u-boot/board/enbw/enbw_cmc/enbw_cmc.c
Khoronzhuk, Ivan 3e01ed00da mtd: nand: davinci: add header file for driver definitions
The definitions inside emif_defs.h concern davinci nand driver and
should be in it's header. So create header file for davinci nand
driver and move definitions from emif_defs.h and nand_defs.h to it.

Acked-by: Vitaly Andrianov <vitalya@ti.com>
Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@ti.com>
[trini: Fixup more davinci breakage]
Signed-off-by: Tom Rini <trini@ti.com>
2014-06-19 17:53:58 -04:00

893 lines
18 KiB
C

/*
* (C) Copyright 2011
* Heiko Schocher, DENX Software Engineering, hs@denx.de.
*
* Based on:
* Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
*
* Based on da830evm.c. Original Copyrights follow:
*
* Copyright (C) 2009 Nick Thompson, GE Fanuc, Ltd. <nick.thompson@gefanuc.com>
* Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <environment.h>
#include <hwconfig.h>
#include <i2c.h>
#include <malloc.h>
#include <miiphy.h>
#include <mmc.h>
#include <net.h>
#include <netdev.h>
#include <spi.h>
#include <linux/ctype.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <asm/arch/da850_lowlevel.h>
#include <asm/arch/davinci_misc.h>
#include <asm/ti-common/davinci_nand.h>
#include <asm/arch/emac_defs.h>
#include <asm/arch/gpio.h>
#include <asm/arch/pinmux_defs.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sdmmc_defs.h>
#include <asm/arch/timer_defs.h>
#include <asm/davinci_rtc.h>
DECLARE_GLOBAL_DATA_PTR;
const struct lpsc_resource lpsc[] = {
{ DAVINCI_LPSC_AEMIF },
{ DAVINCI_LPSC_SPI1 },
{ DAVINCI_LPSC_ARM_RAM_ROM },
{ DAVINCI_LPSC_UART0 },
{ DAVINCI_LPSC_EMAC },
{ DAVINCI_LPSC_UART0 },
{ DAVINCI_LPSC_GPIO },
{ DAVINCI_LPSC_DDR_EMIF },
{ DAVINCI_LPSC_UART1 },
{ DAVINCI_LPSC_UART2 },
{ DAVINCI_LPSC_MMC_SD1 },
{ DAVINCI_LPSC_USB20 },
{ DAVINCI_LPSC_USB11 },
};
const int lpsc_size = ARRAY_SIZE(lpsc);
static const struct pinmux_config enbw_pins[] = {
{ pinmux(0), 8, 0 },
{ pinmux(0), 8, 1 },
{ pinmux(0), 8, 2 },
{ pinmux(0), 8, 3 },
{ pinmux(0), 8, 4 },
{ pinmux(0), 8, 5 },
{ pinmux(1), 4, 0 },
{ pinmux(1), 8, 1 },
{ pinmux(1), 8, 2 },
{ pinmux(1), 8, 3 },
{ pinmux(1), 8, 4 },
{ pinmux(1), 8, 5 },
{ pinmux(1), 8, 6 },
{ pinmux(1), 4, 7 },
{ pinmux(2), 8, 0 },
{ pinmux(5), 1, 0 },
{ pinmux(5), 1, 3 },
{ pinmux(5), 1, 7 },
{ pinmux(5), 1, 5 },
{ pinmux(5), 1, 4 },
{ pinmux(5), 1, 3 },
{ pinmux(5), 1, 2 },
{ pinmux(5), 1, 1 },
{ pinmux(5), 1, 0 },
{ pinmux(6), 8, 0 },
{ pinmux(6), 8, 1 },
{ pinmux(6), 8, 2 },
{ pinmux(6), 8, 3 },
{ pinmux(6), 8, 4 },
{ pinmux(6), 8, 5 },
{ pinmux(6), 1, 7 },
{ pinmux(7), 8, 2 },
{ pinmux(7), 1, 3 },
{ pinmux(7), 8, 6 },
{ pinmux(7), 1, 7 },
{ pinmux(13), 8, 2 },
{ pinmux(13), 8, 3 },
{ pinmux(13), 8, 4 },
{ pinmux(13), 8, 5 },
{ pinmux(13), 8, 6 },
{ pinmux(13), 8, 7 },
{ pinmux(14), 8, 0 },
