mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-10 12:18:55 +00:00
db58dc5438
in spi_mem_dtr_supports_op we have a check for allowing only even number of bytes to be r/w. Odd bytes writing can be a concern while writing data to a flash for example because 8 DTR mode doesn't support it. However, reading ODD Bytes even though may not be physically possible we can still allow for it because it will not have serious implications on any critical registers being overwritten since they are just reads. Cc: Vaishnav Achath <vaishnav.a@ti.com> Cc: Pratyush Yadav <pratyush@kernel.org> Cc: Vignesh Raghavendra <vigneshr@ti.com> Tested-by: Nikhil M Jain <n-jain1@ti.com> Signed-off-by: Dhruva Gole <d-gole@ti.com> Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
839 lines
22 KiB
C
839 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2018 Exceet Electronics GmbH
|
|
* Copyright (C) 2018 Bootlin
|
|
*
|
|
* Author: Boris Brezillon <boris.brezillon@bootlin.com>
|
|
*/
|
|
|
|
#ifndef __UBOOT__
|
|
#include <log.h>
|
|
#include <dm/devres.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include "internals.h"
|
|
#else
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <errno.h>
|
|
#include <malloc.h>
|
|
#include <spi.h>
|
|
#include <spi.h>
|
|
#include <spi-mem.h>
|
|
#include <dm/device_compat.h>
|
|
#include <dm/devres.h>
|
|
#include <linux/bug.h>
|
|
#endif
|
|
|
|
#ifndef __UBOOT__
|
|
/**
|
|
* spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
|
|
* memory operation
|
|
* @ctlr: the SPI controller requesting this dma_map()
|
|
* @op: the memory operation containing the buffer to map
|
|
* @sgt: a pointer to a non-initialized sg_table that will be filled by this
|
|
* function
|
|
*
|
|
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
|
* This helper prepares everything for you and provides a ready-to-use
|
|
* sg_table. This function is not intended to be called from spi drivers.
|
|
* Only SPI controller drivers should use it.
|
|
* Note that the caller must ensure the memory region pointed by
|
|
* op->data.buf.{in,out} is DMA-able before calling this function.
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
|
|
const struct spi_mem_op *op,
|
|
struct sg_table *sgt)
|
|
{
|
|
struct device *dmadev;
|
|
|
|
if (!op->data.nbytes)
|
|
return -EINVAL;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
|
dmadev = ctlr->dma_tx->device->dev;
|
|
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
|
dmadev = ctlr->dma_rx->device->dev;
|
|
else
|
|
dmadev = ctlr->dev.parent;
|
|
|
|
if (!dmadev)
|
|
return -EINVAL;
|
|
|
|
return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
|
|
op->data.dir == SPI_MEM_DATA_IN ?
|
|
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
|
|
|
|
/**
|
|
* spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
|
|
* memory operation
|
|
* @ctlr: the SPI controller requesting this dma_unmap()
|
|
* @op: the memory operation containing the buffer to unmap
|
|
* @sgt: a pointer to an sg_table previously initialized by
|
|
* spi_controller_dma_map_mem_op_data()
|
|
*
|
|
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
|
* This helper prepares things so that the CPU can access the
|
|
* op->data.buf.{in,out} buffer again.
|
|
*
|
|
* This function is not intended to be called from SPI drivers. Only SPI
|
|
* controller drivers should use it.
|
|
*
|
|
* This function should be called after the DMA operation has finished and is
|
|
* only valid if the previous spi_controller_dma_map_mem_op_data() call
|
|
* returned 0.
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
|
|
const struct spi_mem_op *op,
|
|
struct sg_table *sgt)
|
|
{
|
|
struct device *dmadev;
|
|
|
|
if (!op->data.nbytes)
|
|
return;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
|
dmadev = ctlr->dma_tx->device->dev;
|
|
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
|
dmadev = ctlr->dma_rx->device->dev;
|
|
else
|
|
dmadev = ctlr->dev.parent;
|
|
|
|
spi_unmap_buf(ctlr, dmadev, sgt,
|
|
op->data.dir == SPI_MEM_DATA_IN ?
