u-boot/drivers/mtd/spi/spi_flash.c
Yuan Yao 80c1bfd233 sf: Disable 4-KB erase command for SPANSION S25FS-S family
The S25FS-S family physical sectors may be configured as a hybrid
combination of eight 4-kB parameter sectors at the top or bottom
of the address space with all but one of the remaining sectors
being uniform size.
The default status of the flash is in this hybrid architecture.
The parameter sectors and the uniform sectors have different erase
commands.
This patch disable the hybrid sector architecture then the flash will
has uniform sector size and uniform erase command.
This configuration is temporary, the flash will revert to hybrid
architecture after power on reset.

Signed-off-by: Yuan Yao <yao.yuan@nxp.com>
Reviewed-by: York Sun <york.sun@nxp.com>
2016-05-18 08:51:24 -07:00

1267 lines
28 KiB
C

/*
* SPI Flash Core
*
* Copyright (C) 2015 Jagan Teki <jteki@openedev.com>
* Copyright (C) 2013 Jagannadha Sutradharudu Teki, Xilinx Inc.
* Copyright (C) 2010 Reinhard Meyer, EMK Elektronik
* Copyright (C) 2008 Atmel Corporation
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <errno.h>
#include <malloc.h>
#include <mapmem.h>
#include <spi.h>
#include <spi_flash.h>
#include <linux/log2.h>
#include <dma.h>
#include "sf_internal.h"
DECLARE_GLOBAL_DATA_PTR;
static void spi_flash_addr(u32 addr, u8 *cmd)
{
/* cmd[0] is actual command */
cmd[1] = addr >> 16;
cmd[2] = addr >> 8;
cmd[3] = addr >> 0;
}
static int read_sr(struct spi_flash *flash, u8 *rs)
{
int ret;
u8 cmd;
cmd = CMD_READ_STATUS;
ret = spi_flash_read_common(flash, &cmd, 1, rs, 1);
if (ret < 0) {
debug("SF: fail to read status register\n");
return ret;
}
return 0;
}
static int read_fsr(struct spi_flash *flash, u8 *fsr)
{
int ret;
const u8 cmd = CMD_FLAG_STATUS;
ret = spi_flash_read_common(flash, &cmd, 1, fsr, 1);
if (ret < 0) {
debug("SF: fail to read flag status register\n");
return ret;
}
return 0;
}
static int write_sr(struct spi_flash *flash, u8 ws)
{
u8 cmd;
int ret;
cmd = CMD_WRITE_STATUS;
ret = spi_flash_write_common(flash, &cmd, 1, &ws, 1);
if (ret < 0) {
debug("SF: fail to write status register\n");
return ret;
}
return 0;
}
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
static int read_cr(struct spi_flash *flash, u8 *rc)
{
int ret;
u8 cmd;
cmd = CMD_READ_CONFIG;
ret = spi_flash_read_common(flash, &cmd, 1, rc, 1);
if (ret < 0) {
debug("SF: fail to read config register\n");
return ret;
}
return 0;
}
static int write_cr(struct spi_flash *flash, u8 wc)
{
u8 data[2];
u8 cmd;
int ret;
ret = read_sr(flash, &data[0]);
if (ret < 0)
return ret;
cmd = CMD_WRITE_STATUS;
data[1] = wc;
ret = spi_flash_write_common(flash, &cmd, 1, &data, 2);
if (ret) {
debug("SF: fail to write config register\n");
return ret;
}
return 0;
}
#endif
#ifdef CONFIG_SPI_FLASH_STMICRO
static int read_evcr(struct spi_flash *flash, u8 *evcr)
{
int ret;
const u8 cmd = CMD_READ_EVCR;
ret = spi_flash_read_common(flash, &cmd, 1, evcr, 1);
if (ret < 0) {
debug("SF: error reading EVCR\n");
return ret;
}
return 0;
}
static int write_evcr(struct spi_flash *flash, u8 evcr)
{
u8 cmd;
int ret;
cmd = CMD_WRITE_EVCR;
ret = spi_flash_write_common(flash, &cmd, 1, &evcr, 1);
if (ret < 0) {