{ pinmux(14), 8, 1 },
{ pinmux(16), 8, 1 },
{ pinmux(16), 8, 2 },
{ pinmux(16), 8, 3 },
{ pinmux(16), 8, 4 },
{ pinmux(16), 8, 5 },
{ pinmux(16), 8, 6 },
{ pinmux(16), 8, 7 },
{ pinmux(17), 1, 0 },
{ pinmux(17), 1, 1 },
{ pinmux(17), 1, 2 },
{ pinmux(17), 8, 3 },
{ pinmux(17), 8, 4 },
{ pinmux(17), 8, 5 },
{ pinmux(17), 8, 6 },
{ pinmux(17), 8, 7 },
{ pinmux(18), 8, 0 },
{ pinmux(18), 8, 1 },
{ pinmux(18), 2, 2 },
{ pinmux(18), 2, 3 },
{ pinmux(18), 2, 4 },
{ pinmux(18), 8, 6 },
{ pinmux(18), 8, 7 },
{ pinmux(19), 8, 0 },
{ pinmux(19), 2, 1 },
{ pinmux(19), 2, 2 },
{ pinmux(19), 2, 3 },
{ pinmux(19), 2, 4 },
{ pinmux(19), 8, 5 },
{ pinmux(19), 8, 6 },
};
const struct pinmux_resource pinmuxes[] = {
PINMUX_ITEM(emac_pins_mii),
PINMUX_ITEM(emac_pins_mdio),
PINMUX_ITEM(i2c0_pins),
PINMUX_ITEM(emifa_pins_cs2),
PINMUX_ITEM(emifa_pins_cs3),
PINMUX_ITEM(emifa_pins_cs4),
PINMUX_ITEM(emifa_pins_nand),
PINMUX_ITEM(emifa_pins_nor),
PINMUX_ITEM(spi1_pins_base),
PINMUX_ITEM(spi1_pins_scs0),
PINMUX_ITEM(uart1_pins_txrx),
PINMUX_ITEM(uart2_pins_txrx),
PINMUX_ITEM(uart2_pins_rtscts),
PINMUX_ITEM(enbw_pins),
};
const int pinmuxes_size = ARRAY_SIZE(pinmuxes);
struct gpio_config {
char name[GPIO_NAME_SIZE];
unsigned char bank;
unsigned char gpio;
unsigned char out;
unsigned char value;
};
static const struct gpio_config enbw_gpio_config_hut[] = {
{ "RS485 enable", 8, 11, 1, 0 },
{ "RS485 iso", 8, 10, 1, 1 },
{ "W2HUT RS485 Rx ena", 8, 9, 1, 0 },
{ "W2HUT RS485 iso", 8, 8, 1, 1 },
};
static const struct gpio_config enbw_gpio_config_w[] = {
{ "RS485 enable", 8, 11, 1, 0 },
{ "RS485 iso", 8, 10, 1, 0 },
{ "W2HUT RS485 Rx ena", 8, 9, 1, 0 },
{ "W2HUT RS485 iso", 8, 8, 1, 0 },
};
static const struct gpio_config enbw_gpio_config[] = {
{ "LAN reset", 7, 15, 1, 1 },
{ "ena 11V PLC", 7, 14, 1, 0 },
{ "ena 1.5V PLC", 7, 13, 1, 0 },
{ "disable VBUS", 7, 12, 1, 1 },
{ "PLC reset", 6, 13, 1, 0 },
{ "LCM RS", 6, 12, 1, 0 },
{ "LCM R/W", 6, 11, 1, 0 },
{ "PLC pairing", 6, 10, 1, 1 },
{ "PLC MDIO CLK", 6, 9, 1, 0 },
{ "HK218", 6, 8, 1, 0 },
{ "HK218 Rx", 6, 1, 1, 1 },
{ "TPM reset", 6, 0, 1, 0 },
{ "Board-Type", 3, 9, 0, 0 },
{ "HW-ID0", 2, 7, 0, 0 },
{ "HW-ID1", 2, 6, 0, 0 },
{ "HW-ID2", 2, 3, 0, 0 },
{ "PV-IF RxD ena", 0, 15, 1, 1 },
{ "LED1", 1, 15, 1, 1 },
{ "LED2", 0, 1, 1, 1 },
{ "LED3", 0, 2, 1, 1 },
{ "LED4", 0, 3, 1, 1 },
{ "LED5", 0, 4, 1, 1 },
{ "LED6", 0, 5, 1, 0 },
{ "LED7", 0, 6, 1, 0 },
{ "LED8", 0, 14, 1, 0 },
{ "USER1", 0, 12, 0, 0 },
{ "USER2", 0, 13, 0, 0 },
};
#define PHY_POWER 0x0800
static void enbw_cmc_switch(int port, int on)
{
const char *devname;
unsigned char phyaddr = 3;
unsigned char reg = 0;
unsigned short data;
if (port == 1)
phyaddr = 2;
devname = miiphy_get_current_dev();
if (!devname) {
printf("Error: no mii device\n");
return;
}
if (miiphy_read(devname, phyaddr, reg, &data) != 0) {
