|
|
#ifdef CONFIG_DM_CROS_EC
|
|
struct udevice *udev;
|
|
int ret;
|
|
|
|
ret = uclass_find_device(UCLASS_CROS_EC, 0, &udev);
|
|
if (!ret)
|
|
device_remove(udev);
|
|
ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
|
|
if (ret)
|
|
return ret;
|
|
dev = udev->uclass_priv;
|
|
return 0;
|
|
#else
|
|
int node = 0;
|
|
|
|
*cros_ecp = NULL;
|
|
do {
|
|
node = fdtdec_next_compatible(blob, node,
|
|
COMPAT_GOOGLE_CROS_EC);
|
|
if (node < 0) {
|
|
debug("%s: Node not found\n", __func__);
|
|
return 0;
|
|
}
|
|
} while (!fdtdec_get_is_enabled(blob, node));
|
|
|
|
if (cros_ec_decode_fdt(blob, node, &dev)) {
|
|
debug("%s: Failed to decode device.\n", __func__);
|
|
return -CROS_EC_ERR_FDT_DECODE;
|
|
}
|
|
|
|
switch (dev->interface) {
|
|
#ifdef CONFIG_CROS_EC_SPI
|
|
case CROS_EC_IF_SPI:
|
|
if (cros_ec_spi_init(dev, blob)) {
|
|
debug("%s: Could not setup SPI interface\n", __func__);
|
|
return -CROS_EC_ERR_DEV_INIT;
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_CROS_EC_I2C
|
|
case CROS_EC_IF_I2C:
|
|
if (cros_ec_i2c_init(dev, blob))
|
|
return -CROS_EC_ERR_DEV_INIT;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_CROS_EC_LPC
|
|
case CROS_EC_IF_LPC:
|
|
if (cros_ec_lpc_init(dev, blob))
|
|
return -CROS_EC_ERR_DEV_INIT;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_CROS_EC_SANDBOX
|
|
case CROS_EC_IF_SANDBOX:
|
|
if (cros_ec_sandbox_init(dev, blob))
|
|
return -CROS_EC_ERR_DEV_INIT;
|
|
break;
|
|
#endif
|
|
case CROS_EC_IF_NONE:
|
|
default:
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* we will poll the EC interrupt line */
|
|
fdtdec_setup_gpio(&dev->ec_int);
|
|
if (fdt_gpio_isvalid(&dev->ec_int)) {
|
|
gpio_request(dev->ec_int.gpio, "cros-ec-irq");
|
|
gpio_direction_input(dev->ec_int.gpio);
|
|
}
|
|
|
|
if (cros_ec_check_version(dev)) {
|
|
debug("%s: Could not detect CROS-EC version\n", __func__);
|
|
return -CROS_EC_ERR_CHECK_VERSION;
|
|
}
|
|
|
|
if (cros_ec_read_id(dev, id, sizeof(id))) {
|
|
debug("%s: Could not read KBC ID\n", __func__);
|
|
return -CROS_EC_ERR_READ_ID;
|
|
}
|
|
|
|
/* Remember this device for use by the cros_ec command */
|
|
*cros_ecp = dev;
|
|
#ifndef CONFIG_DM_CROS_EC
|
|
last_dev = dev;
|
|
#endif
|
|
debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int cros_ec_decode_region(int argc, char * const argv[])
|
|
{
|
|
if (argc > 0) {
|
|
if (0 == strcmp(*argv, "rw"))
|
|
return EC_FLASH_REGION_RW;
|
|
else if (0 == strcmp(*argv, "ro"))
|
|
return EC_FLASH_REGION_RO;
|
|
|
|
debug("%s: Invalid region '%s'\n", __func__, *argv);
|
|
} else {
|
|
debug("%s: Missing region parameter\n", __func__);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
int cros_ec_decode_ec_flash(const void *blob, int node,
|
|
struct fdt_cros_ec *config)
|
|
{
|
|
int flash_node;
|
|
|
|
flash_node = fdt_subnode_offset(blob, node, "flash");
|
|
if (flash_node < 0) {
|
|
debug("Failed to find flash node\n");
|
|
return -1;
|
|
}
|
|
|
|
if (fdtdec_read_fmap_entry(blob, flash_node, "flash",
|
|
&config->flash)) {
|
|
debug("Failed to decode flash node in chrome-ec'\n");
|
|
return -1;
|
|
}
|
|
|
|
config->flash_erase_value = fdtdec_get_int(blob, flash_node,