debug("SF: error while writing EVCR register\n");
return ret;
}
return 0;
}
#endif
#ifdef CONFIG_SPI_FLASH_BAR
static int spi_flash_write_bar(struct spi_flash *flash, u32 offset)
{
u8 cmd, bank_sel;
int ret;
bank_sel = offset / (SPI_FLASH_16MB_BOUN << flash->shift);
if (bank_sel == flash->bank_curr)
goto bar_end;
cmd = flash->bank_write_cmd;
ret = spi_flash_write_common(flash, &cmd, 1, &bank_sel, 1);
if (ret < 0) {
debug("SF: fail to write bank register\n");
return ret;
}
bar_end:
flash->bank_curr = bank_sel;
return flash->bank_curr;
}
static int spi_flash_read_bar(struct spi_flash *flash, u8 idcode0)
{
u8 curr_bank = 0;
int ret;
if (flash->size <= SPI_FLASH_16MB_BOUN)
goto bar_end;
switch (idcode0) {
case SPI_FLASH_CFI_MFR_SPANSION:
flash->bank_read_cmd = CMD_BANKADDR_BRRD;
flash->bank_write_cmd = CMD_BANKADDR_BRWR;
break;
default:
flash->bank_read_cmd = CMD_EXTNADDR_RDEAR;
flash->bank_write_cmd = CMD_EXTNADDR_WREAR;
}
ret = spi_flash_read_common(flash, &flash->bank_read_cmd, 1,
&curr_bank, 1);
if (ret) {
debug("SF: fail to read bank addr register\n");
return ret;
}
bar_end:
flash->bank_curr = curr_bank;
return 0;
}
#endif
#ifdef CONFIG_SF_DUAL_FLASH
static void spi_flash_dual(struct spi_flash *flash, u32 *addr)
{
struct spi_slave *spi = flash->spi;
switch (flash->dual_flash) {
case SF_DUAL_STACKED_FLASH:
if (*addr >= (flash->size >> 1)) {
*addr -= flash->size >> 1;
spi->flags |= SPI_XFER_U_PAGE;
} else {
spi->flags &= ~SPI_XFER_U_PAGE;
}
break;
case SF_DUAL_PARALLEL_FLASH:
*addr >>= flash->shift;
break;
default:
debug("SF: Unsupported dual_flash=%d\n", flash->dual_flash);
break;
}
}
#endif
static int spi_flash_sr_ready(struct spi_flash *flash)
{
u8 sr;
int ret;
ret = read_sr(flash, &sr);
if (ret < 0)
return ret;
return !(sr & STATUS_WIP);
}
static int spi_flash_fsr_ready(struct spi_flash *flash)
{
u8 fsr;
int ret;
ret = read_fsr(flash, &fsr);
if (ret < 0)
return ret;
return fsr & STATUS_PEC;
}
static int spi_flash_ready(struct spi_flash *flash)
{
int sr, fsr;
sr = spi_flash_sr_ready(flash);
if (sr < 0)
return sr;
fsr = 1;
if (flash->flags & SNOR_F_USE_FSR) {
fsr = spi_flash_fsr_ready(flash);
if (fsr < 0)
return fsr;
}
return sr && fsr;
}
static int spi_flash_cmd_wait_ready(struct spi_flash *flash,
unsigned long timeout)
{
unsigned long timebase;
int ret;
timebase = get_timer(0);
while (get_timer(timebase) < timeout) {
ret = spi_flash_ready(flash);
if (ret < 0)
return ret;
if (ret)
return 0;
}
printf("SF: Timeout!\n");
return -ETIMEDOUT;
}
int spi_flash_write_common(struct spi_flash *flash, const u8 *cmd,
size_t cmd_len, const void *buf, size_t buf_len)
{
struct spi_slave *spi = flash->spi;
unsigned long timeout = SPI_FLASH_PROG_TIMEOUT;
int ret;
if (buf == NULL)
timeout = SPI_FLASH_PAGE_ERASE_TIMEOUT;
ret = spi_claim_bus(spi);
if (ret) {
debug("SF: unable to claim SPI bus\n");
return ret;
}
ret = spi_flash_cmd_write_enable(flash);
if (ret < 0) {
debug("SF: enabling write failed\n");
return ret;
}
ret = spi_flash_cmd_write(spi, cmd, cmd_len, buf, buf_len);
if (ret < 0) {
debug("SF: write cmd failed\n");
return ret;
}
ret = spi_flash_cmd_wait_ready(flash, timeout);
if (ret < 0) {
debug("SF: write %s timed out\n",
timeout == SPI_FLASH_PROG_TIMEOUT ?