|
|
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
|
|
#endif /* __UBOOT__ */
|
|
|
|
static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
|
|
{
|
|
u32 mode = slave->mode;
|
|
|
|
switch (buswidth) {
|
|
case 1:
|
|
return 0;
|
|
|
|
case 2:
|
|
if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
|
|
(!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
|
|
return 0;
|
|
|
|
break;
|
|
|
|
case 4:
|
|
if ((tx && (mode & SPI_TX_QUAD)) ||
|
|
(!tx && (mode & SPI_RX_QUAD)))
|
|
return 0;
|
|
|
|
break;
|
|
case 8:
|
|
if ((tx && (mode & SPI_TX_OCTAL)) ||
|
|
(!tx && (mode & SPI_RX_OCTAL)))
|
|
return 0;
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static bool spi_mem_check_buswidth(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
|
|
return false;
|
|
|
|
if (op->addr.nbytes &&
|
|
spi_check_buswidth_req(slave, op->addr.buswidth, true))
|
|
return false;
|
|
|
|
if (op->dummy.nbytes &&
|
|
spi_check_buswidth_req(slave, op->dummy.buswidth, true))
|
|
return false;
|
|
|
|
if (op->data.dir != SPI_MEM_NO_DATA &&
|
|
spi_check_buswidth_req(slave, op->data.buswidth,
|
|
op->data.dir == SPI_MEM_DATA_OUT))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool spi_mem_dtr_supports_op(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (op->cmd.buswidth == 8 && op->cmd.nbytes % 2)
|
|
return false;
|
|
|
|
if (op->addr.nbytes && op->addr.buswidth == 8 && op->addr.nbytes % 2)
|
|
return false;
|
|
|
|
if (op->dummy.nbytes && op->dummy.buswidth == 8 && op->dummy.nbytes % 2)
|
|
return false;
|
|
|
|
/*
|
|
* Transactions of odd length do not make sense for 8D-8D-8D mode
|
|
* because a byte is transferred in just half a cycle.
|
|
*/
|
|
if (op->data.dir != SPI_MEM_NO_DATA && op->data.dir != SPI_MEM_DATA_IN &&
|
|
op->data.buswidth == 8 && op->data.nbytes % 2)
|
|
return false;
|
|
|
|
return spi_mem_check_buswidth(slave, op);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
|
|
|
|
bool spi_mem_default_supports_op(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
|
|
return false;
|
|
|
|
if (op->cmd.nbytes != 1)
|
|
return false;
|
|
|
|
return spi_mem_check_buswidth(slave, op);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
|
|
|
|
/**
|
|
* spi_mem_supports_op() - Check if a memory device and the controller it is
|
|
* connected to support a specific memory operation
|
|
* @slave: the SPI device
|
|
* @op: the memory operation to check
|
|
*
|
|
* Some controllers are only supporting Single or Dual IOs, others might only
|
|
* support specific opcodes, or it can even be that the controller and device
|
|
* both support Quad IOs but the hardware prevents you from using it because
|
|
* only 2 IO lines are connected.
|
|
*
|
|
* This function checks whether a specific operation is supported.
|
|
*
|
|
* Return: true if @op is supported, false otherwise.
|
|
*/
|
|
bool spi_mem_supports_op(struct spi_slave *slave,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
struct udevice *bus = slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
|
|
if (ops->mem_ops && ops->mem_ops->supports_op)
|
|
return ops->mem_ops->supports_op(slave, op);
|
|
|
|
return spi_mem_default_supports_op(slave, op);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_supports_op);
|
|
|
|
/**
|
|
* spi_mem_exec_op() - Execute a memory operation
|
|
* @slave: the SPI device
|
|
* @op: the memory operation to execute
|
|
*
|
|
* Executes a memory operation.
|
|
*
|
|
* This function first checks that @op is supported and then tries to execute
|
|
* it.
|
|
*
|
|
* Return: 0 in case of success, a negative error code otherwise.
|
|
*/
|
|
int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
|
|
{
|
|
struct udevice *bus = slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
unsigned int pos = 0;
|
|
const u8 *tx_buf = NULL;
|
|
u8 *rx_buf = NULL;
|
|
int op_len;
|
|
u32 flag;
|
|
int ret;
|
|
int i;
|
|
|
|
if (!spi_mem_supports_op(slave, op))
|
|
return -ENOTSUPP;
|
|
|
|
ret = spi_claim_bus(slave);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ops->mem_ops && ops->mem_ops->exec_op) {
|
|
#ifndef __UBOOT__
|
|
/*
|
|
* Flush the message queue before executing our SPI memory
|
|
* operation to prevent preemption of regular SPI transfers.