|
|
"erase-value", -1);
|
|
for (node = fdt_first_subnode(blob, flash_node); node >= 0;
|
|
node = fdt_next_subnode(blob, node)) {
|
|
const char *name = fdt_get_name(blob, node, NULL);
|
|
enum ec_flash_region region;
|
|
|
|
if (0 == strcmp(name, "ro")) {
|
|
region = EC_FLASH_REGION_RO;
|
|
} else if (0 == strcmp(name, "rw")) {
|
|
region = EC_FLASH_REGION_RW;
|
|
} else if (0 == strcmp(name, "wp-ro")) {
|
|
region = EC_FLASH_REGION_WP_RO;
|
|
} else {
|
|
debug("Unknown EC flash region name '%s'\n", name);
|
|
return -1;
|
|
}
|
|
|
|
if (fdtdec_read_fmap_entry(blob, node, "reg",
|
|
&config->region[region])) {
|
|
debug("Failed to decode flash region in chrome-ec'\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cros_ec_i2c_xfer(struct cros_ec_dev *dev, uchar chip, uint addr,
|
|
int alen, uchar *buffer, int len, int is_read)
|
|
{
|
|
union {
|
|
struct ec_params_i2c_passthru p;
|
|
uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
|
|
} params;
|
|
union {
|
|
struct ec_response_i2c_passthru r;
|
|
uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
|
|
} response;
|
|
struct ec_params_i2c_passthru *p = ¶ms.p;
|
|
struct ec_response_i2c_passthru *r = &response.r;
|
|
struct ec_params_i2c_passthru_msg *msg = p->msg;
|
|
uint8_t *pdata;
|
|
int read_len, write_len;
|
|
int size;
|
|
int rv;
|
|
|
|
p->port = 0;
|
|
|
|
if (alen != 1) {
|
|
printf("Unsupported address length %d\n", alen);
|
|
return -1;
|
|
}
|
|
if (is_read) {
|
|
read_len = len;
|
|
write_len = alen;
|
|
p->num_msgs = 2;
|
|
} else {
|
|
read_len = 0;
|
|
write_len = alen + len;
|
|
p->num_msgs = 1;
|
|
}
|
|
|
|
size = sizeof(*p) + p->num_msgs * sizeof(*msg);
|
|
if (size + write_len > sizeof(params)) {
|
|
puts("Params too large for buffer\n");
|
|
return -1;
|
|
}
|
|
if (sizeof(*r) + read_len > sizeof(response)) {
|
|
puts("Read length too big for buffer\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Create a message to write the register address and optional data */
|
|
pdata = (uint8_t *)p + size;
|
|
msg->addr_flags = chip;
|
|
msg->len = write_len;
|
|
pdata[0] = addr;
|
|
if (!is_read)
|
|
memcpy(pdata + 1, buffer, len);
|
|
msg++;
|
|
|
|
if (read_len) {
|
|
msg->addr_flags = chip | EC_I2C_FLAG_READ;
|
|
msg->len = read_len;
|
|
}
|
|
|
|
rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, size + write_len,
|
|
r, sizeof(*r) + read_len);
|
|
if (rv < 0)
|
|
return rv;
|
|
|
|
/* Parse response */
|
|
if (r->i2c_status & EC_I2C_STATUS_ERROR) {
|
|
printf("Transfer failed with status=0x%x\n", r->i2c_status);
|
|
return -1;
|
|
}
|
|
|
|
if (rv < sizeof(*r) + read_len) {
|
|
puts("Truncated read response\n");
|
|
return -1;
|
|
}
|
|
|
|
if (read_len)
|
|
memcpy(buffer, r->data, read_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_CMD_CROS_EC
|
|
|
|
/**
|
|
* Perform a flash read or write command
|
|
*
|
|
* @param dev CROS-EC device to read/write
|
|
* @param is_write 1 do to a write, 0 to do a read
|
|
* @param argc Number of arguments
|
|
* @param argv Arguments (2 is region, 3 is address)
|
|
* @return 0 for ok, 1 for a usage error or -ve for ec command error
|
|
* (negative EC_RES_...)