"program" : "page erase");
return ret;
}
spi_release_bus(spi);
return ret;
}
int spi_flash_cmd_erase_ops(struct spi_flash *flash, u32 offset, size_t len)
{
u32 erase_size, erase_addr;
u8 cmd[SPI_FLASH_CMD_LEN];
int ret = -1;
erase_size = flash->erase_size;
if (offset % erase_size || len % erase_size) {
debug("SF: Erase offset/length not multiple of erase size\n");
return -1;
}
if (flash->flash_is_locked) {
if (flash->flash_is_locked(flash, offset, len) > 0) {
printf("offset 0x%x is protected and cannot be erased\n",
offset);
return -EINVAL;
}
}
cmd[0] = flash->erase_cmd;
while (len) {
erase_addr = offset;
#ifdef CONFIG_SF_DUAL_FLASH
if (flash->dual_flash > SF_SINGLE_FLASH)
spi_flash_dual(flash, &erase_addr);
#endif
#ifdef CONFIG_SPI_FLASH_BAR
ret = spi_flash_write_bar(flash, erase_addr);
if (ret < 0)
return ret;
#endif
spi_flash_addr(erase_addr, cmd);
debug("SF: erase %2x %2x %2x %2x (%x)\n", cmd[0], cmd[1],
cmd[2], cmd[3], erase_addr);
ret = spi_flash_write_common(flash, cmd, sizeof(cmd), NULL, 0);
if (ret < 0) {
debug("SF: erase failed\n");
break;
}
offset += erase_size;
len -= erase_size;
}
return ret;
}
int spi_flash_cmd_write_ops(struct spi_flash *flash, u32 offset,
size_t len, const void *buf)
{
struct spi_slave *spi = flash->spi;
unsigned long byte_addr, page_size;
u32 write_addr;
size_t chunk_len, actual;
u8 cmd[SPI_FLASH_CMD_LEN];
int ret = -1;
page_size = flash->page_size;
if (flash->flash_is_locked) {
if (flash->flash_is_locked(flash, offset, len) > 0) {
printf("offset 0x%x is protected and cannot be written\n",
offset);
return -EINVAL;
}
}
cmd[0] = flash->write_cmd;
for (actual = 0; actual < len; actual += chunk_len) {
write_addr = offset;
#ifdef CONFIG_SF_DUAL_FLASH
if (flash->dual_flash > SF_SINGLE_FLASH)
spi_flash_dual(flash, &write_addr);
#endif
#ifdef CONFIG_SPI_FLASH_BAR
ret = spi_flash_write_bar(flash, write_addr);
if (ret < 0)
return ret;
#endif
byte_addr = offset % page_size;
chunk_len = min(len - actual, (size_t)(page_size - byte_addr));
if (spi->max_write_size)
chunk_len = min(chunk_len,
(size_t)spi->max_write_size);
spi_flash_addr(write_addr, cmd);
debug("SF: 0x%p => cmd = { 0x%02x 0x%02x%02x%02x } chunk_len = %zu\n",
buf + actual, cmd[0], cmd[1], cmd[2], cmd[3], chunk_len);
ret = spi_flash_write_common(flash, cmd, sizeof(cmd),
buf + actual, chunk_len);
if (ret < 0) {
debug("SF: write failed\n");
break;
}
offset += chunk_len;
}
return ret;
}
int spi_flash_read_common(struct spi_flash *flash, const u8 *cmd,
size_t cmd_len, void *data, size_t data_len)
{
struct spi_slave *spi = flash->spi;
int ret;
ret = spi_claim_bus(spi);
if (ret) {
debug("SF: unable to claim SPI bus\n");
return ret;
}
ret = spi_flash_cmd_read(spi, cmd, cmd_len, data, data_len);
if (ret < 0) {
debug("SF: read cmd failed\n");
return ret;
}
spi_release_bus(spi);
return ret;
}
/*
* TODO: remove the weak after all the other spi_flash_copy_mmap
* implementations removed from drivers
*/
void __weak spi_flash_copy_mmap(void *data, void *offset, size_t len)
{
#ifdef CONFIG_DMA
if (!dma_memcpy(data, offset, len))
return;
#endif
memcpy(data, offset, len);
}
int spi_flash_cmd_read_ops(struct spi_flash *flash, u32 offset,
size_t len, void *data)
{
struct spi_slave *spi = flash->spi;
u8 *cmd, cmdsz;
u32 remain_len, read_len, read_addr;
int bank_sel = 0;
int ret = -1;
/* Handle memory-mapped SPI */
if (flash->memory_map) {
ret = spi_claim_bus(spi);
if (ret) {
debug("SF: unable to claim SPI bus\n");
return ret;
}
spi_xfer(spi, 0, NULL, NULL, SPI_XFER_MMAP);
spi_flash_copy_mmap(data, flash->memory_map + offset, len);
spi_xfer(spi, 0, NULL, NULL, SPI_XFER_MMAP_END);
spi_release_bus(spi);
return 0;
}
cmdsz = SPI_FLASH_CMD_LEN + flash->dummy_byte;
cmd = calloc(1, cmdsz);
if (!cmd) {
debug("SF: Failed to allocate cmd\n");
return -ENOMEM;
}
cmd[0] = flash->read_cmd;
while (len) {
read_addr = offset;