|
|
*/
|
|
spi_flush_queue(ctlr);
|
|
|
|
if (ctlr->auto_runtime_pm) {
|
|
ret = pm_runtime_get_sync(ctlr->dev.parent);
|
|
if (ret < 0) {
|
|
dev_err(&ctlr->dev,
|
|
"Failed to power device: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
mutex_lock(&ctlr->bus_lock_mutex);
|
|
mutex_lock(&ctlr->io_mutex);
|
|
#endif
|
|
ret = ops->mem_ops->exec_op(slave, op);
|
|
|
|
#ifndef __UBOOT__
|
|
mutex_unlock(&ctlr->io_mutex);
|
|
mutex_unlock(&ctlr->bus_lock_mutex);
|
|
|
|
if (ctlr->auto_runtime_pm)
|
|
pm_runtime_put(ctlr->dev.parent);
|
|
#endif
|
|
|
|
/*
|
|
* Some controllers only optimize specific paths (typically the
|
|
* read path) and expect the core to use the regular SPI
|
|
* interface in other cases.
|
|
*/
|
|
if (!ret || ret != -ENOTSUPP) {
|
|
spi_release_bus(slave);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
|
|
|
|
/*
|
|
* Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
|
|
* we're guaranteed that this buffer is DMA-able, as required by the
|
|
* SPI layer.
|
|
*/
|
|
tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
|
|
if (!tmpbuf)
|
|
return -ENOMEM;
|
|
|
|
spi_message_init(&msg);
|
|
|
|
tmpbuf[0] = op->cmd.opcode;
|
|
xfers[xferpos].tx_buf = tmpbuf;
|
|
xfers[xferpos].len = op->cmd.nbytes;
|
|
xfers[xferpos].tx_nbits = op->cmd.buswidth;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen++;
|
|
|
|
if (op->addr.nbytes) {
|
|
int i;
|
|
|
|
for (i = 0; i < op->addr.nbytes; i++)
|
|
tmpbuf[i + 1] = op->addr.val >>
|
|
(8 * (op->addr.nbytes - i - 1));
|
|
|
|
xfers[xferpos].tx_buf = tmpbuf + 1;
|
|
xfers[xferpos].len = op->addr.nbytes;
|
|
xfers[xferpos].tx_nbits = op->addr.buswidth;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen += op->addr.nbytes;
|
|
}
|
|
|
|
if (op->dummy.nbytes) {
|
|
memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
|
|
xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
|
|
xfers[xferpos].len = op->dummy.nbytes;
|
|
xfers[xferpos].tx_nbits = op->dummy.buswidth;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen += op->dummy.nbytes;
|
|
}
|
|
|
|
if (op->data.nbytes) {
|
|
if (op->data.dir == SPI_MEM_DATA_IN) {
|
|
xfers[xferpos].rx_buf = op->data.buf.in;
|
|
xfers[xferpos].rx_nbits = op->data.buswidth;
|
|
} else {
|
|
xfers[xferpos].tx_buf = op->data.buf.out;
|
|
xfers[xferpos].tx_nbits = op->data.buswidth;
|
|
}
|
|
|
|
xfers[xferpos].len = op->data.nbytes;
|
|
spi_message_add_tail(&xfers[xferpos], &msg);
|
|
xferpos++;
|
|
totalxferlen += op->data.nbytes;
|
|
}
|
|
|
|
ret = spi_sync(slave, &msg);
|
|
|
|
kfree(tmpbuf);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (msg.actual_length != totalxferlen)
|
|
return -EIO;
|
|
#else
|
|
|
|
if (op->data.nbytes) {
|
|
if (op->data.dir == SPI_MEM_DATA_IN)
|
|
rx_buf = op->data.buf.in;
|
|
else
|
|
tx_buf = op->data.buf.out;
|
|
}
|
|
|
|
op_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
|
|
|
|
/*
|
|
* Avoid using malloc() here so that we can use this code in SPL where
|
|
* simple malloc may be used. That implementation does not allow free()
|
|
* so repeated calls to this code can exhaust the space.
|
|
*
|
|
* The value of op_len is small, since it does not include the actual
|
|
* data being sent, only the op-code and address. In fact, it should be
|
|
* possible to just use a small fixed value here instead of op_len.