|
|
*/
|
|
static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc,
|
|
char * const argv[])
|
|
{
|
|
uint32_t offset, size = -1U, region_size;
|
|
unsigned long addr;
|
|
char *endp;
|
|
int region;
|
|
int ret;
|
|
|
|
region = cros_ec_decode_region(argc - 2, argv + 2);
|
|
if (region == -1)
|
|
return 1;
|
|
if (argc < 4)
|
|
return 1;
|
|
addr = simple_strtoul(argv[3], &endp, 16);
|
|
if (*argv[3] == 0 || *endp != 0)
|
|
return 1;
|
|
if (argc > 4) {
|
|
size = simple_strtoul(argv[4], &endp, 16);
|
|
if (*argv[4] == 0 || *endp != 0)
|
|
return 1;
|
|
}
|
|
|
|
ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size);
|
|
if (ret) {
|
|
debug("%s: Could not read region info\n", __func__);
|
|
return ret;
|
|
}
|
|
if (size == -1U)
|
|
size = region_size;
|
|
|
|
ret = is_write ?
|
|
cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) :
|
|
cros_ec_flash_read(dev, (uint8_t *)addr, offset, size);
|
|
if (ret) {
|
|
debug("%s: Could not %s region\n", __func__,
|
|
is_write ? "write" : "read");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* get_alen() - Small parser helper function to get address length
|
|
*
|
|
* Returns the address length.
|
|
*/
|
|
static uint get_alen(char *arg)
|
|
{
|
|
int j;
|
|
int alen;
|
|
|
|
alen = 1;
|
|
for (j = 0; j < 8; j++) {
|
|
if (arg[j] == '.') {
|
|
alen = arg[j+1] - '0';
|
|
break;
|
|
} else if (arg[j] == '\0') {
|
|
break;
|
|
}
|
|
}
|
|
return alen;
|
|
}
|
|
|
|
#define DISP_LINE_LEN 16
|
|
|
|
/*
|
|
* TODO(sjg@chromium.org): This code copied almost verbatim from cmd_i2c.c
|
|
* so we can remove it later.
|
|
*/
|
|
static int cros_ec_i2c_md(struct cros_ec_dev *dev, int flag, int argc,
|
|
char * const argv[])
|
|
{
|
|
u_char chip;
|
|
uint addr, alen, length = 0x10;
|
|
int j, nbytes, linebytes;
|
|
|
|
if (argc < 2)
|
|
return CMD_RET_USAGE;
|
|
|
|
if (1 || (flag & CMD_FLAG_REPEAT) == 0) {
|
|
/*
|
|
* New command specified.
|
|
*/
|
|
|
|
/*
|
|
* I2C chip address
|
|
*/
|
|
chip = simple_strtoul(argv[0], NULL, 16);
|
|
|
|
/*
|
|
* I2C data address within the chip. This can be 1 or
|
|
* 2 bytes long. Some day it might be 3 bytes long :-).
|
|
*/
|
|
addr = simple_strtoul(argv[1], NULL, 16);
|
|
alen = get_alen(argv[1]);
|
|
if (alen > 3)
|
|
return CMD_RET_USAGE;
|
|
|
|
/*
|
|
* If another parameter, it is the length to display.
|
|
* Length is the number of objects, not number of bytes.
|
|
*/
|
|
if (argc > 2)
|
|
length = simple_strtoul(argv[2], NULL, 16);
|
|
}
|
|
|
|
/*
|
|
* Print the lines.