#ifdef CONFIG_SF_DUAL_FLASH
if (flash->dual_flash > SF_SINGLE_FLASH)
spi_flash_dual(flash, &read_addr);
#endif
#ifdef CONFIG_SPI_FLASH_BAR
ret = spi_flash_write_bar(flash, read_addr);
if (ret < 0)
return ret;
bank_sel = flash->bank_curr;
#endif
remain_len = ((SPI_FLASH_16MB_BOUN << flash->shift) *
(bank_sel + 1)) - offset;
if (len < remain_len)
read_len = len;
else
read_len = remain_len;
spi_flash_addr(read_addr, cmd);
ret = spi_flash_read_common(flash, cmd, cmdsz, data, read_len);
if (ret < 0) {
debug("SF: read failed\n");
break;
}
offset += read_len;
len -= read_len;
data += read_len;
}
free(cmd);
return ret;
}
#ifdef CONFIG_SPI_FLASH_SST
static int sst_byte_write(struct spi_flash *flash, u32 offset, const void *buf)
{
struct spi_slave *spi = flash->spi;
int ret;
u8 cmd[4] = {
CMD_SST_BP,
offset >> 16,
offset >> 8,
offset,
};
debug("BP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n",
spi_w8r8(spi, CMD_READ_STATUS), buf, cmd[0], offset);
ret = spi_flash_cmd_write_enable(flash);
if (ret)
return ret;
ret = spi_flash_cmd_write(spi, cmd, sizeof(cmd), buf, 1);
if (ret)
return ret;
return spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT);
}
int sst_write_wp(struct spi_flash *flash, u32 offset, size_t len,
const void *buf)
{
struct spi_slave *spi = flash->spi;
size_t actual, cmd_len;
int ret;
u8 cmd[4];
ret = spi_claim_bus(spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
/* If the data is not word aligned, write out leading single byte */
actual = offset % 2;
if (actual) {
ret = sst_byte_write(flash, offset, buf);
if (ret)
goto done;
}
offset += actual;
ret = spi_flash_cmd_write_enable(flash);
if (ret)
goto done;
cmd_len = 4;
cmd[0] = CMD_SST_AAI_WP;
cmd[1] = offset >> 16;
cmd[2] = offset >> 8;
cmd[3] = offset;
for (; actual < len - 1; actual += 2) {
debug("WP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n",
spi_w8r8(spi, CMD_READ_STATUS), buf + actual,
cmd[0], offset);
ret = spi_flash_cmd_write(spi, cmd, cmd_len,
buf + actual, 2);
if (ret) {
debug("SF: sst word program failed\n");
break;
}
ret = spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT);
if (ret)
break;
cmd_len = 1;
offset += 2;
}
if (!ret)
ret = spi_flash_cmd_write_disable(flash);
/* If there is a single trailing byte, write it out */
if (!ret && actual != len)
ret = sst_byte_write(flash, offset, buf + actual);
done:
debug("SF: sst: program %s %zu bytes @ 0x%zx\n",
ret ? "failure" : "success", len, offset - actual);
spi_release_bus(spi);
return ret;
}
int sst_write_bp(struct spi_flash *flash, u32 offset, size_t len,
const void *buf)
{
struct spi_slave *spi = flash->spi;
size_t actual;
int ret;
ret = spi_claim_bus(spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
for (actual = 0; actual < len; actual++) {
ret = sst_byte_write(flash, offset, buf + actual);
if (ret) {
debug("SF: sst byte program failed\n");
break;
}
offset++;
}
if (!ret)
ret = spi_flash_cmd_write_disable(flash);
debug("SF: sst: program %s %zu bytes @ 0x%zx\n",
ret ? "failure" : "success", len, offset - actual);
spi_release_bus(spi);
return ret;
}
#endif
#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
static void stm_get_locked_range(struct spi_flash *flash, u8 sr, loff_t *ofs,
u64 *len)
{
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
int shift = ffs(mask) - 1;
int pow;
if (!(sr & mask)) {
/* No protection */
*ofs = 0;
*len = 0;
} else {
pow = ((sr & mask) ^ mask) >> shift;
*len = flash->size >> pow;
*ofs = flash->size - *len;
}
}
/*
* Return 1 if the entire region is locked, 0 otherwise
*/
static int stm_is_locked_sr(struct spi_flash *flash, loff_t ofs, u64 len,
u8 sr)
{
loff_t lock_offs;
u64 lock_len;
stm_get_locked_range(flash, sr, &lock_offs, &lock_len);
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
}
/*
* Check if a region of the flash is (completely) locked. See stm_lock() for
* more info.