|
|
*/
|
|
u8 op_buf[op_len];
|
|
|
|
op_buf[pos++] = op->cmd.opcode;
|
|
|
|
if (op->addr.nbytes) {
|
|
for (i = 0; i < op->addr.nbytes; i++)
|
|
op_buf[pos + i] = op->addr.val >>
|
|
(8 * (op->addr.nbytes - i - 1));
|
|
|
|
pos += op->addr.nbytes;
|
|
}
|
|
|
|
if (op->dummy.nbytes)
|
|
memset(op_buf + pos, 0xff, op->dummy.nbytes);
|
|
|
|
/* 1st transfer: opcode + address + dummy cycles */
|
|
flag = SPI_XFER_BEGIN;
|
|
/* Make sure to set END bit if no tx or rx data messages follow */
|
|
if (!tx_buf && !rx_buf)
|
|
flag |= SPI_XFER_END;
|
|
|
|
ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* 2nd transfer: rx or tx data path */
|
|
if (tx_buf || rx_buf) {
|
|
ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
|
|
rx_buf, SPI_XFER_END);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
spi_release_bus(slave);
|
|
|
|
for (i = 0; i < pos; i++)
|
|
debug("%02x ", op_buf[i]);
|
|
debug("| [%dB %s] ",
|
|
tx_buf || rx_buf ? op->data.nbytes : 0,
|
|
tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
|
|
for (i = 0; i < op->data.nbytes; i++)
|
|
debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
|
|
debug("[ret %d]\n", ret);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
#endif /* __UBOOT__ */
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_exec_op);
|
|
|
|
/**
|
|
* spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
|
|
* match controller limitations
|
|
* @slave: the SPI device
|
|
* @op: the operation to adjust
|
|
*
|
|
* Some controllers have FIFO limitations and must split a data transfer
|
|
* operation into multiple ones, others require a specific alignment for
|
|
* optimized accesses. This function allows SPI mem drivers to split a single
|
|
* operation into multiple sub-operations when required.
|
|
*
|
|
* Return: a negative error code if the controller can't properly adjust @op,
|
|
* 0 otherwise. Note that @op->data.nbytes will be updated if @op
|
|
* can't be handled in a single step.
|
|
*/
|
|
int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
|
|
{
|
|
struct udevice *bus = slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
|
|
if (ops->mem_ops && ops->mem_ops->adjust_op_size)
|
|
return ops->mem_ops->adjust_op_size(slave, op);
|
|
|
|
if (!ops->mem_ops || !ops->mem_ops->exec_op) {
|
|
unsigned int len;
|
|
|
|
len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
|
|
if (slave->max_write_size && len > slave->max_write_size)
|
|
return -EINVAL;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_IN) {
|
|
if (slave->max_read_size)
|
|
op->data.nbytes = min(op->data.nbytes,
|
|
slave->max_read_size);
|
|
} else if (slave->max_write_size) {
|
|
op->data.nbytes = min(op->data.nbytes,
|
|
slave->max_write_size - len);
|
|
}
|
|
|
|
if (!op->data.nbytes)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
|
|
|
|
static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
|
|
u64 offs, size_t len, void *buf)
|
|
{
|
|
struct spi_mem_op op = desc->info.op_tmpl;
|
|
int ret;
|
|
|
|
op.addr.val = desc->info.offset + offs;
|
|
op.data.buf.in = buf;
|
|
op.data.nbytes = len;
|
|
ret = spi_mem_adjust_op_size(desc->slave, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_mem_exec_op(desc->slave, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return op.data.nbytes;
|
|
}
|
|
|
|
static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
|
|
u64 offs, size_t len, const void *buf)
|
|
{
|
|
struct spi_mem_op op = desc->info.op_tmpl;
|
|
int ret;
|
|
|
|
op.addr.val = desc->info.offset + offs;
|
|
op.data.buf.out = buf;
|
|
op.data.nbytes = len;
|
|
ret = spi_mem_adjust_op_size(desc->slave, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_mem_exec_op(desc->slave, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return op.data.nbytes;
|
|
}
|
|
|
|
/**
|
|
* spi_mem_dirmap_create() - Create a direct mapping descriptor
|
|
* @mem: SPI mem device this direct mapping should be created for
|
|
* @info: direct mapping information
|
|
*
|
|
* This function is creating a direct mapping descriptor which can then be used
|
|
* to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
|
|
* If the SPI controller driver does not support direct mapping, this function
|
|
* falls back to an implementation using spi_mem_exec_op(), so that the caller
|
|
* doesn't have to bother implementing a fallback on his own.
|
|
*
|
|
* Return: a valid pointer in case of success, and ERR_PTR() otherwise.
