mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-25 22:20:45 +00:00
ceee07b658
Updates the NAND code to match Linux v4.6. The previous sync was from
Linux v4.1 in commit d3963721d9
.
Note that none of the individual NAND drivers tracked Linux closely
enough to be synced themselves, other than manually applying a few
cross-tree changes.
Signed-off-by: Scott Wood <oss@buserror.net>
Tested-by: Heiko Schocher <hs@denx.de>
1315 lines
33 KiB
C
1315 lines
33 KiB
C
/*
|
|
* Copyright 2004-2007 Freescale Semiconductor, Inc.
|
|
* Copyright 2008 Sascha Hauer, kernel@pengutronix.de
|
|
* Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <nand.h>
|
|
#include <linux/err.h>
|
|
#include <asm/io.h>
|
|
#if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
|
|
defined(CONFIG_MX51) || defined(CONFIG_MX53)
|
|
#include <asm/arch/imx-regs.h>
|
|
#endif
|
|
#include "mxc_nand.h"
|
|
|
|
#define DRIVER_NAME "mxc_nand"
|
|
|
|
struct mxc_nand_host {
|
|
struct nand_chip *nand;
|
|
|
|
struct mxc_nand_regs __iomem *regs;
|
|
#ifdef MXC_NFC_V3_2
|
|
struct mxc_nand_ip_regs __iomem *ip_regs;
|
|
#endif
|
|
int spare_only;
|
|
int status_request;
|
|
int pagesize_2k;
|
|
int clk_act;
|
|
uint16_t col_addr;
|
|
unsigned int page_addr;
|
|
};
|
|
|
|
static struct mxc_nand_host mxc_host;
|
|
static struct mxc_nand_host *host = &mxc_host;
|
|
|
|
/* Define delays in microsec for NAND device operations */
|
|
#define TROP_US_DELAY 2000
|
|
/* Macros to get byte and bit positions of ECC */
|
|
#define COLPOS(x) ((x) >> 3)
|
|
#define BITPOS(x) ((x) & 0xf)
|
|
|
|
/* Define single bit Error positions in Main & Spare area */
|
|
#define MAIN_SINGLEBIT_ERROR 0x4
|
|
#define SPARE_SINGLEBIT_ERROR 0x1
|
|
|
|
/* OOB placement block for use with hardware ecc generation */
|
|
#if defined(MXC_NFC_V1)
|
|
#ifndef CONFIG_SYS_NAND_LARGEPAGE
|
|
static struct nand_ecclayout nand_hw_eccoob = {
|
|
.eccbytes = 5,
|
|
.eccpos = {6, 7, 8, 9, 10},
|
|
.oobfree = { {0, 5}, {11, 5}, }
|
|
};
|
|
#else
|
|
static struct nand_ecclayout nand_hw_eccoob2k = {
|
|
.eccbytes = 20,
|
|
.eccpos = {
|
|
6, 7, 8, 9, 10,
|
|
22, 23, 24, 25, 26,
|
|
38, 39, 40, 41, 42,
|
|
54, 55, 56, 57, 58,
|
|
},
|
|
.oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
|
|
};
|
|
#endif
|
|
#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
|
|
#ifndef CONFIG_SYS_NAND_LARGEPAGE
|
|
static struct nand_ecclayout nand_hw_eccoob = {
|
|
.eccbytes = 9,
|
|
.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
|
|
.oobfree = { {2, 5} }
|
|
};
|
|
#else
|
|
static struct nand_ecclayout nand_hw_eccoob2k = {
|
|
.eccbytes = 36,
|
|
.eccpos = {
|
|
7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
23, 24, 25, 26, 27, 28, 29, 30, 31,
|
|
39, 40, 41, 42, 43, 44, 45, 46, 47,
|
|
55, 56, 57, 58, 59, 60, 61, 62, 63,
|
|
},
|
|
.oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
|
|
};
|
|
#endif
|
|
#endif
|
|
|
|
static int is_16bit_nand(void)
|
|
{
|
|
#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
|
|
{
|
|
uint32_t *d = dest;
|
|
|
|
size >>= 2;
|
|
while (size--)
|
|
__raw_writel(__raw_readl(source++), d++);
|
|
return dest;
|
|
}
|
|
|
|
/*
|
|
* This function polls the NANDFC to wait for the basic operation to
|
|
* complete by checking the INT bit.