*
* Returns 1 if entire region is locked, 0 if any portion is unlocked, and
* negative on errors.
*/
int stm_is_locked(struct spi_flash *flash, u32 ofs, size_t len)
{
int status;
u8 sr;
status = read_sr(flash, &sr);
if (status < 0)
return status;
return stm_is_locked_sr(flash, ofs, len, sr);
}
/*
* Lock a region of the flash. Compatible with ST Micro and similar flash.
* Supports only the block protection bits BP{0,1,2} in the status register
* (SR). Does not support these features found in newer SR bitfields:
* - TB: top/bottom protect - only handle TB=0 (top protect)
* - SEC: sector/block protect - only handle SEC=0 (block protect)
* - CMP: complement protect - only support CMP=0 (range is not complemented)
*
* Sample table portion for 8MB flash (Winbond w25q64fw):
*
* SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
* --------------------------------------------------------------------------
* X | X | 0 | 0 | 0 | NONE | NONE
* 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
* 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
* 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
* 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
* 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
* 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
* X | X | 1 | 1 | 1 | 8 MB | ALL
*
* Returns negative on errors, 0 on success.
*/
int stm_lock(struct spi_flash *flash, u32 ofs, size_t len)
{
u8 status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
int ret;
ret = read_sr(flash, &status_old);
if (ret < 0)
return ret;
/* SPI NOR always locks to the end */
if (ofs + len != flash->size) {
/* Does combined region extend to end? */
if (!stm_is_locked_sr(flash, ofs + len, flash->size - ofs - len,
status_old))
return -EINVAL;
len = flash->size - ofs;
}
/*
* Need smallest pow such that:
*
* 1 / (2^pow) <= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
*/
pow = ilog2(flash->size) - ilog2(len);
val = mask - (pow << shift);
if (val & ~mask)
return -EINVAL;
/* Don't "lock" with no region! */
if (!(val & mask))
return -EINVAL;
status_new = (status_old & ~mask) | val;
/* Only modify protection if it will not unlock other areas */
if ((status_new & mask) <= (status_old & mask))
return -EINVAL;
write_sr(flash, status_new);
return 0;
}
/*
* Unlock a region of the flash. See stm_lock() for more info
*
* Returns negative on errors, 0 on success.
*/
int stm_unlock(struct spi_flash *flash, u32 ofs, size_t len)
{
uint8_t status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
int ret;
ret = read_sr(flash, &status_old);
if (ret < 0)
return ret;
/* Cannot unlock; would unlock larger region than requested */
if (stm_is_locked_sr(flash, ofs - flash->erase_size, flash->erase_size,
status_old))
return -EINVAL;
/*
* Need largest pow such that:
*
* 1 / (2^pow) >= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
*/
pow = ilog2(flash->size) - order_base_2(flash->size - (ofs + len));
if (ofs + len == flash->size) {
val = 0; /* fully unlocked */
} else {
val = mask - (pow << shift);
/* Some power-of-two sizes are not supported */
if (val & ~mask)
return -EINVAL;
}
status_new = (status_old & ~mask) | val;
/* Only modify protection if it will not lock other areas */
if ((status_new & mask) >= (status_old & mask))
return -EINVAL;
write_sr(flash, status_new);
return 0;
}
#endif
#ifdef CONFIG_SPI_FLASH_MACRONIX
static int macronix_quad_enable(struct spi_flash *flash)
{
u8 qeb_status;
int ret;