|
|
*/
|
|
struct spi_mem_dirmap_desc *
|
|
spi_mem_dirmap_create(struct spi_slave *slave,
|
|
const struct spi_mem_dirmap_info *info)
|
|
{
|
|
struct udevice *bus = slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
struct spi_mem_dirmap_desc *desc;
|
|
int ret = -EOPNOTSUPP;
|
|
|
|
/* Make sure the number of address cycles is between 1 and 8 bytes. */
|
|
if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
|
|
if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
|
|
if (!desc)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
desc->slave = slave;
|
|
desc->info = *info;
|
|
if (ops->mem_ops && ops->mem_ops->dirmap_create)
|
|
ret = ops->mem_ops->dirmap_create(desc);
|
|
|
|
if (ret) {
|
|
desc->nodirmap = true;
|
|
if (!spi_mem_supports_op(desc->slave, &desc->info.op_tmpl))
|
|
ret = -EOPNOTSUPP;
|
|
else
|
|
ret = 0;
|
|
}
|
|
|
|
if (ret) {
|
|
kfree(desc);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
|
|
|
|
/**
|
|
* spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
|
|
* @desc: the direct mapping descriptor to destroy
|
|
*
|
|
* This function destroys a direct mapping descriptor previously created by
|
|
* spi_mem_dirmap_create().
|
|
*/
|
|
void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
|
|
{
|
|
struct udevice *bus = desc->slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
|
|
if (!desc->nodirmap && ops->mem_ops && ops->mem_ops->dirmap_destroy)
|
|
ops->mem_ops->dirmap_destroy(desc);
|
|
|
|
kfree(desc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
|
|
|
|
#ifndef __UBOOT__
|
|
static void devm_spi_mem_dirmap_release(struct udevice *dev, void *res)
|
|
{
|
|
struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
|
|
|
|
spi_mem_dirmap_destroy(desc);
|
|
}
|
|
|
|
/**
|
|
* devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
|
|
* it to a device
|
|
* @dev: device the dirmap desc will be attached to
|
|
* @mem: SPI mem device this direct mapping should be created for
|
|
* @info: direct mapping information
|
|
*
|
|
* devm_ variant of the spi_mem_dirmap_create() function. See
|
|
* spi_mem_dirmap_create() for more details.
|
|
*
|
|
* Return: a valid pointer in case of success, and ERR_PTR() otherwise.
|
|
*/
|
|
struct spi_mem_dirmap_desc *
|
|
devm_spi_mem_dirmap_create(struct udevice *dev, struct spi_slave *slave,
|
|
const struct spi_mem_dirmap_info *info)
|
|
{
|
|
struct spi_mem_dirmap_desc **ptr, *desc;
|
|
|
|
ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
|
|
GFP_KERNEL);
|
|
if (!ptr)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
desc = spi_mem_dirmap_create(slave, info);
|
|
if (IS_ERR(desc)) {
|
|
devres_free(ptr);
|
|
} else {
|
|
*ptr = desc;
|
|
devres_add(dev, ptr);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
|
|
|
|
static int devm_spi_mem_dirmap_match(struct udevice *dev, void *res, void *data)
|
|
{
|
|
struct spi_mem_dirmap_desc **ptr = res;
|
|
|
|
if (WARN_ON(!ptr || !*ptr))
|
|
return 0;
|
|
|
|
return *ptr == data;
|
|
}
|
|
|
|
/**
|
|
* devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
|
|
* to a device
|
|
* @dev: device the dirmap desc is attached to
|
|
* @desc: the direct mapping descriptor to destroy
|
|
*
|
|
* devm_ variant of the spi_mem_dirmap_destroy() function. See
|
|
* spi_mem_dirmap_destroy() for more details.
|
|
*/
|
|
void devm_spi_mem_dirmap_destroy(struct udevice *dev,
|
|
struct spi_mem_dirmap_desc *desc)
|
|
{
|
|
devres_release(dev, devm_spi_mem_dirmap_release,
|
|
devm_spi_mem_dirmap_match, desc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
|
|
#endif /* __UBOOT__ */
|
|
|
|
/**
|
|
* spi_mem_dirmap_read() - Read data through a direct mapping
|
|
* @desc: direct mapping descriptor
|
|
* @offs: offset to start reading from. Note that this is not an absolute
|
|
* offset, but the offset within the direct mapping which already has
|
|
* its own offset
|
|
* @len: length in bytes
|
|
* @buf: destination buffer. This buffer must be DMA-able
|
|
*
|
|
* This function reads data from a memory device using a direct mapping
|
|
* previously instantiated with spi_mem_dirmap_create().