|
|
*
|
|
* We buffer all read data, so we can make sure data is read only
|
|
* once.
|
|
*/
|
|
nbytes = length;
|
|
do {
|
|
unsigned char linebuf[DISP_LINE_LEN];
|
|
unsigned char *cp;
|
|
|
|
linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
|
|
|
|
if (cros_ec_i2c_xfer(dev, chip, addr, alen, linebuf, linebytes,
|
|
1))
|
|
puts("Error reading the chip.\n");
|
|
else {
|
|
printf("%04x:", addr);
|
|
cp = linebuf;
|
|
for (j = 0; j < linebytes; j++) {
|
|
printf(" %02x", *cp++);
|
|
addr++;
|
|
}
|
|
puts(" ");
|
|
cp = linebuf;
|
|
for (j = 0; j < linebytes; j++) {
|
|
if ((*cp < 0x20) || (*cp > 0x7e))
|
|
puts(".");
|
|
else
|
|
printf("%c", *cp);
|
|
cp++;
|
|
}
|
|
putc('\n');
|
|
}
|
|
nbytes -= linebytes;
|
|
} while (nbytes > 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cros_ec_i2c_mw(struct cros_ec_dev *dev, int flag, int argc,
|
|
char * const argv[])
|
|
{
|
|
uchar chip;
|
|
ulong addr;
|
|
uint alen;
|
|
uchar byte;
|
|
int count;
|
|
|
|
if ((argc < 3) || (argc > 4))
|
|
return CMD_RET_USAGE;
|
|
|
|
/*
|
|
* Chip is always specified.
|
|
*/
|
|
chip = simple_strtoul(argv[0], NULL, 16);
|
|
|
|
/*
|
|
* Address is always specified.
|
|
*/
|
|
addr = simple_strtoul(argv[1], NULL, 16);
|
|
alen = get_alen(argv[1]);
|
|
if (alen > 3)
|
|
return CMD_RET_USAGE;
|
|
|
|
/*
|
|
* Value to write is always specified.
|
|
*/
|
|
byte = simple_strtoul(argv[2], NULL, 16);
|
|
|
|
/*
|
|
* Optional count
|
|
*/
|
|
if (argc == 4)
|
|
count = simple_strtoul(argv[3], NULL, 16);
|
|
else
|
|
count = 1;
|
|
|
|
while (count-- > 0) {
|
|
if (cros_ec_i2c_xfer(dev, chip, addr++, alen, &byte, 1, 0))
|
|
puts("Error writing the chip.\n");
|
|
/*
|
|
* Wait for the write to complete. The write can take
|
|
* up to 10mSec (we allow a little more time).
|
|
*/
|
|
/*
|
|
* No write delay with FRAM devices.
|
|
*/
|
|
#if !defined(CONFIG_SYS_I2C_FRAM)
|
|
udelay(11000);
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Temporary code until we have driver model and can use the i2c command */
|
|
static int cros_ec_i2c_passthrough(struct cros_ec_dev *dev, int flag,
|
|
int argc, char * const argv[])
|
|
{
|
|
const char *cmd;
|
|
|
|
if (argc < 1)
|
|
return CMD_RET_USAGE;
|
|
cmd = *argv++;
|
|
argc--;
|
|
if (0 == strcmp("md", cmd))
|
|
cros_ec_i2c_md(dev, flag, argc, argv);
|
|
else if (0 == strcmp("mw", cmd))
|
|
cros_ec_i2c_mw(dev, flag, argc, argv);
|
|
else
|
|
return CMD_RET_USAGE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
|
|
{
|
|
struct cros_ec_dev *dev;
|
|
#ifdef CONFIG_DM_CROS_EC
|
|
struct udevice *udev;
|
|
#endif
|
|
const char *cmd;
|
|
int ret = 0;
|
|
|
|
if (argc < 2)
|
|
return CMD_RET_USAGE;
|
|
|
|
cmd = argv[1];
|
|
if (0 == strcmp("init", cmd)) {
|
|
#ifndef CONFIG_DM_CROS_EC
|
|
ret = cros_ec_init(gd->fdt_blob, &dev);
|
|
if (ret) {
|
|
printf("Could not init cros_ec device (err %d)\n", ret);