ret = read_sr(flash, &qeb_status);
if (ret < 0)
return ret;
if (qeb_status & STATUS_QEB_MXIC)
return 0;
ret = write_sr(flash, qeb_status | STATUS_QEB_MXIC);
if (ret < 0)
return ret;
/* read SR and check it */
ret = read_sr(flash, &qeb_status);
if (!(ret >= 0 && (qeb_status & STATUS_QEB_MXIC))) {
printf("SF: Macronix SR Quad bit not clear\n");
return -EINVAL;
}
return ret;
}
#endif
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
static int spansion_quad_enable(struct spi_flash *flash)
{
u8 qeb_status;
int ret;
ret = read_cr(flash, &qeb_status);
if (ret < 0)
return ret;
if (qeb_status & STATUS_QEB_WINSPAN)
return 0;
ret = write_cr(flash, qeb_status | STATUS_QEB_WINSPAN);
if (ret < 0)
return ret;
/* read CR and check it */
ret = read_cr(flash, &qeb_status);
if (!(ret >= 0 && (qeb_status & STATUS_QEB_WINSPAN))) {
printf("SF: Spansion CR Quad bit not clear\n");
return -EINVAL;
}
return ret;
}
#endif
#ifdef CONFIG_SPI_FLASH_STMICRO
static int micron_quad_enable(struct spi_flash *flash)
{
u8 qeb_status;
int ret;
ret = read_evcr(flash, &qeb_status);
if (ret < 0)
return ret;
if (!(qeb_status & STATUS_QEB_MICRON))
return 0;
ret = write_evcr(flash, qeb_status & ~STATUS_QEB_MICRON);
if (ret < 0)
return ret;
/* read EVCR and check it */
ret = read_evcr(flash, &qeb_status);
if (!(ret >= 0 && !(qeb_status & STATUS_QEB_MICRON))) {
printf("SF: Micron EVCR Quad bit not clear\n");
return -EINVAL;
}
return ret;
}
#endif
static int set_quad_mode(struct spi_flash *flash, u8 idcode0)
{
switch (idcode0) {
#ifdef CONFIG_SPI_FLASH_MACRONIX
case SPI_FLASH_CFI_MFR_MACRONIX:
return macronix_quad_enable(flash);
#endif
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
case SPI_FLASH_CFI_MFR_SPANSION:
case SPI_FLASH_CFI_MFR_WINBOND:
return spansion_quad_enable(flash);
#endif
#ifdef CONFIG_SPI_FLASH_STMICRO
case SPI_FLASH_CFI_MFR_STMICRO:
return micron_quad_enable(flash);
#endif
default:
printf("SF: Need set QEB func for %02x flash\n", idcode0);
return -1;
}
}
#if CONFIG_IS_ENABLED(OF_CONTROL)
int spi_flash_decode_fdt(const void *blob, struct spi_flash *flash)
{
#ifdef CONFIG_DM_SPI_FLASH
fdt_addr_t addr;
fdt_size_t size;
int node = flash->dev->of_offset;
addr = fdtdec_get_addr_size(blob, node, "memory-map", &size);
if (addr == FDT_ADDR_T_NONE) {
debug("%s: Cannot decode address\n", __func__);
return 0;
}
if (flash->size != size) {
debug("%s: Memory map must cover entire device\n", __func__);
return -1;
}
flash->memory_map = map_sysmem(addr, size);
#endif
return 0;
}
#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
#ifdef CONFIG_SPI_FLASH_SPANSION
static int spansion_s25fss_disable_4KB_erase(struct spi_slave *spi)
{
u8 cmd[4];
u32 offset = 0x800004; /* CR3V register offset */
u8 cr3v;
int ret;
cmd[0] = CMD_SPANSION_RDAR;
cmd[1] = offset >> 16;
cmd[2] = offset >> 8;
cmd[3] = offset >> 0;
ret = spi_flash_cmd_read(spi, cmd, 4, &cr3v, 1);
if (ret)
return -EIO;
/* CR3V bit3: 4-KB Erase */
if (cr3v & 0x8)
return 0;
cmd[0] = CMD_SPANSION_WRAR;
cr3v |= 0x8;
ret = spi_flash_cmd_write(spi, cmd, 4, &cr3v, 1);
if (ret)
return -EIO;
cmd[0] = CMD_SPANSION_RDAR;
ret = spi_flash_cmd_read(spi, cmd, 4, &cr3v, 1);
if (ret)
return -EIO;
if (!(cr3v & 0x8))
return -EFAULT;
return 0;
}
#endif
int spi_flash_scan(struct spi_flash *flash)
{
struct spi_slave *spi = flash->spi;
const struct spi_flash_params *params;
u16 jedec, ext_jedec;
u8 cmd, idcode[5];
int ret;
static u8 spi_read_cmds_array[] = {
CMD_READ_ARRAY_SLOW,