|
|
*/
|
|
static void wait_op_done(struct mxc_nand_host *host, int max_retries,
|
|
uint16_t param)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
while (max_retries-- > 0) {
|
|
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
|
|
tmp = readnfc(&host->regs->config2);
|
|
if (tmp & NFC_V1_V2_CONFIG2_INT) {
|
|
tmp &= ~NFC_V1_V2_CONFIG2_INT;
|
|
writenfc(tmp, &host->regs->config2);
|
|
#elif defined(MXC_NFC_V3_2)
|
|
tmp = readnfc(&host->ip_regs->ipc);
|
|
if (tmp & NFC_V3_IPC_INT) {
|
|
tmp &= ~NFC_V3_IPC_INT;
|
|
writenfc(tmp, &host->ip_regs->ipc);
|
|
#endif
|
|
break;
|
|
}
|
|
udelay(1);
|
|
}
|
|
if (max_retries < 0) {
|
|
MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
|
|
__func__, param);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function issues the specified command to the NAND device and
|
|
* waits for completion.
|
|
*/
|
|
static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
|
|
{
|
|
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
|
|
|
|
writenfc(cmd, &host->regs->flash_cmd);
|
|
writenfc(NFC_CMD, &host->regs->operation);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, cmd);
|
|
}
|
|
|
|
/*
|
|
* This function sends an address (or partial address) to the
|
|
* NAND device. The address is used to select the source/destination for
|
|
* a NAND command.
|
|
*/
|
|
static void send_addr(struct mxc_nand_host *host, uint16_t addr)
|
|
{
|
|
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
|
|
|
|
writenfc(addr, &host->regs->flash_addr);
|
|
writenfc(NFC_ADDR, &host->regs->operation);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, addr);
|
|
}
|
|
|
|
/*
|
|
* This function requests the NANDFC to initiate the transfer
|
|
* of data currently in the NANDFC RAM buffer to the NAND device.
|
|
*/
|
|
static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
|
|
int spare_only)
|
|
{
|
|
if (spare_only)
|
|
MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only);
|
|
|
|
if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
|
|
int i;
|
|
/*
|
|
* The controller copies the 64 bytes of spare data from
|
|
* the first 16 bytes of each of the 4 64 byte spare buffers.
|
|
* Copy the contiguous data starting in spare_area[0] to
|
|
* the four spare area buffers.
|
|
*/
|
|
for (i = 1; i < 4; i++) {
|
|
void __iomem *src = &host->regs->spare_area[0][i * 16];
|
|
void __iomem *dst = &host->regs->spare_area[i][0];
|
|
|
|
mxc_nand_memcpy32(dst, src, 16);
|
|
}
|
|
}
|
|
|
|
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
|
|
writenfc(buf_id, &host->regs->buf_addr);
|
|
#elif defined(MXC_NFC_V3_2)
|
|
uint32_t tmp = readnfc(&host->regs->config1);
|
|
tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
|
|
tmp |= NFC_V3_CONFIG1_RBA(buf_id);
|
|
writenfc(tmp, &host->regs->config1);
|
|
#endif
|
|
|
|
/* Configure spare or page+spare access */
|
|
if (!host->pagesize_2k) {
|
|
uint32_t config1 = readnfc(&host->regs->config1);
|
|
if (spare_only)
|
|
config1 |= NFC_CONFIG1_SP_EN;
|
|
else
|
|
config1 &= ~NFC_CONFIG1_SP_EN;
|
|
writenfc(config1, &host->regs->config1);
|
|
}
|
|
|
|
writenfc(NFC_INPUT, &host->regs->operation);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, spare_only);
|
|
}
|
|
|
|
/*
|
|
* Requests NANDFC to initiate the transfer of data from the
|
|
* NAND device into in the NANDFC ram buffer.
|
|
*/
|
|
static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
|
|
int spare_only)
|
|
{
|
|
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
|
|
|
|
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
|
|
writenfc(buf_id, &host->regs->buf_addr);
|
|
#elif defined(MXC_NFC_V3_2)
|
|
uint32_t tmp = readnfc(&host->regs->config1);
|
|
tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
|
|
tmp |= NFC_V3_CONFIG1_RBA(buf_id);
|
|
writenfc(tmp, &host->regs->config1);
|
|
#endif
|
|
|
|
/* Configure spare or page+spare access */
|
|
if (!host->pagesize_2k) {
|
|
uint32_t config1 = readnfc(&host->regs->config1);
|
|
if (spare_only)
|
|
config1 |= NFC_CONFIG1_SP_EN;
|
|
else
|
|
config1 &= ~NFC_CONFIG1_SP_EN;
|
|
writenfc(config1, &host->regs->config1);
|
|
}
|
|
|
|
writenfc(NFC_OUTPUT, &host->regs->operation);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, spare_only);
|
|
|
|
if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
|
|
int i;
|
|
|
|
/*
|
|
* The controller copies the 64 bytes of spare data to
|
|
* the first 16 bytes of each of the 4 spare buffers.