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_DM_CROS_EC
|
|
ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
|
|
if (ret) {
|
|
printf("Cannot get cros-ec device (err=%d)\n", ret);
|
|
return 1;
|
|
}
|
|
dev = udev->uclass_priv;
|
|
#else
|
|
/* Just use the last allocated device; there should be only one */
|
|
if (!last_dev) {
|
|
printf("No CROS-EC device available\n");
|
|
return 1;
|
|
}
|
|
dev = last_dev;
|
|
#endif
|
|
if (0 == strcmp("id", cmd)) {
|
|
char id[MSG_BYTES];
|
|
|
|
if (cros_ec_read_id(dev, id, sizeof(id))) {
|
|
debug("%s: Could not read KBC ID\n", __func__);
|
|
return 1;
|
|
}
|
|
printf("%s\n", id);
|
|
} else if (0 == strcmp("info", cmd)) {
|
|
struct ec_response_mkbp_info info;
|
|
|
|
if (cros_ec_info(dev, &info)) {
|
|
debug("%s: Could not read KBC info\n", __func__);
|
|
return 1;
|
|
}
|
|
printf("rows = %u\n", info.rows);
|
|
printf("cols = %u\n", info.cols);
|
|
printf("switches = %#x\n", info.switches);
|
|
} else if (0 == strcmp("curimage", cmd)) {
|
|
enum ec_current_image image;
|
|
|
|
if (cros_ec_read_current_image(dev, &image)) {
|
|
debug("%s: Could not read KBC image\n", __func__);
|
|
return 1;
|
|
}
|
|
printf("%d\n", image);
|
|
} else if (0 == strcmp("hash", cmd)) {
|
|
struct ec_response_vboot_hash hash;
|
|
int i;
|
|
|
|
if (cros_ec_read_hash(dev, &hash)) {
|
|
debug("%s: Could not read KBC hash\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256)
|
|
printf("type: SHA-256\n");
|
|
else
|
|
printf("type: %d\n", hash.hash_type);
|
|
|
|
printf("offset: 0x%08x\n", hash.offset);
|
|
printf("size: 0x%08x\n", hash.size);
|
|
|
|
printf("digest: ");
|
|
for (i = 0; i < hash.digest_size; i++)
|
|
printf("%02x", hash.hash_digest[i]);
|
|
printf("\n");
|
|
} else if (0 == strcmp("reboot", cmd)) {
|
|
int region;
|
|
enum ec_reboot_cmd cmd;
|
|
|
|
if (argc >= 3 && !strcmp(argv[2], "cold"))
|
|
cmd = EC_REBOOT_COLD;
|
|
else {
|
|
region = cros_ec_decode_region(argc - 2, argv + 2);
|
|
if (region == EC_FLASH_REGION_RO)
|
|
cmd = EC_REBOOT_JUMP_RO;
|
|
else if (region == EC_FLASH_REGION_RW)
|
|
cmd = EC_REBOOT_JUMP_RW;
|
|
else
|
|
return CMD_RET_USAGE;
|
|
}
|
|
|
|
if (cros_ec_reboot(dev, cmd, 0)) {
|
|
debug("%s: Could not reboot KBC\n", __func__);
|
|
return 1;
|
|
}
|
|
} else if (0 == strcmp("events", cmd)) {
|
|
uint32_t events;
|
|
|
|
if (cros_ec_get_host_events(dev, &events)) {
|
|
debug("%s: Could not read host events\n", __func__);
|
|
return 1;
|
|
}
|
|
printf("0x%08x\n", events);
|
|
} else if (0 == strcmp("clrevents", cmd)) {
|
|
uint32_t events = 0x7fffffff;
|
|
|
|
if (argc >= 3)
|
|
events = simple_strtol(argv[2], NULL, 0);
|
|
|
|
if (cros_ec_clear_host_events(dev, events)) {
|
|
debug("%s: Could not clear host events\n", __func__);
|
|
return 1;
|
|
}
|
|
} else if (0 == strcmp("read", cmd)) {
|
|