CMD_READ_ARRAY_FAST,
CMD_READ_DUAL_OUTPUT_FAST,
CMD_READ_QUAD_OUTPUT_FAST,
CMD_READ_DUAL_IO_FAST,
CMD_READ_QUAD_IO_FAST };
/* Read the ID codes */
ret = spi_flash_cmd(spi, CMD_READ_ID, idcode, sizeof(idcode));
if (ret) {
printf("SF: Failed to get idcodes\n");
return ret;
}
#ifdef DEBUG
printf("SF: Got idcodes\n");
print_buffer(0, idcode, 1, sizeof(idcode), 0);
#endif
jedec = idcode[1] << 8 | idcode[2];
ext_jedec = idcode[3] << 8 | idcode[4];
/* Validate params from spi_flash_params table */
params = spi_flash_params_table;
for (; params->name != NULL; params++) {
if ((params->jedec >> 16) == idcode[0]) {
if ((params->jedec & 0xFFFF) == jedec) {
if (params->ext_jedec == 0)
break;
else if (params->ext_jedec == ext_jedec)
break;
}
}
}
if (!params->name) {
printf("SF: Unsupported flash IDs: ");
printf("manuf %02x, jedec %04x, ext_jedec %04x\n",
idcode[0], jedec, ext_jedec);
return -EPROTONOSUPPORT;
}
#ifdef CONFIG_SPI_FLASH_SPANSION
/*
* The S25FS-S family physical sectors may be configured as a
* hybrid combination of eight 4-kB parameter sectors
* at the top or bottom of the address space with all
* but one of the remaining sectors being uniform size.
* The Parameter Sector Erase commands (20h or 21h) must
* be used to erase the 4-kB parameter sectors individually.
* The Sector (uniform sector) Erase commands (D8h or DCh)
* must be used to erase any of the remaining
* sectors, including the portion of highest or lowest address
* sector that is not overlaid by the parameter sectors.
* The uniform sector erase command has no effect on parameter sectors.
*/
if (jedec == 0x0219 && (ext_jedec & 0xff00) == 0x4d00) {
int ret;
u8 id[6];
/* Read the ID codes again, 6 bytes */
ret = spi_flash_cmd(flash->spi, CMD_READ_ID, id, sizeof(id));
if (ret)
return -EIO;
ret = memcmp(id, idcode, 5);
if (ret)
return -EIO;
/* 0x81: S25FS-S family 0x80: S25FL-S family */
if (id[5] == 0x81) {
ret = spansion_s25fss_disable_4KB_erase(spi);
if (ret)
return ret;
}
}
#endif
/* Flash powers up read-only, so clear BP# bits */
if (idcode[0] == SPI_FLASH_CFI_MFR_ATMEL ||
idcode[0] == SPI_FLASH_CFI_MFR_MACRONIX ||
idcode[0] == SPI_FLASH_CFI_MFR_SST)
write_sr(flash, 0);
/* Assign spi data */
flash->name = params->name;
flash->memory_map = spi->memory_map;
flash->dual_flash = spi->option;
/* Assign spi flash flags */
if (params->flags & SST_WR)
flash->flags |= SNOR_F_SST_WR;
/* Assign spi_flash ops */
#ifndef CONFIG_DM_SPI_FLASH
flash->write = spi_flash_cmd_write_ops;
#if defined(CONFIG_SPI_FLASH_SST)
if (flash->flags & SNOR_F_SST_WR) {
if (spi->mode & SPI_TX_BYTE)
flash->write = sst_write_bp;
else
flash->write = sst_write_wp;
}
#endif
flash->erase = spi_flash_cmd_erase_ops;
flash->read = spi_flash_cmd_read_ops;
#endif
/* lock hooks are flash specific - assign them based on idcode0 */
switch (idcode[0]) {
#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
case SPI_FLASH_CFI_MFR_STMICRO:
case SPI_FLASH_CFI_MFR_SST:
flash->flash_lock = stm_lock;
flash->flash_unlock = stm_unlock;
flash->flash_is_locked = stm_is_locked;
#endif
break;
default:
debug("SF: Lock ops not supported for %02x flash\n", idcode[0]);
}
/* Compute the flash size */
flash->shift = (flash->dual_flash & SF_DUAL_PARALLEL_FLASH) ? 1 : 0;
/*
* The Spansion S25FL032P and S25FL064P have 256b pages, yet use the
* 0x4d00 Extended JEDEC code. The rest of the Spansion flashes with
* the 0x4d00 Extended JEDEC code have 512b pages. All of the others
* have 256b pages.