|
|
* Make the data contiguous starting in spare_area[0].
|
|
*/
|
|
for (i = 1; i < 4; i++) {
|
|
void __iomem *src = &host->regs->spare_area[i][0];
|
|
void __iomem *dst = &host->regs->spare_area[0][i * 16];
|
|
|
|
mxc_nand_memcpy32(dst, src, 16);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Request the NANDFC to perform a read of the NAND device ID. */
|
|
static void send_read_id(struct mxc_nand_host *host)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
|
|
/* NANDFC buffer 0 is used for device ID output */
|
|
writenfc(0x0, &host->regs->buf_addr);
|
|
#elif defined(MXC_NFC_V3_2)
|
|
tmp = readnfc(&host->regs->config1);
|
|
tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
|
|
writenfc(tmp, &host->regs->config1);
|
|
#endif
|
|
|
|
/* Read ID into main buffer */
|
|
tmp = readnfc(&host->regs->config1);
|
|
tmp &= ~NFC_CONFIG1_SP_EN;
|
|
writenfc(tmp, &host->regs->config1);
|
|
|
|
writenfc(NFC_ID, &host->regs->operation);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, 0);
|
|
}
|
|
|
|
/*
|
|
* This function requests the NANDFC to perform a read of the
|
|
* NAND device status and returns the current status.
|
|
*/
|
|
static uint16_t get_dev_status(struct mxc_nand_host *host)
|
|
{
|
|
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
|
|
void __iomem *main_buf = host->regs->main_area[1];
|
|
uint32_t store;
|
|
#endif
|
|
uint32_t ret, tmp;
|
|
/* Issue status request to NAND device */
|
|
|
|
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
|
|
/* store the main area1 first word, later do recovery */
|
|
store = readl(main_buf);
|
|
/* NANDFC buffer 1 is used for device status */
|
|
writenfc(1, &host->regs->buf_addr);
|
|
#endif
|
|
|
|
/* Read status into main buffer */
|
|
tmp = readnfc(&host->regs->config1);
|
|
tmp &= ~NFC_CONFIG1_SP_EN;
|
|
writenfc(tmp, &host->regs->config1);
|
|
|
|
writenfc(NFC_STATUS, &host->regs->operation);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, TROP_US_DELAY, 0);
|
|
|
|
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
|
|
/*
|
|
* Status is placed in first word of main buffer
|
|
* get status, then recovery area 1 data
|
|
*/
|
|
ret = readw(main_buf);
|
|
writel(store, main_buf);
|
|
#elif defined(MXC_NFC_V3_2)
|
|
ret = readnfc(&host->regs->config1) >> 16;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This function is used by upper layer to checks if device is ready */
|
|
static int mxc_nand_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
/*
|
|
* NFC handles R/B internally. Therefore, this function
|
|
* always returns status as ready.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
|
|
uint16_t tmp = readnfc(&host->regs->config1);
|
|
|
|
if (on)
|
|
tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
|
|
else
|
|
tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
|
|
writenfc(tmp, &host->regs->config1);
|
|
#elif defined(MXC_NFC_V3_2)
|
|
uint32_t tmp = readnfc(&host->ip_regs->config2);
|
|
|
|
if (on)
|
|
tmp |= NFC_V3_CONFIG2_ECC_EN;
|
|
else
|
|
tmp &= ~NFC_V3_CONFIG2_ECC_EN;
|
|
writenfc(tmp, &host->ip_regs->config2);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_MXC_NAND_HWECC
|
|
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
/*
|
|
* If HW ECC is enabled, we turn it on during init. There is
|
|
* no need to enable again here.