printf("Error reading from the PHY addr=%02x reg=%02x\n",
phyaddr, reg);
return;
}
if (on)
data &= ~PHY_POWER;
else
data |= PHY_POWER;
if (miiphy_write(devname, phyaddr, reg, data) != 0) {
printf("Error writing to the PHY addr=%02x reg=%02x\n",
phyaddr, reg);
return;
}
}
static int enbw_cmc_init_gpio(const struct gpio_config *conf, int sz)
{
int i, ret;
for (i = 0; i < sz; i++) {
int gpio = conf[i].bank * 16 +
conf[i].gpio;
ret = gpio_request(gpio, conf[i].name);
if (ret) {
printf("%s: Could not get %s gpio\n", __func__,
conf[i].name);
return ret;
}
if (conf[i].out)
gpio_direction_output(gpio,
conf[i].value);
else
gpio_direction_input(gpio);
}
return 0;
}
int board_init(void)
{
int board_type, hw_id;
#ifndef CONFIG_USE_IRQ
irq_init();
#endif
/* address of boot parameters, not used as booting with DTT */
gd->bd->bi_boot_params = 0;
enbw_cmc_init_gpio(enbw_gpio_config, ARRAY_SIZE(enbw_gpio_config));
/* detect HW version */
board_type = gpio_get_value(CONFIG_ENBW_CMC_BOARD_TYPE);
hw_id = gpio_get_value(CONFIG_ENBW_CMC_HW_ID_BIT0) +
(gpio_get_value(CONFIG_ENBW_CMC_HW_ID_BIT1) << 1) +
(gpio_get_value(CONFIG_ENBW_CMC_HW_ID_BIT2) << 2);
printf("BOARD: CMC-%s hw id: %d\n", (board_type ? "w2" : "hut"),
hw_id);
if (board_type)
enbw_cmc_init_gpio(enbw_gpio_config_w,
ARRAY_SIZE(enbw_gpio_config_w));
else
enbw_cmc_init_gpio(enbw_gpio_config_hut,
ARRAY_SIZE(enbw_gpio_config_hut));
/* setup the SUSPSRC for ARM to control emulation suspend */
clrbits_le32(&davinci_syscfg_regs->suspsrc,
(DAVINCI_SYSCFG_SUSPSRC_EMAC | DAVINCI_SYSCFG_SUSPSRC_I2C |
DAVINCI_SYSCFG_SUSPSRC_SPI1 | DAVINCI_SYSCFG_SUSPSRC_TIMER0 |
DAVINCI_SYSCFG_SUSPSRC_UART2));
return 0;
}
#ifdef CONFIG_DRIVER_TI_EMAC
#define KSZ_CMD_READ 0x03
#define KSZ_CMD_WRITE 0x02
#define KSZ_ID 0x95
static int enbw_cmc_switch_read(struct spi_slave *spi, u8 reg, u8 *val)
{
unsigned long flags = SPI_XFER_BEGIN;
int ret;
int cmd_len;
u8 cmd[2];
cmd[0] = KSZ_CMD_READ;
cmd[1] = reg;
cmd_len = 2;
ret = spi_xfer(spi, cmd_len * 8, cmd, NULL, flags);
if (ret) {
debug("Failed to send command (%zu bytes): %d\n",
cmd_len, ret);
return -EINVAL;
}
flags |= SPI_XFER_END;
*val = 0;
cmd_len = 1;
ret = spi_xfer(spi, cmd_len * 8, NULL, val, flags);
if (ret) {
debug("Failed to read (%zu bytes): %d\n",
cmd_len, ret);
return -EINVAL;
}
return 0;
}
static int enbw_cmc_switch_read_ident(struct spi_slave *spi)
{
int ret;
u8 val;
ret = enbw_cmc_switch_read(spi, 0, &val);
if (ret) {
debug("Failed to read\n");
return -EINVAL;
}
if (val != KSZ_ID)
return -EINVAL;
return 0;
}
static int enbw_cmc_switch_write(struct spi_slave *spi, unsigned long reg,
unsigned long val)
{
unsigned long flags = SPI_XFER_BEGIN;
int ret;
int cmd_len;
u8 cmd[3];
cmd[0] = KSZ_CMD_WRITE;
cmd[1] = reg;
cmd[2] = val;
cmd_len = 3;
flags |= SPI_XFER_END;