*/
if (ext_jedec == 0x4d00) {
if ((jedec == 0x0215) || (jedec == 0x216))
flash->page_size = 256;
else
flash->page_size = 512;
} else {
flash->page_size = 256;
}
flash->page_size <<= flash->shift;
flash->sector_size = params->sector_size << flash->shift;
flash->size = flash->sector_size * params->nr_sectors << flash->shift;
#ifdef CONFIG_SF_DUAL_FLASH
if (flash->dual_flash & SF_DUAL_STACKED_FLASH)
flash->size <<= 1;
#endif
/* Compute erase sector and command */
if (params->flags & SECT_4K) {
flash->erase_cmd = CMD_ERASE_4K;
flash->erase_size = 4096 << flash->shift;
} else if (params->flags & SECT_32K) {
flash->erase_cmd = CMD_ERASE_32K;
flash->erase_size = 32768 << flash->shift;
} else {
flash->erase_cmd = CMD_ERASE_64K;
flash->erase_size = flash->sector_size;
}
/* Now erase size becomes valid sector size */
flash->sector_size = flash->erase_size;
/* Look for the fastest read cmd */
cmd = fls(params->e_rd_cmd & spi->mode_rx);
if (cmd) {
cmd = spi_read_cmds_array[cmd - 1];
flash->read_cmd = cmd;
} else {
/* Go for default supported read cmd */
flash->read_cmd = CMD_READ_ARRAY_FAST;
}
/* Not require to look for fastest only two write cmds yet */
if (params->flags & WR_QPP && spi->mode & SPI_TX_QUAD)
flash->write_cmd = CMD_QUAD_PAGE_PROGRAM;
else
/* Go for default supported write cmd */
flash->write_cmd = CMD_PAGE_PROGRAM;
/* Set the quad enable bit - only for quad commands */
if ((flash->read_cmd == CMD_READ_QUAD_OUTPUT_FAST) ||
(flash->read_cmd == CMD_READ_QUAD_IO_FAST) ||
(flash->write_cmd == CMD_QUAD_PAGE_PROGRAM)) {
ret = set_quad_mode(flash, idcode[0]);
if (ret) {
debug("SF: Fail to set QEB for %02x\n", idcode[0]);
return -EINVAL;
}
}
/* Read dummy_byte: dummy byte is determined based on the
* dummy cycles of a particular command.
* Fast commands - dummy_byte = dummy_cycles/8
* I/O commands- dummy_byte = (dummy_cycles * no.of lines)/8
* For I/O commands except cmd[0] everything goes on no.of lines
* based on particular command but incase of fast commands except
* data all go on single line irrespective of command.
*/
switch (flash->read_cmd) {
case CMD_READ_QUAD_IO_FAST:
flash->dummy_byte = 2;
break;
case CMD_READ_ARRAY_SLOW:
flash->dummy_byte = 0;
break;
default:
flash->dummy_byte = 1;
}
#ifdef CONFIG_SPI_FLASH_STMICRO
if (params->flags & E_FSR)
flash->flags |= SNOR_F_USE_FSR;
#endif
/* Configure the BAR - discover bank cmds and read current bank */
#ifdef CONFIG_SPI_FLASH_BAR
ret = spi_flash_read_bar(flash, idcode[0]);
if (ret < 0)
return ret;
#endif
#if CONFIG_IS_ENABLED(OF_CONTROL)
ret = spi_flash_decode_fdt(gd->fdt_blob, flash);
if (ret) {
debug("SF: FDT decode error\n");
return -EINVAL;
}
#endif
#ifndef CONFIG_SPL_BUILD
printf("SF: Detected %s with page size ", flash->name);
print_size(flash->page_size, ", erase size ");
print_size(flash->erase_size, ", total ");
print_size(flash->size, "");
if (flash->memory_map)
printf(", mapped at %p", flash->memory_map);
puts("\n");
#endif
#ifndef CONFIG_SPI_FLASH_BAR
if (((flash->dual_flash == SF_SINGLE_FLASH) &&
(flash->size > SPI_FLASH_16MB_BOUN)) ||
((flash->dual_flash > SF_SINGLE_FLASH) &&
(flash->size > SPI_FLASH_16MB_BOUN << 1))) {
puts("SF: Warning - Only lower 16MiB accessible,");
puts(" Full access #define CONFIG_SPI_FLASH_BAR\n");
}
#endif
return ret;
}