|
|
*
|
|
* Return: the amount of data read from the memory device or a negative error
|
|
* code. Note that the returned size might be smaller than @len, and the caller
|
|
* is responsible for calling spi_mem_dirmap_read() again when that happens.
|
|
*/
|
|
ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
|
|
u64 offs, size_t len, void *buf)
|
|
{
|
|
struct udevice *bus = desc->slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
ssize_t ret;
|
|
|
|
if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
|
|
return -EINVAL;
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (desc->nodirmap)
|
|
ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
|
|
else if (ops->mem_ops && ops->mem_ops->dirmap_read)
|
|
ret = ops->mem_ops->dirmap_read(desc, offs, len, buf);
|
|
else
|
|
ret = -EOPNOTSUPP;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
|
|
|
|
/**
|
|
* spi_mem_dirmap_write() - Write data through a direct mapping
|
|
* @desc: direct mapping descriptor
|
|
* @offs: offset to start writing from. Note that this is not an absolute
|
|
* offset, but the offset within the direct mapping which already has
|
|
* its own offset
|
|
* @len: length in bytes
|
|
* @buf: source buffer. This buffer must be DMA-able
|
|
*
|
|
* This function writes data to a memory device using a direct mapping
|
|
* previously instantiated with spi_mem_dirmap_create().
|
|
*
|
|
* Return: the amount of data written to the memory device or a negative error
|
|
* code. Note that the returned size might be smaller than @len, and the caller
|
|
* is responsible for calling spi_mem_dirmap_write() again when that happens.
|
|
*/
|
|
ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
|
|
u64 offs, size_t len, const void *buf)
|
|
{
|
|
struct udevice *bus = desc->slave->dev->parent;
|
|
struct dm_spi_ops *ops = spi_get_ops(bus);
|
|
ssize_t ret;
|
|
|
|
if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
|
|
return -EINVAL;
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (desc->nodirmap)
|
|
ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
|
|
else if (ops->mem_ops && ops->mem_ops->dirmap_write)
|
|
ret = ops->mem_ops->dirmap_write(desc, offs, len, buf);
|
|
else
|
|
ret = -EOPNOTSUPP;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
|
|
|
|
#ifndef __UBOOT__
|
|
static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
|
|
{
|
|
return container_of(drv, struct spi_mem_driver, spidrv.driver);
|
|
}
|
|
|
|
static int spi_mem_probe(struct spi_device *spi)
|
|
{
|
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
|
struct spi_mem *mem;
|
|
|
|
mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
|
|
if (!mem)
|
|
return -ENOMEM;
|
|
|
|
mem->spi = spi;
|
|
spi_set_drvdata(spi, mem);
|
|
|
|
return memdrv->probe(mem);
|
|
}
|
|
|
|
static int spi_mem_remove(struct spi_device *spi)
|
|
{
|
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
|
struct spi_mem *mem = spi_get_drvdata(spi);
|
|
|
|
if (memdrv->remove)
|
|
return memdrv->remove(mem);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spi_mem_shutdown(struct spi_device *spi)
|
|
{
|
|
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
|
struct spi_mem *mem = spi_get_drvdata(spi);
|
|
|
|
if (memdrv->shutdown)
|
|
memdrv->shutdown(mem);
|
|
}
|
|
|
|
/**
|
|
* spi_mem_driver_register_with_owner() - Register a SPI memory driver
|
|
* @memdrv: the SPI memory driver to register
|
|
* @owner: the owner of this driver
|
|
*
|
|
* Registers a SPI memory driver.
|
|
*
|
|
* Return: 0 in case of success, a negative error core otherwise.
|
|
*/
|
|
|
|
int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
|
|
struct module *owner)
|
|
{
|
|
memdrv->spidrv.probe = spi_mem_probe;
|
|
memdrv->spidrv.remove = spi_mem_remove;
|
|
memdrv->spidrv.shutdown = spi_mem_shutdown;
|
|
|
|
return __spi_register_driver(owner, &memdrv->spidrv);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
|
|
|
|
/**
|
|
* spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
|
|
* @memdrv: the SPI memory driver to unregister
|
|
*
|
|
* Unregisters a SPI memory driver.
|
|
*/
|
|
void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
|
|
{
|
|
spi_unregister_driver(&memdrv->spidrv);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
|
|
#endif /* __UBOOT__ */
|