ret = spi_xfer(spi, cmd_len * 8, cmd, NULL, flags);
if (ret) {
debug("Failed to send command (%zu bytes): %d\n",
cmd_len, ret);
return -EINVAL;
}
udelay(1000);
ret = enbw_cmc_switch_read(spi, reg, &cmd[0]);
if (ret) {
debug("Failed to read\n");
return -EINVAL;
}
if (val != cmd[0])
debug("warning: reg: %lx va: %x soll: %lx\n",
reg, cmd[0], val);
return 0;
}
static int enbw_cmc_eof(unsigned char *ptr)
{
if (*ptr == 0xff)
return 1;
return 0;
}
static char *enbw_cmc_getnewline(char *ptr)
{
while (*ptr != 0x0a) {
ptr++;
if (enbw_cmc_eof((unsigned char *)ptr))
return NULL;
}
ptr++;
return ptr;
}
static char *enbw_cmc_getvalue(char *ptr, int *value)
{
int end = 0;
*value = -EINVAL;
if (!isxdigit(*ptr))
end = 1;
while (end) {
if ((*ptr == '#') || (*ptr == ';')) {
ptr = enbw_cmc_getnewline(ptr);
return ptr;
}
if (ptr != NULL) {
if (isxdigit(*ptr)) {
end = 0;
} else if (*ptr == 0x0a) {
ptr++;
return ptr;
} else {
ptr++;
if (enbw_cmc_eof((unsigned char *)ptr))
return NULL;
}
} else {
return NULL;
}
}
*value = (int)simple_strtoul((const char *)ptr, &ptr, 16);
ptr++;
return ptr;
}
static struct spi_slave *enbw_cmc_init_spi(void)
{
struct spi_slave *spi;
int ret;
spi = spi_setup_slave(0, 0, 1000000, 0);
if (!spi) {
printf("Failed to set up slave\n");
return NULL;
}
ret = spi_claim_bus(spi);
if (ret) {
debug("Failed to claim SPI bus: %d\n", ret);
goto err_claim_bus;
}
ret = enbw_cmc_switch_read_ident(spi);
if (ret)
goto err_read;
return spi;
err_read:
spi_release_bus(spi);
err_claim_bus:
spi_free_slave(spi);
return NULL;
}
static int enbw_cmc_config_switch(unsigned long addr)
{
struct spi_slave *spi;
char *ptr = (char *)addr;
int value, reg;
int ret = 0;
debug("configure switch with file on addr: 0x%lx\n", addr);
spi = enbw_cmc_init_spi();
if (!spi)
return -EINVAL;
while (ptr != NULL) {
ptr = enbw_cmc_getvalue(ptr, &reg);
if (ptr != NULL) {
ptr = enbw_cmc_getvalue(ptr, &value);
if ((ptr != NULL) && (value >= 0))
if (enbw_cmc_switch_write(spi, reg, value)) {
/* error writing to switch */
ptr = NULL;
ret = -EINVAL;
}
}
}
spi_release_bus(spi);
spi_free_slave(spi);
return ret;
}
static int do_switch(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
{
unsigned long addr;
if (argc < 2)
return cmd_usage(cmdtp);
addr = simple_strtoul(argv[1], NULL, 16);
enbw_cmc_config_switch(addr);
return 0;
}
U_BOOT_CMD(switch, 3, 1, do_switch,
"switch addr",
"[addr]"
);
/*
* Initializes on-board ethernet controllers.
*/
int board_eth_init(bd_t *bis)
{
struct spi_slave *spi;
const char *s;
size_t len = 0;
int config = 1;
davinci_emac_mii_mode_sel(0);
/* send a config file to the switch */
s = hwconfig_subarg("switch", "config", &len);
if (len) {
unsigned long addr = simple_strtoul(s, NULL, 16);
config = enbw_cmc_config_switch(addr);
}
if (config) {
/*
* no valid config file -> do we have some args in
* hwconfig ?
