u-boot/arch/arm/mach-imx/imx8ulp/soc.c
Ricardo Salveti 85053a1c14 ARM: imx8ulp: support env in fat and ext4
Change boot device logic to also allow environment stored in fat and
in ext4 when booting from SD or eMMC.

As the boot device check for SD and for eMMC was depending on
ENV_IS_IN_MMC being defined, change the ifdef blocks at
env_get_location to use IS_ENABLED instead for all modes, returning
NOWHERE when no valid mode is found.

Signed-off-by: Ricardo Salveti <ricardo@foundries.io>
Co-developed-by: Oleksandr Suvorov <oleksandr.suvorov@foundries.io>
Signed-off-by: Oleksandr Suvorov <oleksandr.suvorov@foundries.io>
2023-12-13 09:43:23 -03:00

893 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2021 NXP
*/
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/sys_proto.h>
#include <asm/armv8/mmu.h>
#include <asm/mach-imx/boot_mode.h>
#include <asm/global_data.h>
#include <efi_loader.h>
#include <event.h>
#include <spl.h>
#include <asm/arch/rdc.h>
#include <asm/mach-imx/ele_api.h>
#include <asm/mach-imx/mu_hal.h>
#include <cpu_func.h>
#include <asm/setup.h>
#include <dm.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/uclass.h>
#include <dm/device.h>
#include <dm/uclass-internal.h>
#include <fuse.h>
#include <thermal.h>
#include <linux/iopoll.h>
#include <env.h>
#include <env_internal.h>
DECLARE_GLOBAL_DATA_PTR;
struct rom_api *g_rom_api = (struct rom_api *)0x1980;
bool is_usb_boot(void)
{
return get_boot_device() == USB_BOOT;
}
#ifdef CONFIG_ENV_IS_IN_MMC
__weak int board_mmc_get_env_dev(int devno)
{
return devno;
}
int mmc_get_env_dev(void)
{
int ret;
u32 boot;
u16 boot_type;
u8 boot_instance;
ret = rom_api_query_boot_infor(QUERY_BT_DEV, &boot);
if (ret != ROM_API_OKAY) {
puts("ROMAPI: failure at query_boot_info\n");
return CONFIG_SYS_MMC_ENV_DEV;
}
boot_type = boot >> 16;
boot_instance = (boot >> 8) & 0xff;
/* If not boot from sd/mmc, use default value */
if (boot_type != BOOT_TYPE_SD && boot_type != BOOT_TYPE_MMC)
return env_get_ulong("mmcdev", 10, CONFIG_SYS_MMC_ENV_DEV);
return board_mmc_get_env_dev(boot_instance);
}
#endif
static void set_cpu_info(struct ele_get_info_data *info)
{
gd->arch.soc_rev = info->soc;
gd->arch.lifecycle = info->lc;
memcpy((void *)&gd->arch.uid, &info->uid, 4 * sizeof(u32));
}
u32 get_cpu_rev(void)
{
u32 rev = (gd->arch.soc_rev >> 24) - 0xa0;
return (MXC_CPU_IMX8ULP << 12) | (CHIP_REV_1_0 + rev);
}
enum bt_mode get_boot_mode(void)
{
u32 bt0_cfg = 0;
bt0_cfg = readl(SIM_SEC_BASE_ADDR + 0x24);
bt0_cfg &= (BT0CFG_LPBOOT_MASK | BT0CFG_DUALBOOT_MASK);
if (!(bt0_cfg & BT0CFG_LPBOOT_MASK)) {
/* No low power boot */
if (bt0_cfg & BT0CFG_DUALBOOT_MASK)
return DUAL_BOOT;
else
return SINGLE_BOOT;
}
return LOW_POWER_BOOT;
}
bool m33_image_booted(void)
{
if (IS_ENABLED(CONFIG_SPL_BUILD)) {
u32 gp6 = 0;
/* DGO_GP6 */