|
|
*/
|
|
}
|
|
|
|
#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
|
|
static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
struct mxc_nand_host *host = nand_get_controller_data(chip);
|
|
uint8_t *buf = chip->oob_poi;
|
|
int length = mtd->oobsize;
|
|
int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
uint8_t *bufpoi = buf;
|
|
int i, toread;
|
|
|
|
MTDDEBUG(MTD_DEBUG_LEVEL0,
|
|
"%s: Reading OOB area of page %u to oob %p\n",
|
|
__func__, page, buf);
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
toread = min_t(int, length, chip->ecc.prepad);
|
|
if (toread) {
|
|
chip->read_buf(mtd, bufpoi, toread);
|
|
bufpoi += toread;
|
|
length -= toread;
|
|
}
|
|
bufpoi += chip->ecc.bytes;
|
|
host->col_addr += chip->ecc.bytes;
|
|
length -= chip->ecc.bytes;
|
|
|
|
toread = min_t(int, length, chip->ecc.postpad);
|
|
if (toread) {
|
|
chip->read_buf(mtd, bufpoi, toread);
|
|
bufpoi += toread;
|
|
length -= toread;
|
|
}
|
|
}
|
|
if (length > 0)
|
|
chip->read_buf(mtd, bufpoi, length);
|
|
|
|
_mxc_nand_enable_hwecc(mtd, 0);
|
|
chip->cmdfunc(mtd, NAND_CMD_READOOB,
|
|
mtd->writesize + chip->ecc.prepad, page);
|
|
bufpoi = buf + chip->ecc.prepad;
|
|
length = mtd->oobsize - chip->ecc.prepad;
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
toread = min_t(int, length, chip->ecc.bytes);
|
|
chip->read_buf(mtd, bufpoi, toread);
|
|
bufpoi += eccpitch;
|
|
length -= eccpitch;
|
|
host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
|
|
}
|
|
_mxc_nand_enable_hwecc(mtd, 1);
|
|
return 1;
|
|
}
|
|
|
|
static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
uint8_t *buf,
|
|
int oob_required,
|
|
int page)
|
|
{
|
|
struct mxc_nand_host *host = nand_get_controller_data(chip);
|
|
int eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
uint8_t *oob = chip->oob_poi;
|
|
int steps, size;
|
|
int n;
|
|
|
|
_mxc_nand_enable_hwecc(mtd, 0);
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
|
|
|
|
for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
|
|
host->col_addr = n * eccsize;
|
|
chip->read_buf(mtd, buf, eccsize);
|
|
buf += eccsize;
|
|
|
|
host->col_addr = mtd->writesize + n * eccpitch;
|
|
if (chip->ecc.prepad) {
|
|
chip->read_buf(mtd, oob, chip->ecc.prepad);
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
chip->read_buf(mtd, oob, eccbytes);
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
chip->read_buf(mtd, oob, chip->ecc.postpad);
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
}
|
|
|
|
size = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (size)
|
|
chip->read_buf(mtd, oob, size);
|
|
_mxc_nand_enable_hwecc(mtd, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
uint8_t *buf,
|
|
int oob_required,
|
|
int page)
|
|
{
|
|
struct mxc_nand_host *host = nand_get_controller_data(chip);
|
|
int n, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *p = buf;
|
|
uint8_t *oob = chip->oob_poi;
|
|
|
|
MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n",
|
|
page, buf, oob);
|
|
|
|
/* first read the data area and the available portion of OOB */
|
|
for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
|
|
int stat;
|
|
|
|
host->col_addr = n * eccsize;
|
|
|
|
chip->read_buf(mtd, p, eccsize);
|
|
|
|
host->col_addr = mtd->writesize + n * eccpitch;
|
|
|
|
if (chip->ecc.prepad) {
|
|
chip->read_buf(mtd, oob, chip->ecc.prepad);
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
stat = chip->ecc.correct(mtd, p, oob, NULL);
|
|
|
|
if (stat < 0)
|
|
mtd->ecc_stats.failed++;
|
|
else
|
|
mtd->ecc_stats.corrected += stat;
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
chip->read_buf(mtd, oob, chip->ecc.postpad);
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
}
|
|
|
|
/* Calculate remaining oob bytes */
|
|
n = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (n)
|
|
chip->read_buf(mtd, oob, n);
|
|
|
|
/* Then switch ECC off and read the OOB area to get the ECC code */
|
|
_mxc_nand_enable_hwecc(mtd, 0);
|
|
chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
|
|
eccsteps = chip->ecc.steps;
|
|
oob = chip->oob_poi + chip->ecc.prepad;
|
|
for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
|
|
host->col_addr = mtd->writesize +
|
|
n * eccpitch +
|
|
chip->ecc.prepad;
|
|