*/
if ((hwconfig_subarg("switch", "lan", &len)) ||
(hwconfig_subarg("switch", "lmn", &len))) {
/* If so start switch */
spi = enbw_cmc_init_spi();
if (spi) {
if (enbw_cmc_switch_write(spi, 1, 0))
config = 0;
udelay(10000);
if (enbw_cmc_switch_write(spi, 1, 1))
config = 0;
spi_release_bus(spi);
spi_free_slave(spi);
}
} else {
config = 0;
}
}
if (!davinci_emac_initialize()) {
printf("Error: Ethernet init failed!\n");
return -1;
}
if (config) {
if (hwconfig_subarg_cmp("switch", "lan", "on"))
/* Switch port lan on */
enbw_cmc_switch(1, 1);
else
enbw_cmc_switch(1, 0);
if (hwconfig_subarg_cmp("switch", "lmn", "on"))
/* Switch port pwl on */
enbw_cmc_switch(2, 1);
else
enbw_cmc_switch(2, 0);
}
return 0;
}
#endif /* CONFIG_DRIVER_TI_EMAC */
#ifdef CONFIG_PREBOOT
static uchar kbd_magic_prefix[] = "key_magic_";
static uchar kbd_command_prefix[] = "key_cmd_";
struct kbd_data_t {
char s1;
};
struct kbd_data_t *get_keys(struct kbd_data_t *kbd_data)
{
/* read SW1 + SW2 */
kbd_data->s1 = gpio_get_value(12) +
(gpio_get_value(13) << 1);
return kbd_data;
}
static int compare_magic(const struct kbd_data_t *kbd_data, char *str)
{
char s1 = str[0];
if (s1 >= '0' && s1 <= '9')
s1 -= '0';
else if (s1 >= 'a' && s1 <= 'f')
s1 = s1 - 'a' + 10;
else if (s1 >= 'A' && s1 <= 'F')
s1 = s1 - 'A' + 10;
else
return -1;
if (s1 != kbd_data->s1)
return -1;
return 0;
}
static char *key_match(const struct kbd_data_t *kbd_data)
{
char magic[sizeof(kbd_magic_prefix) + 1];
char *suffix;
char *kbd_magic_keys;
/*
* The following string defines the characters that can be appended
* to "key_magic" to form the names of environment variables that
* hold "magic" key codes, i. e. such key codes that can cause
* pre-boot actions. If the string is empty (""), then only
* "key_magic" is checked (old behaviour); the string "125" causes
* checks for "key_magic1", "key_magic2" and "key_magic5", etc.
*/
kbd_magic_keys = getenv("magic_keys");
if (kbd_magic_keys == NULL)
kbd_magic_keys = "";
/*
* loop over all magic keys;
* use '\0' suffix in case of empty string
*/
for (suffix = kbd_magic_keys; *suffix ||
suffix == kbd_magic_keys; ++suffix) {
sprintf(magic, "%s%c", kbd_magic_prefix, *suffix);
if (compare_magic(kbd_data, getenv(magic)) == 0) {
char cmd_name[sizeof(kbd_command_prefix) + 1];
char *cmd;
sprintf(cmd_name, "%s%c", kbd_command_prefix, *suffix);
cmd = getenv(cmd_name);
return cmd;
}
}
return NULL;
}
#endif /* CONFIG_PREBOOT */
int misc_init_r(void)
{
char *s, buf[32];
#ifdef CONFIG_PREBOOT
struct kbd_data_t kbd_data;
/* Decode keys */
char *str = strdup(key_match(get_keys(&kbd_data)));
/* Set or delete definition */
setenv("preboot", str);
free(str);
#endif /* CONFIG_PREBOOT */
/* count all restarts, and save this in an environment var */
s = getenv("restartcount");
if (s)
sprintf(buf, "%ld", simple_strtoul(s, NULL, 10) + 1);
else
strcpy(buf, "1");
setenv("restartcount", buf);
saveenv();
#ifdef CONFIG_HW_WATCHDOG
davinci_hw_watchdog_enable();
#endif
return 0;
}
struct cmc_led {
char name[20];
unsigned char bank;
unsigned char gpio;
};
struct cmc_led led_table[] = {
{"led1", 1, 15},
{"led2", 0, 1},
{"led3", 0, 2},
{"led4", 0, 3},
{"led5", 0, 4},
{"led6", 0, 5},
{"led7", 0, 6},
{"led8", 0, 14},
};
static int cmc_get_led_state(struct cmc_led *led)
{
int value;
int gpio = led->bank * 16 + led->gpio;