gp6 = readl(SIM_SEC_BASE_ADDR + 0x28);
if (gp6 & BIT(5))
return true;
return false;
} else {
u32 gpr0 = readl(SIM1_BASE_ADDR);
if (gpr0 & BIT(0))
return true;
return false;
}
}
bool rdc_enabled_in_boot(void)
{
if (IS_ENABLED(CONFIG_SPL_BUILD)) {
u32 val = 0;
int ret;
bool rdc_en = true; /* Default assume DBD_EN is set */
/* Read DBD_EN fuse */
ret = fuse_read(8, 1, &val);
if (!ret)
rdc_en = !!(val & 0x200); /* only A1 part uses DBD_EN, so check DBD_EN new place*/
return rdc_en;
} else {
u32 gpr0 = readl(SIM1_BASE_ADDR);
if (gpr0 & 0x2)
return true;
return false;
}
}
static void spl_pass_boot_info(void)
{
if (IS_ENABLED(CONFIG_SPL_BUILD)) {
bool m33_booted = m33_image_booted();
bool rdc_en = rdc_enabled_in_boot();
u32 val = 0;
if (m33_booted)
val |= 0x1;
if (rdc_en)
val |= 0x2;
writel(val, SIM1_BASE_ADDR);
}
}
bool is_m33_handshake_necessary(void)
{
/* Only need handshake in u-boot */
if (!IS_ENABLED(CONFIG_SPL_BUILD))
return (m33_image_booted() || rdc_enabled_in_boot());
else
return false;
}
int m33_image_handshake(ulong timeout_ms)
{
u32 fsr;
int ret;
ulong timeout_us = timeout_ms * 1000;
/* Notify m33 that it's ready to do init srtm(enable mu receive interrupt and so on) */
setbits_le32(MU0_B_BASE_ADDR + 0x100, BIT(0)); /* set FCR F0 flag of MU0_MUB */
/*
* Wait m33 to set FCR F0 flag of MU0_MUA
* Clear FCR F0 flag of MU0_MUB after m33 has set FCR F0 flag of MU0_MUA
*/
ret = readl_poll_sleep_timeout(MU0_B_BASE_ADDR + 0x104, fsr, fsr & BIT(0), 10, timeout_us);
if (!ret)
clrbits_le32(MU0_B_BASE_ADDR + 0x100, BIT(0));
return ret;
}
#define CMC_SRS_TAMPER BIT(31)
#define CMC_SRS_SECURITY BIT(30)
#define CMC_SRS_TZWDG BIT(29)
#define CMC_SRS_JTAG_RST BIT(28)
#define CMC_SRS_CORE1 BIT(16)
#define CMC_SRS_LOCKUP BIT(15)
#define CMC_SRS_SW BIT(14)
#define CMC_SRS_WDG BIT(13)
#define CMC_SRS_PIN_RESET BIT(8)
#define CMC_SRS_WARM BIT(4)
#define CMC_SRS_HVD BIT(3)
#define CMC_SRS_LVD BIT(2)
#define CMC_SRS_POR BIT(1)
#define CMC_SRS_WUP BIT(0)
static char *get_reset_cause(char *ret)
{
u32 cause1, cause = 0, srs = 0;
void __iomem *reg_ssrs = (void __iomem *)(CMC1_BASE_ADDR + 0x88);
void __iomem *reg_srs = (void __iomem *)(CMC1_BASE_ADDR + 0x80);
if (!ret)
return "null";
srs = readl(reg_srs);
cause1 = readl(reg_ssrs);
cause = srs & (CMC_SRS_POR | CMC_SRS_WUP | CMC_SRS_WARM);
switch (cause) {
case CMC_SRS_POR:
sprintf(ret, "%s", "POR");
break;
case CMC_SRS_WUP:
sprintf(ret, "%s", "WUP");
break;
case CMC_SRS_WARM:
cause = srs & (CMC_SRS_WDG | CMC_SRS_SW |
CMC_SRS_JTAG_RST);
switch (cause) {
case CMC_SRS_WDG:
sprintf(ret, "%s", "WARM-WDG");
break;
case CMC_SRS_SW:
sprintf(ret, "%s", "WARM-SW");
break;
case CMC_SRS_JTAG_RST:
sprintf(ret, "%s", "WARM-JTAG");
break;
default:
sprintf(ret, "%s", "WARM-UNKN");
break;
}
break;
default:
sprintf(ret, "%s-%X", "UNKN", srs);