chip->read_buf(mtd, oob, eccbytes);
|
|
oob += eccbytes + chip->ecc.postpad;
|
|
}
|
|
_mxc_nand_enable_hwecc(mtd, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
|
|
struct nand_chip *chip, int page)
|
|
{
|
|
struct mxc_nand_host *host = nand_get_controller_data(chip);
|
|
int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
int length = mtd->oobsize;
|
|
int i, len, status, steps = chip->ecc.steps;
|
|
const uint8_t *bufpoi = chip->oob_poi;
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
|
|
for (i = 0; i < steps; i++) {
|
|
len = min_t(int, length, eccpitch);
|
|
|
|
chip->write_buf(mtd, bufpoi, len);
|
|
bufpoi += len;
|
|
length -= len;
|
|
host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
|
|
}
|
|
if (length > 0)
|
|
chip->write_buf(mtd, bufpoi, length);
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
status = chip->waitfunc(mtd, chip);
|
|
return status & NAND_STATUS_FAIL ? -EIO : 0;
|
|
}
|
|
|
|
static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mxc_nand_host *host = nand_get_controller_data(chip);
|
|
int eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
uint8_t *oob = chip->oob_poi;
|
|
int steps, size;
|
|
int n;
|
|
|
|
for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
|
|
host->col_addr = n * eccsize;
|
|
chip->write_buf(mtd, buf, eccsize);
|
|
buf += eccsize;
|
|
|
|
host->col_addr = mtd->writesize + n * eccpitch;
|
|
|
|
if (chip->ecc.prepad) {
|
|
chip->write_buf(mtd, oob, chip->ecc.prepad);
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
host->col_addr += eccbytes;
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
chip->write_buf(mtd, oob, chip->ecc.postpad);
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
}
|
|
|
|
size = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (size)
|
|
chip->write_buf(mtd, oob, size);
|
|
return 0;
|
|
}
|
|
|
|
static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mxc_nand_host *host = nand_get_controller_data(chip);
|
|
int i, n, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
int eccsteps = chip->ecc.steps;
|
|
const uint8_t *p = buf;
|
|
uint8_t *oob = chip->oob_poi;
|
|
|
|
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
|
|
|
|
for (i = n = 0;
|
|
eccsteps;
|
|
n++, eccsteps--, i += eccbytes, p += eccsize) {
|
|
host->col_addr = n * eccsize;
|
|
|
|
chip->write_buf(mtd, p, eccsize);
|
|
|
|
host->col_addr = mtd->writesize + n * eccpitch;
|
|
|
|
if (chip->ecc.prepad) {
|
|
chip->write_buf(mtd, oob, chip->ecc.prepad);
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
chip->write_buf(mtd, oob, eccbytes);
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
chip->write_buf(mtd, oob, chip->ecc.postpad);
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
}
|
|
|
|
/* Calculate remaining oob bytes */
|
|
i = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (i)
|
|
chip->write_buf(mtd, oob, i);
|
|
return 0;
|
|
}
|
|
|
|
static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
uint32_t ecc_status = readl(&host->regs->ecc_status_result);
|
|
int subpages = mtd->writesize / nand_chip->subpagesize;
|
|
int pg2blk_shift = nand_chip->phys_erase_shift -
|
|
nand_chip->page_shift;
|
|
|
|
do {
|
|
if ((ecc_status & 0xf) > 4) {
|
|
static int last_bad = -1;
|
|
|
|
if (last_bad != host->page_addr >> pg2blk_shift) {
|
|
last_bad = host->page_addr >> pg2blk_shift;
|
|
printk(KERN_DEBUG
|
|
"MXC_NAND: HWECC uncorrectable ECC error"
|
|
" in block %u page %u subpage %d\n",
|
|
last_bad, host->page_addr,
|
|
mtd->writesize / nand_chip->subpagesize
|
|
- subpages);
|
|
}
|
|
return -EBADMSG;
|
|
}
|
|
ecc_status >>= 4;
|
|
subpages--;
|
|
} while (subpages > 0);
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define mxc_nand_read_page_syndrome NULL
|
|
#define mxc_nand_read_page_raw_syndrome NULL
|
|
#define mxc_nand_read_oob_syndrome NULL
|
|
#define mxc_nand_write_page_syndrome NULL
|
|
#define mxc_nand_write_page_raw_syndrome NULL
|
|
#define mxc_nand_write_oob_syndrome NULL
|
|
|
|
static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
/*
|
|
* 1-Bit errors are automatically corrected in HW. No need for
|
|
* additional correction. 2-Bit errors cannot be corrected by
|
|
* HW ECC, so we need to return failure
|
|
*/
|
|
uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
|
|
|
|
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
|
|
MTDDEBUG(MTD_DEBUG_LEVEL0,
|
|
"MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
|
|
return -EBADMSG;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
|
|
u_char *ecc_code)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
uint8_t ret = 0;
|
|
uint16_t col;
|
|
uint16_t __iomem *main_buf =
|
|
(uint16_t __iomem *)host->regs->main_area[0];
|
|
uint16_t __iomem *spare_buf =
|
|
(uint16_t __iomem *)host->regs->spare_area[0];
|
|
union {
|
|
uint16_t word;
|
|
uint8_t bytes[2];
|
|
} nfc_word;
|
|
|
|
/* Check for status request */
|
|
if (host->status_request)
|
|
return get_dev_status(host) & 0xFF;
|
|
|
|
/* Get column for 16-bit access */
|
|
col = host->col_addr >> 1;
|
|
|
|
/* If we are accessing the spare region */
|
|
if (host->spare_only)
|
|
nfc_word.word = readw(&spare_buf[col]);
|
|
else
|
|
nfc_word.word = readw(&main_buf[col]);
|
|
|
|
/* Pick upper/lower byte of word from RAM buffer */
|
|
ret = nfc_word.bytes[host->col_addr & 0x1];
|
|
|
|
/* Update saved column address */
|
|
if (nand_chip->options & NAND_BUSWIDTH_16)
|
|
host->col_addr += 2;
|
|
else
|
|
host->col_addr++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
uint16_t col, ret;
|
|
uint16_t __iomem *p;
|
|
|
|
MTDDEBUG(MTD_DEBUG_LEVEL3,
|
|
"mxc_nand_read_word(col = %d)\n", host->col_addr);
|
|
|
|
col = host->col_addr;
|
|
/* Adjust saved column address */
|
|
if (col < mtd->writesize && host->spare_only)
|
|
col += mtd->writesize;
|
|
|
|
if (col < mtd->writesize) {
|
|
p = (uint16_t __iomem *)(host->regs->main_area[0] +
|
|
(col >> 1));
|
|
} else {
|
|
p = (uint16_t __iomem *)(host->regs->spare_area[0] +
|
|
((col - mtd->writesize) >> 1));
|
|
}
|
|
|
|
if (col & 1) {
|
|
union {
|
|
uint16_t word;
|
|
uint8_t bytes[2];
|
|
} nfc_word[3];
|
|
|
|
nfc_word[0].word = readw(p);
|
|
nfc_word[1].word = readw(p + 1);
|
|
|
|
nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
|
|
nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
|
|
|
|
ret = nfc_word[2].word;
|
|
} else {
|
|
ret = readw(p);
|
|
}
|
|
|
|
/* Update saved column address */
|
|
host->col_addr = col + 2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write data of length len to buffer buf. The data to be
|
|
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
|
|
* Operation by the NFC, the data is written to NAND Flash
|
|
*/
|
|
static void mxc_nand_write_buf(struct mtd_info *mtd,
|
|
const u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int n, col, i = 0;
|
|
|
|
MTDDEBUG(MTD_DEBUG_LEVEL3,
|
|
"mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
|
|
len);
|
|
|
|
col = host->col_addr;
|
|
|
|
/* Adjust saved column address */
|
|
if (col < mtd->writesize && host->spare_only)
|
|
col += mtd->writesize;
|
|
|
|
n = mtd->writesize + mtd->oobsize - col;
|
|
n = min(len, n);
|
|
|
|
MTDDEBUG(MTD_DEBUG_LEVEL3,
|
|
"%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
|
|
|
|
while (n > 0) {
|
|
void __iomem *p;
|
|
|
|
if (col < mtd->writesize) {
|
|
p = host->regs->main_area[0] + (col & ~3);
|
|
} else {
|
|
p = host->regs->spare_area[0] -
|
|
mtd->writesize + (col & ~3);
|
|
}
|
|
|
|
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
|
|
__LINE__, p);
|
|
|
|
if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
|
|
union {
|
|
uint32_t word;
|
|
uint8_t bytes[4];
|
|
} nfc_word;
|
|
|
|
nfc_word.word = readl(p);
|
|
nfc_word.bytes[col & 3] = buf[i++];
|
|
n--;
|
|
col++;
|
|
|
|
writel(nfc_word.word, p);
|
|
} else {
|
|
int m = mtd->writesize - col;
|
|
|
|
if (col >= mtd->writesize)
|
|
m += mtd->oobsize;
|
|
|
|
m = min(n, m) & ~3;
|
|
|
|
MTDDEBUG(MTD_DEBUG_LEVEL3,
|
|
"%s:%d: n = %d, m = %d, i = %d, col = %d\n",
|
|
__func__, __LINE__, n, m, i, col);
|
|
|
|
mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
|
|
col += m;
|
|
i += m;
|
|
n -= m;
|
|
}
|
|
}
|
|
/* Update saved column address */
|
|
host->col_addr = col;
|
|
}
|
|
|
|
/*
|
|
* Read the data buffer from the NAND Flash. To read the data from NAND
|
|
* Flash first the data output cycle is initiated by the NFC, which copies
|
|
* the data to RAMbuffer. This data of length len is then copied to buffer buf.