ret = do_read_write(dev, 0, argc, argv);
|
|
if (ret > 0)
|
|
return CMD_RET_USAGE;
|
|
} else if (0 == strcmp("write", cmd)) {
|
|
ret = do_read_write(dev, 1, argc, argv);
|
|
if (ret > 0)
|
|
return CMD_RET_USAGE;
|
|
} else if (0 == strcmp("erase", cmd)) {
|
|
int region = cros_ec_decode_region(argc - 2, argv + 2);
|
|
uint32_t offset, size;
|
|
|
|
if (region == -1)
|
|
return CMD_RET_USAGE;
|
|
if (cros_ec_flash_offset(dev, region, &offset, &size)) {
|
|
debug("%s: Could not read region info\n", __func__);
|
|
ret = -1;
|
|
} else {
|
|
ret = cros_ec_flash_erase(dev, offset, size);
|
|
if (ret) {
|
|
debug("%s: Could not erase region\n",
|
|
__func__);
|
|
}
|
|
}
|
|
} else if (0 == strcmp("regioninfo", cmd)) {
|
|
int region = cros_ec_decode_region(argc - 2, argv + 2);
|
|
uint32_t offset, size;
|
|
|
|
if (region == -1)
|
|
return CMD_RET_USAGE;
|
|
ret = cros_ec_flash_offset(dev, region, &offset, &size);
|
|
if (ret) {
|
|
debug("%s: Could not read region info\n", __func__);
|
|
} else {
|
|
printf("Region: %s\n", region == EC_FLASH_REGION_RO ?
|
|
"RO" : "RW");
|
|
printf("Offset: %x\n", offset);
|
|
printf("Size: %x\n", size);
|
|
}
|
|
} else if (0 == strcmp("vbnvcontext", cmd)) {
|
|
uint8_t block[EC_VBNV_BLOCK_SIZE];
|
|
char buf[3];
|
|
int i, len;
|
|
unsigned long result;
|
|
|
|
if (argc <= 2) {
|
|
ret = cros_ec_read_vbnvcontext(dev, block);
|
|
if (!ret) {
|
|
printf("vbnv_block: ");
|
|
for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++)
|
|
printf("%02x", block[i]);
|
|
putc('\n');
|
|
}
|
|
} else {
|
|
/*
|
|
* TODO(clchiou): Move this to a utility function as
|
|
* cmd_spi might want to call it.
|
|
*/
|
|
memset(block, 0, EC_VBNV_BLOCK_SIZE);
|
|
len = strlen(argv[2]);
|
|
buf[2] = '\0';
|
|
for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) {
|
|
if (i * 2 >= len)
|
|
break;
|
|
buf[0] = argv[2][i * 2];
|
|
if (i * 2 + 1 >= len)
|
|
buf[1] = '0';
|
|
else
|
|
buf[1] = argv[2][i * 2 + 1];
|
|
strict_strtoul(buf, 16, &result);
|
|
block[i] = result;
|
|
}
|
|
ret = cros_ec_write_vbnvcontext(dev, block);
|
|
}
|
|
if (ret) {
|
|
debug("%s: Could not %s VbNvContext\n", __func__,
|
|
argc <= 2 ? "read" : "write");
|
|
}
|
|
} else if (0 == strcmp("test", cmd)) {
|
|
int result = cros_ec_test(dev);
|
|
|
|
if (result)
|
|
printf("Test failed with error %d\n", result);
|
|
else
|
|
puts("Test passed\n");
|
|
} else if (0 == strcmp("version", cmd)) {
|
|
struct ec_response_get_version *p;
|
|
char *build_string;
|
|
|
|
ret = cros_ec_read_version(dev, &p);
|
|
if (!ret) {
|
|
/* Print versions */
|
|
printf("RO version: %1.*s\n",
|
|
(int)sizeof(p->version_string_ro),
|
|
p->version_string_ro);
|
|
printf("RW version: %1.*s\n",
|
|
(int)sizeof(p->version_string_rw),
|
|
p->version_string_rw);
|
|
printf("Firmware copy: %s\n",
|
|
(p->current_image <
|
|
ARRAY_SIZE(ec_current_image_name) ?