break;
}
debug("[%X] SRS[%X] %X - ", cause1, srs, srs ^ cause1);
return ret;
}
#if defined(CONFIG_DISPLAY_CPUINFO)
const char *get_imx_type(u32 imxtype)
{
return "8ULP";
}
int print_cpuinfo(void)
{
u32 cpurev;
char cause[18];
cpurev = get_cpu_rev();
printf("CPU: i.MX%s rev%d.%d at %d MHz\n",
get_imx_type((cpurev & 0xFF000) >> 12),
(cpurev & 0x000F0) >> 4, (cpurev & 0x0000F) >> 0,
mxc_get_clock(MXC_ARM_CLK) / 1000000);
#if defined(CONFIG_IMX_PMC_TEMPERATURE)
struct udevice *udev;
int ret, temp;
ret = uclass_get_device(UCLASS_THERMAL, 0, &udev);
if (!ret) {
ret = thermal_get_temp(udev, &temp);
if (!ret)
printf("CPU current temperature: %d\n", temp);
else
debug(" - failed to get CPU current temperature\n");
} else {
debug(" - failed to get CPU current temperature\n");
}
#endif
printf("Reset cause: %s\n", get_reset_cause(cause));
printf("Boot mode: ");
switch (get_boot_mode()) {
case LOW_POWER_BOOT:
printf("Low power boot\n");
break;
case DUAL_BOOT:
printf("Dual boot\n");
break;
case SINGLE_BOOT:
default:
printf("Single boot\n");
break;
}
return 0;
}
#endif
#define UNLOCK_WORD0 0xC520 /* 1st unlock word */
#define UNLOCK_WORD1 0xD928 /* 2nd unlock word */
#define REFRESH_WORD0 0xA602 /* 1st refresh word */
#define REFRESH_WORD1 0xB480 /* 2nd refresh word */
static void disable_wdog(void __iomem *wdog_base)
{
u32 val_cs = readl(wdog_base + 0x00);
if (!(val_cs & 0x80))
return;
dmb();
__raw_writel(REFRESH_WORD0, (wdog_base + 0x04)); /* Refresh the CNT */
__raw_writel(REFRESH_WORD1, (wdog_base + 0x04));
dmb();
if (!(val_cs & 800)) {
dmb();
__raw_writel(UNLOCK_WORD0, (wdog_base + 0x04));
__raw_writel(UNLOCK_WORD1, (wdog_base + 0x04));
dmb();
while (!(readl(wdog_base + 0x00) & 0x800))
;
}
writel(0x0, (wdog_base + 0x0C)); /* Set WIN to 0 */
writel(0x400, (wdog_base + 0x08)); /* Set timeout to default 0x400 */
writel(0x120, (wdog_base + 0x00)); /* Disable it and set update */
while (!(readl(wdog_base + 0x00) & 0x400))
;
}
void init_wdog(void)
{
disable_wdog((void __iomem *)WDG3_RBASE);
}
static struct mm_region imx8ulp_arm64_mem_map[] = {
{
/* ROM */
.virt = 0x0,
.phys = 0x0,
.size = 0x40000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
},
{
/* FLEXSPI0 */
.virt = 0x04000000,
.phys = 0x04000000,
.size = 0x08000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{
/* SSRAM (align with 2M) */
.virt = 0x1FE00000UL,
.phys = 0x1FE00000UL,
.size = 0x400000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* SRAM1 (align with 2M) */
.virt = 0x21000000UL,
.phys = 0x21000000UL,
.size = 0x200000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* SRAM0 (align with 2M) */
.virt = 0x22000000UL,
.phys = 0x22000000UL,
.size = 0x200000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* Peripherals */
.virt = 0x27000000UL,
.phys = 0x27000000UL,