|
|
*/
|
|
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int n, col, i = 0;
|
|
|
|
MTDDEBUG(MTD_DEBUG_LEVEL3,
|
|
"mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
|
|
|
|
col = host->col_addr;
|
|
|
|
/* Adjust saved column address */
|
|
if (col < mtd->writesize && host->spare_only)
|
|
col += mtd->writesize;
|
|
|
|
n = mtd->writesize + mtd->oobsize - col;
|
|
n = min(len, n);
|
|
|
|
while (n > 0) {
|
|
void __iomem *p;
|
|
|
|
if (col < mtd->writesize) {
|
|
p = host->regs->main_area[0] + (col & ~3);
|
|
} else {
|
|
p = host->regs->spare_area[0] -
|
|
mtd->writesize + (col & ~3);
|
|
}
|
|
|
|
if (((col | (int)&buf[i]) & 3) || n < 4) {
|
|
union {
|
|
uint32_t word;
|
|
uint8_t bytes[4];
|
|
} nfc_word;
|
|
|
|
nfc_word.word = readl(p);
|
|
buf[i++] = nfc_word.bytes[col & 3];
|
|
n--;
|
|
col++;
|
|
} else {
|
|
int m = mtd->writesize - col;
|
|
|
|
if (col >= mtd->writesize)
|
|
m += mtd->oobsize;
|
|
|
|
m = min(n, m) & ~3;
|
|
mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
|
|
|
|
col += m;
|
|
i += m;
|
|
n -= m;
|
|
}
|
|
}
|
|
/* Update saved column address */
|
|
host->col_addr = col;
|
|
}
|
|
|
|
/*
|
|
* This function is used by upper layer for select and
|
|
* deselect of the NAND chip
|
|
*/
|
|
static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
switch (chip) {
|
|
case -1:
|
|
/* TODO: Disable the NFC clock */
|
|
if (host->clk_act)
|
|
host->clk_act = 0;
|
|
break;
|
|
case 0:
|
|
/* TODO: Enable the NFC clock */
|
|
if (!host->clk_act)
|
|
host->clk_act = 1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Used by the upper layer to write command to NAND Flash for
|
|
* different operations to be carried out on NAND Flash
|
|
*/
|
|
void mxc_nand_command(struct mtd_info *mtd, unsigned command,
|
|
int column, int page_addr)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
MTDDEBUG(MTD_DEBUG_LEVEL3,
|
|
"mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
|
|
command, column, page_addr);
|
|
|
|
/* Reset command state information */
|
|
host->status_request = false;
|
|
|
|
/* Command pre-processing step */
|
|
switch (command) {
|
|
|
|
case NAND_CMD_STATUS:
|
|
host->col_addr = 0;
|
|
host->status_request = true;
|
|
break;
|
|
|
|
case NAND_CMD_READ0:
|
|
host->page_addr = page_addr;
|
|
host->col_addr = column;
|
|
host->spare_only = false;
|
|
break;
|
|
|
|
case NAND_CMD_READOOB:
|
|
host->col_addr = column;
|
|
host->spare_only = true;
|
|
if (host->pagesize_2k)
|
|
command = NAND_CMD_READ0; /* only READ0 is valid */
|
|
break;
|
|
|
|
case NAND_CMD_SEQIN:
|
|
if (column >= mtd->writesize) {
|
|
/*
|
|
* before sending SEQIN command for partial write,
|
|
* we need read one page out. FSL NFC does not support
|
|
* partial write. It always sends out 512+ecc+512+ecc
|
|
* for large page nand flash. But for small page nand
|
|
* flash, it does support SPARE ONLY operation.
|
|
*/
|
|
if (host->pagesize_2k) {
|
|
/* call ourself to read a page */
|
|
mxc_nand_command(mtd, NAND_CMD_READ0, 0,
|
|
page_addr);
|
|
}
|
|
|
|
host->col_addr = column - mtd->writesize;
|
|
host->spare_only = true;
|
|
|
|
/* Set program pointer to spare region */
|
|
if (!host->pagesize_2k)
|
|
send_cmd(host, NAND_CMD_READOOB);
|
|
} else {
|
|
host->spare_only = false;
|
|
host->col_addr = column;
|
|
|
|
/* Set program pointer to page start */
|
|
if (!host->pagesize_2k)
|
|
send_cmd(host, NAND_CMD_READ0);
|
|
}
|
|
break;
|
|
|
|
case NAND_CMD_PAGEPROG:
|
|
send_prog_page(host, 0, host->spare_only);
|
|
|
|
if (host->pagesize_2k && is_mxc_nfc_1()) {
|
|
/* data in 4 areas */
|
|
send_prog_page(host, 1, host->spare_only);
|
|
send_prog_page(host, 2, host->spare_only);
|
|
send_prog_page(host, 3, host->spare_only);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/* Write out the command to the device. */
|
|
send_cmd(host, command);
|
|
|
|
/* Write out column address, if necessary */
|
|
if (column != -1) {
|
|
/*
|
|
* MXC NANDFC can only perform full page+spare or
|
|
* spare-only read/write. When the upper layers perform
|
|
* a read/write buffer operation, we will use the saved
|
|
* column address to index into the full page.