value = gpio_get_value(gpio);
return value;
}
static int cmc_set_led_state(struct cmc_led *led, int state)
{
int gpio = led->bank * 16 + led->gpio;
gpio_set_value(gpio, state);
return 0;
}
static int do_led(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
{
struct cmc_led *led;
int found = 0;
int i = 0;
int only_print = 0;
int len = ARRAY_SIZE(led_table);
if (argc < 2)
return cmd_usage(cmdtp);
if (argc < 3)
only_print = 1;
led = led_table;
while ((!found) && (i < len)) {
if (strcmp(argv[1], led->name) == 0) {
found = 1;
} else {
led++;
i++;
}
}
if (!found)
return cmd_usage(cmdtp);
if (only_print) {
if (cmc_get_led_state(led))
printf("on\n");
else
printf("off\n");
return 0;
}
if (strcmp(argv[2], "on") == 0)
cmc_set_led_state(led, 1);
else
cmc_set_led_state(led, 0);
return 0;
}
U_BOOT_CMD(led, 3, 1, do_led,
"switch on/off board led",
"[name] [on/off]"
);
#ifdef CONFIG_HW_WATCHDOG
void hw_watchdog_reset(void)
{
davinci_hw_watchdog_reset();
}
#endif
#if defined(CONFIG_POST)
void arch_memory_failure_handle(void)
{
struct davinci_gpio *gpio = davinci_gpio_bank01;
int state = 1;
/*
* if memor< failure blink with the LED 1,2 and 3
* as we running from flash, we cannot use the gpio
* api here, so access the gpio pin direct through
* the gpio register.
*/
while (1) {
if (state) {
clrbits_le32(&gpio->out_data, 0x80000006);
state = 0;
} else {
setbits_le32(&gpio->out_data, 0x80000006);
state = 1;
}
udelay(500);
}
}
#endif
ulong post_word_load(void)
{
struct davinci_rtc *reg =
(struct davinci_rtc *)CONFIG_SYS_POST_WORD_ADDR;
return in_be32(&reg->scratch2);
}
void post_word_store(ulong value)
{
struct davinci_rtc *reg =
(struct davinci_rtc *)CONFIG_SYS_POST_WORD_ADDR;
/*
* write RTC kick register to enable write
* for RTC Scratch registers. Cratch0 and 1 are
* used for bootcount values.
*/
writel(RTC_KICK0R_WE, &reg->kick0r);
writel(RTC_KICK1R_WE, &reg->kick1r);
out_be32(&reg->scratch2, value);
}
void board_gpio_init(void)
{
struct davinci_gpio *gpio = davinci_gpio_bank01;
/*
* set LED (gpio Interface not usable here)
* set LED pins to output and state 0
*/
clrbits_le32(&gpio->dir, 0x8000407e);
clrbits_le32(&gpio->out_data, 0x8000407e);
/* set LED 1 - 5 to state on */
setbits_le32(&gpio->out_data, 0x8000001e);
/*
* set some gpio pins to low, this is needed early,
* so we have no gpio Interface here
* gpios:
* 8[8] Mode PV select low
* 8[9] Debug Rx Enable low
* 8[10] Mode Select PV low
* 8[11] Counter Interface RS485 Rx-Enable low
*/
gpio = davinci_gpio_bank8;
clrbits_le32(&gpio->dir, 0x00000f00);
clrbits_le32(&gpio->out_data, 0x0f00);
}
int board_late_init(void)
{
cmc_set_led_state(&led_table[4], 0);
return 0;
}
void show_boot_progress(int val)
{
switch (val) {
case 1:
cmc_set_led_state(&led_table[4], 1);
break;
case 4:
cmc_set_led_state(&led_table[4], 0);
break;
case 15:
cmc_set_led_state(&led_table[4], 1);
break;
}
}
#ifdef CONFIG_DAVINCI_MMC
static struct davinci_mmc mmc_sd1 = {
.reg_base = (struct davinci_mmc_regs *)DAVINCI_MMC_SD1_BASE,
.input_clk = 228000000,
.host_caps = MMC_MODE_4BIT,
.voltages = MMC_VDD_32_33 | MMC_VDD_33_34,
.version = MMC_CTLR_VERSION_2,
};
int board_mmc_init(bd_t *bis)
{
mmc_sd1.input_clk = clk_get(DAVINCI_MMC_CLKID);
/* Add slot-0 to mmc subsystem */
return davinci_mmc_init(bis, &mmc_sd1);
}
#endif