.size = 0x3000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* Peripherals */
.virt = 0x2D000000UL,
.phys = 0x2D000000UL,
.size = 0x1600000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* FLEXSPI1-2 */
.virt = 0x40000000UL,
.phys = 0x40000000UL,
.size = 0x40000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* DRAM1 */
.virt = 0x80000000UL,
.phys = 0x80000000UL,
.size = PHYS_SDRAM_SIZE,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
}, {
/*
* empty entrie to split table entry 5
* if needed when TEEs are used
*/
0,
}, {
/* List terminator */
0,
}
};
struct mm_region *mem_map = imx8ulp_arm64_mem_map;
static unsigned int imx8ulp_find_dram_entry_in_mem_map(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(imx8ulp_arm64_mem_map); i++)
if (imx8ulp_arm64_mem_map[i].phys == CFG_SYS_SDRAM_BASE)
return i;
hang(); /* Entry not found, this must never happen. */
}
/* simplify the page table size to enhance boot speed */
#define MAX_PTE_ENTRIES 512
#define MAX_MEM_MAP_REGIONS 16
u64 get_page_table_size(void)
{
u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
u64 size = 0;
/*
* For each memory region, the max table size:
* 2 level 3 tables + 2 level 2 tables + 1 level 1 table
*/
size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
/*
* We need to duplicate our page table once to have an emergency pt to
* resort to when splitting page tables later on
*/
size *= 2;
/*
* We may need to split page tables later on if dcache settings change,
* so reserve up to 4 (random pick) page tables for that.
*/
size += one_pt * 4;
return size;
}
void enable_caches(void)
{
/* If OPTEE runs, remove OPTEE memory from MMU table to avoid speculative prefetch */
if (rom_pointer[1]) {
/*
* TEE are loaded, So the ddr bank structures
* have been modified update mmu table accordingly
*/
int i = 0;
int entry = imx8ulp_find_dram_entry_in_mem_map();
u64 attrs = imx8ulp_arm64_mem_map[entry].attrs;
while (i < CONFIG_NR_DRAM_BANKS &&
entry < ARRAY_SIZE(imx8ulp_arm64_mem_map)) {
if (gd->bd->bi_dram[i].start == 0)
break;
imx8ulp_arm64_mem_map[entry].phys = gd->bd->bi_dram[i].start;
imx8ulp_arm64_mem_map[entry].virt = gd->bd->bi_dram[i].start;
imx8ulp_arm64_mem_map[entry].size = gd->bd->bi_dram[i].size;
imx8ulp_arm64_mem_map[entry].attrs = attrs;
debug("Added memory mapping (%d): %llx %llx\n", entry,
imx8ulp_arm64_mem_map[entry].phys, imx8ulp_arm64_mem_map[entry].size);
i++; entry++;
}
}
icache_enable();
dcache_enable();
}
__weak int board_phys_sdram_size(phys_size_t *size)
{
if (!size)
return -EINVAL;
*size = PHYS_SDRAM_SIZE;
return 0;
}
int dram_init(void)
{
unsigned int entry = imx8ulp_find_dram_entry_in_mem_map();
phys_size_t sdram_size;
int ret;
ret = board_phys_sdram_size(&sdram_size);
if (ret)
return ret;
/* rom_pointer[1] contains the size of TEE occupies */