|
|
ec_current_image_name[p->current_image] :
|
|
"?"));
|
|
ret = cros_ec_read_build_info(dev, &build_string);
|
|
if (!ret)
|
|
printf("Build info: %s\n", build_string);
|
|
}
|
|
} else if (0 == strcmp("ldo", cmd)) {
|
|
uint8_t index, state;
|
|
char *endp;
|
|
|
|
if (argc < 3)
|
|
return CMD_RET_USAGE;
|
|
index = simple_strtoul(argv[2], &endp, 10);
|
|
if (*argv[2] == 0 || *endp != 0)
|
|
return CMD_RET_USAGE;
|
|
if (argc > 3) {
|
|
state = simple_strtoul(argv[3], &endp, 10);
|
|
if (*argv[3] == 0 || *endp != 0)
|
|
return CMD_RET_USAGE;
|
|
ret = cros_ec_set_ldo(dev, index, state);
|
|
} else {
|
|
ret = cros_ec_get_ldo(dev, index, &state);
|
|
if (!ret) {
|
|
printf("LDO%d: %s\n", index,
|
|
state == EC_LDO_STATE_ON ?
|
|
"on" : "off");
|
|
}
|
|
}
|
|
|
|
if (ret) {
|
|
debug("%s: Could not access LDO%d\n", __func__, index);
|
|
return ret;
|
|
}
|
|
} else if (0 == strcmp("i2c", cmd)) {
|
|
ret = cros_ec_i2c_passthrough(dev, flag, argc - 2, argv + 2);
|
|
} else {
|
|
return CMD_RET_USAGE;
|
|
}
|
|
|
|
if (ret < 0) {
|
|
printf("Error: CROS-EC command failed (error %d)\n", ret);
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
U_BOOT_CMD(
|
|
crosec, 6, 1, do_cros_ec,
|
|
"CROS-EC utility command",
|
|
"init Re-init CROS-EC (done on startup automatically)\n"
|
|
"crosec id Read CROS-EC ID\n"
|
|
"crosec info Read CROS-EC info\n"
|
|
"crosec curimage Read CROS-EC current image\n"
|
|
"crosec hash Read CROS-EC hash\n"
|
|
"crosec reboot [rw | ro | cold] Reboot CROS-EC\n"
|
|
"crosec events Read CROS-EC host events\n"
|
|
"crosec clrevents [mask] Clear CROS-EC host events\n"
|
|
"crosec regioninfo <ro|rw> Read image info\n"
|
|
"crosec erase <ro|rw> Erase EC image\n"
|
|
"crosec read <ro|rw> <addr> [<size>] Read EC image\n"
|
|
"crosec write <ro|rw> <addr> [<size>] Write EC image\n"
|
|
"crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n"
|
|
"crosec ldo <idx> [<state>] Switch/Read LDO state\n"
|
|
"crosec test run tests on cros_ec\n"
|
|
"crosec version Read CROS-EC version\n"
|
|
"crosec i2c md chip address[.0, .1, .2] [# of objects] - read from I2C passthru\n"
|
|
"crosec i2c mw chip address[.0, .1, .2] value [count] - write to I2C passthru (fill)"
|
|
);
|
|
#endif
|
|
|
|
#ifdef CONFIG_DM_CROS_EC
|
|
UCLASS_DRIVER(cros_ec) = {
|
|
.id = UCLASS_CROS_EC,
|
|
.name = "cros_ec",
|
|
.per_device_auto_alloc_size = sizeof(struct cros_ec_dev),
|
|
};
|
|
#endif
|