if (rom_pointer[1])
gd->ram_size = sdram_size - rom_pointer[1];
else
gd->ram_size = sdram_size;
/* also update the SDRAM size in the mem_map used externally */
imx8ulp_arm64_mem_map[entry].size = sdram_size;
return 0;
}
int dram_init_banksize(void)
{
int bank = 0;
int ret;
phys_size_t sdram_size;
ret = board_phys_sdram_size(&sdram_size);
if (ret)
return ret;
gd->bd->bi_dram[bank].start = PHYS_SDRAM;
if (rom_pointer[1]) {
phys_addr_t optee_start = (phys_addr_t)rom_pointer[0];
phys_size_t optee_size = (size_t)rom_pointer[1];
gd->bd->bi_dram[bank].size = optee_start - gd->bd->bi_dram[bank].start;
if ((optee_start + optee_size) < (PHYS_SDRAM + sdram_size)) {
if (++bank >= CONFIG_NR_DRAM_BANKS) {
puts("CONFIG_NR_DRAM_BANKS is not enough\n");
return -1;
}
gd->bd->bi_dram[bank].start = optee_start + optee_size;
gd->bd->bi_dram[bank].size = PHYS_SDRAM +
sdram_size - gd->bd->bi_dram[bank].start;
}
} else {
gd->bd->bi_dram[bank].size = sdram_size;
}
return 0;
}
phys_size_t get_effective_memsize(void)
{
/* return the first bank as effective memory */
if (rom_pointer[1])
return ((phys_addr_t)rom_pointer[0] - PHYS_SDRAM);
return gd->ram_size;
}
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
void get_board_serial(struct tag_serialnr *serialnr)
{
u32 uid[4];
u32 res;
int ret;
ret = ele_read_common_fuse(1, uid, 4, &res);
if (ret)
printf("ele read fuse failed %d, 0x%x\n", ret, res);
else
printf("UID 0x%x,0x%x,0x%x,0x%x\n", uid[0], uid[1], uid[2], uid[3]);
serialnr->low = uid[0];
serialnr->high = uid[3];
}
#endif
static void set_core0_reset_vector(u32 entry)
{
/* Update SIM1 DGO8 for reset vector base */
writel(entry, SIM1_BASE_ADDR + 0x5c);
/* set update bit */
setbits_le32(SIM1_BASE_ADDR + 0x8, 0x1 << 24);
/* polling the ack */
while ((readl(SIM1_BASE_ADDR + 0x8) & (0x1 << 26)) == 0)
;
/* clear the update */
clrbits_le32(SIM1_BASE_ADDR + 0x8, (0x1 << 24));
/* clear the ack by set 1 */
setbits_le32(SIM1_BASE_ADDR + 0x8, (0x1 << 26));
}
/* Not used now */
int trdc_set_access(void)
{
/*
* TRDC mgr + 4 MBC + 2 MRC.
*/
trdc_mbc_set_access(2, 7, 0, 49, true);
trdc_mbc_set_access(2, 7, 0, 50, true);
trdc_mbc_set_access(2, 7, 0, 51, true);
trdc_mbc_set_access(2, 7, 0, 52, true);
trdc_mbc_set_access(2, 7, 0, 53, true);
trdc_mbc_set_access(2, 7, 0, 54, true);
/* 0x1fff8000 used for resource table by remoteproc */
trdc_mbc_set_access(0, 7, 2, 31, false);
/* CGC0: PBridge0 slot 47 and PCC0 slot 48 */
trdc_mbc_set_access(2, 7, 0, 47, false);
trdc_mbc_set_access(2, 7, 0, 48, false);
/* PCC1 */
trdc_mbc_set_access(2, 7, 1, 17, false);
trdc_mbc_set_access(2, 7, 1, 34, false);
/* Iomuxc0: : PBridge1 slot 33 */
trdc_mbc_set_access(2, 7, 1, 33, false);
/* flexspi0 */
trdc_mbc_set_access(2, 7, 0, 57, false);
trdc_mrc_region_set_access(0, 7, 0x04000000, 0x0c000000, false);
/* tpm0: PBridge1 slot 21 */
trdc_mbc_set_access(2, 7, 1, 21, false);
/* lpi2c0: PBridge1 slot 24 */
trdc_mbc_set_access(2, 7, 1, 24, false);
/* Allow M33 to access TRDC MGR */
trdc_mbc_set_access(2, 6, 0, 49, true);
trdc_mbc_set_access(2, 6, 0, 50, true);
trdc_mbc_set_access(2, 6, 0, 51, true);
trdc_mbc_set_access(2, 6, 0, 52, true);
trdc_mbc_set_access(2, 6, 0, 53, true);
trdc_mbc_set_access(2, 6, 0, 54, true);
/* Set SAI0 for eDMA 0, NS */
trdc_mbc_set_access(2, 0, 1, 28, false);
/* Set SSRAM for eDMA0 access */
trdc_mbc_set_access(0, 0, 2, 0, false);
trdc_mbc_set_access(0, 0, 2, 1, false);
trdc_mbc_set_access(0, 0, 2, 2, false);
trdc_mbc_set_access(0, 0, 2, 3, false);
trdc_mbc_set_access(0, 0, 2, 4, false);
trdc_mbc_set_access(0, 0, 2, 5, false);
trdc_mbc_set_access(0, 0, 2, 6, false);
trdc_mbc_set_access(0, 0, 2, 7, false);
writel(0x800000a0, 0x28031840);
return 0;
}
void lpav_configure(bool lpav_to_m33)
{
if (!lpav_to_m33)
setbits_le32(SIM_SEC_BASE_ADDR + 0x44, BIT(7)); /* LPAV to APD */
/* PXP/GPU 2D/3D/DCNANO/MIPI_DSI/EPDC/HIFI4 to APD */
setbits_le32(SIM_SEC_BASE_ADDR + 0x4c, 0x7F);
/* LPAV slave/dma2 ch allocation and request allocation to APD */
writel(0x1f, SIM_SEC_BASE_ADDR + 0x50);
writel(0xffffffff, SIM_SEC_BASE_ADDR + 0x54);
writel(0x003fffff, SIM_SEC_BASE_ADDR + 0x58);
}
void load_lposc_fuse(void)
{
int ret;
u32 val = 0, val2 = 0, reg;
ret = fuse_read(25, 0, &val);
if (ret)
return; /* failed */
ret = fuse_read(25, 1, &val2);
if (ret)
return; /* failed */
/* LPOSCCTRL */
reg = readl(0x2802f304);
reg &= ~0xff;
reg |= (val & 0xff);
writel(reg, 0x2802f304);
}
void set_lpav_qos(void)
{
/* Set read QoS of dcnano on LPAV NIC */
writel(0xf, 0x2e447100);
}
int arch_cpu_init(void)
{
if (IS_ENABLED(CONFIG_SPL_BUILD)) {
/* Enable System Reset Interrupt using WDOG_AD */
setbits_le32(CMC1_BASE_ADDR + 0x8C, BIT(13));
/* Clear AD_PERIPH Power switch domain out of reset interrupt flag */
setbits_le32(CMC1_BASE_ADDR + 0x70, BIT(4));
if (readl(CMC1_BASE_ADDR + 0x90) & BIT(13)) {
/* Clear System Reset Interrupt Flag Register of WDOG_AD */
setbits_le32(CMC1_BASE_ADDR + 0x90, BIT(13));
/* Reset WDOG to clear reset request */
pcc_reset_peripheral(3, WDOG3_PCC3_SLOT, true);
pcc_reset_peripheral(3, WDOG3_PCC3_SLOT, false);
}
/* Disable wdog */
init_wdog();
if (get_boot_mode() == SINGLE_BOOT)
lpav_configure(false);
else
lpav_configure(true);
/* Release xrdc, then allow A35 to write SRAM2 */
if (rdc_enabled_in_boot())
release_rdc(RDC_XRDC);
xrdc_mrc_region_set_access(2, CONFIG_SPL_TEXT_BASE, 0xE00);
clock_init_early();
spl_pass_boot_info();
} else {
int ret;
/* reconfigure core0 reset vector to ROM */
set_core0_reset_vector(0x1000);
if (is_m33_handshake_necessary()) {
/* Start handshake with M33 to ensure TRDC configuration completed */
ret = m33_image_handshake(1000);
if (!ret)
gd->arch.m33_handshake_done = true;
else /* Skip and go through to panic in checkcpu as console is ready then */
gd->arch.m33_handshake_done = false;
}
}
return 0;
}
int checkcpu(void)
{
if (is_m33_handshake_necessary()) {
if (!gd->arch.m33_handshake_done) {
puts("M33 Sync: Timeout, Boot Stop!\n");
hang();
} else {
puts("M33 Sync: OK\n");
}
}
return 0;
}
int imx8ulp_dm_post_init(void)
{
struct udevice *devp;
int ret;
u32 res;
struct ele_get_info_data *info = (struct ele_get_info_data *)SRAM0_BASE;
ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(imx8ulp_mu), &devp);
if (ret) {
printf("could not get S400 mu %d\n", ret);
return ret;
}
ret = ele_get_info(info, &res);
if (ret) {
printf("ele_get_info failed %d\n", ret);
/* fallback to A0.1 revision */
memset((void *)info, 0, sizeof(struct ele_get_info_data));
info->soc = 0xa000084d;
}
set_cpu_info(info);
return 0;
}
EVENT_SPY_SIMPLE(EVT_DM_POST_INIT_F, imx8ulp_dm_post_init);
#if defined(CONFIG_SPL_BUILD)
__weak void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image)
{
debug("image entry point: 0x%lx\n", spl_image->entry_point);
set_core0_reset_vector((u32)spl_image->entry_point);
/* Enable the 512KB cache */
setbits_le32(SIM1_BASE_ADDR + 0x30, (0x1 << 4));
/* reset core */
setbits_le32(SIM1_BASE_ADDR + 0x30, (0x1 << 16));
while (1)
;
}
#endif
void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
u32 val[2] = {};
int ret;
ret = fuse_read(5, 3, &val[0]);
if (ret)
goto err;
ret = fuse_read(5, 4, &val[1]);
if (ret)
goto err;
mac[0] = val[0];
mac[1] = val[0] >> 8;
mac[2] = val[0] >> 16;
mac[3] = val[0] >> 24;
mac[4] = val[1];
mac[5] = val[1] >> 8;
debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
__func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return;
err:
memset(mac, 0, 6);
printf("%s: fuse read err: %d\n", __func__, ret);
}
int (*card_emmc_is_boot_part_en)(void) = (void *)0x67cc;
u32 spl_arch_boot_image_offset(u32 image_offset, u32 rom_bt_dev)
{
/* Hard code for eMMC image_offset on 8ULP ROM, need fix by ROM, temp workaround */
if (is_soc_rev(CHIP_REV_1_0) && ((rom_bt_dev >> 16) & 0xff) == BT_DEV_TYPE_MMC &&
card_emmc_is_boot_part_en())
image_offset = 0;
return image_offset;
}
enum env_location env_get_location(enum env_operation op, int prio)
{
enum boot_device dev = get_boot_device();
if (prio)
return ENVL_UNKNOWN;
switch (dev) {
case QSPI_BOOT:
if (CONFIG_IS_ENABLED(ENV_IS_IN_SPI_FLASH))
return ENVL_SPI_FLASH;
return ENVL_NOWHERE;
case SD1_BOOT:
case SD2_BOOT:
case SD3_BOOT:
case MMC1_BOOT:
case MMC2_BOOT:
case MMC3_BOOT:
if (CONFIG_IS_ENABLED(ENV_IS_IN_MMC))
return ENVL_MMC;
else if (CONFIG_IS_ENABLED(ENV_IS_IN_EXT4))
return ENVL_EXT4;
else if (CONFIG_IS_ENABLED(ENV_IS_IN_FAT))
return ENVL_FAT;
return ENVL_NOWHERE;
default:
return ENVL_NOWHERE;
}
}