|
|
*/
|
|
send_addr(host, 0);
|
|
if (host->pagesize_2k)
|
|
/* another col addr cycle for 2k page */
|
|
send_addr(host, 0);
|
|
}
|
|
|
|
/* Write out page address, if necessary */
|
|
if (page_addr != -1) {
|
|
u32 page_mask = nand_chip->pagemask;
|
|
do {
|
|
send_addr(host, page_addr & 0xFF);
|
|
page_addr >>= 8;
|
|
page_mask >>= 8;
|
|
} while (page_mask);
|
|
}
|
|
|
|
/* Command post-processing step */
|
|
switch (command) {
|
|
|
|
case NAND_CMD_RESET:
|
|
break;
|
|
|
|
case NAND_CMD_READOOB:
|
|
case NAND_CMD_READ0:
|
|
if (host->pagesize_2k) {
|
|
/* send read confirm command */
|
|
send_cmd(host, NAND_CMD_READSTART);
|
|
/* read for each AREA */
|
|
send_read_page(host, 0, host->spare_only);
|
|
if (is_mxc_nfc_1()) {
|
|
send_read_page(host, 1, host->spare_only);
|
|
send_read_page(host, 2, host->spare_only);
|
|
send_read_page(host, 3, host->spare_only);
|
|
}
|
|
} else {
|
|
send_read_page(host, 0, host->spare_only);
|
|
}
|
|
break;
|
|
|
|
case NAND_CMD_READID:
|
|
host->col_addr = 0;
|
|
send_read_id(host);
|
|
break;
|
|
|
|
case NAND_CMD_PAGEPROG:
|
|
break;
|
|
|
|
case NAND_CMD_STATUS:
|
|
break;
|
|
|
|
case NAND_CMD_ERASE2:
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
|
|
|
|
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
|
|
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
|
|
|
|
static struct nand_bbt_descr bbt_main_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
|
|
NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 0,
|
|
.len = 4,
|
|
.veroffs = 4,
|
|
.maxblocks = 4,
|
|
.pattern = bbt_pattern,
|
|
};
|
|
|
|
static struct nand_bbt_descr bbt_mirror_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
|
|
NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 0,
|
|
.len = 4,
|
|
.veroffs = 4,
|
|
.maxblocks = 4,
|
|
.pattern = mirror_pattern,
|
|
};
|
|
|
|
#endif
|
|
|
|
int board_nand_init(struct nand_chip *this)
|
|
{
|
|
struct mtd_info *mtd;
|
|
#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
|
|
uint32_t tmp;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
|
|
this->bbt_options |= NAND_BBT_USE_FLASH;
|
|
this->bbt_td = &bbt_main_descr;
|
|
this->bbt_md = &bbt_mirror_descr;
|
|
#endif
|
|
|
|
/* structures must be linked */
|
|
mtd = &this->mtd;
|
|
host->nand = this;
|
|
|
|
/* 5 us command delay time */
|
|
this->chip_delay = 5;
|
|
|
|
nand_set_controller_data(this, host);
|
|
this->dev_ready = mxc_nand_dev_ready;
|
|
this->cmdfunc = mxc_nand_command;
|
|
this->select_chip = mxc_nand_select_chip;
|
|
this->read_byte = mxc_nand_read_byte;
|
|
this->read_word = mxc_nand_read_word;
|
|
this->write_buf = mxc_nand_write_buf;
|
|
this->read_buf = mxc_nand_read_buf;
|
|
|
|
host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
|
|
#ifdef MXC_NFC_V3_2
|
|
host->ip_regs =
|
|
(struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
|
|
#endif
|
|
host->clk_act = 1;
|
|
|
|
#ifdef CONFIG_MXC_NAND_HWECC
|
|
this->ecc.calculate = mxc_nand_calculate_ecc;
|
|
this->ecc.hwctl = mxc_nand_enable_hwecc;
|
|
this->ecc.correct = mxc_nand_correct_data;
|
|
if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
|
|
this->ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
this->ecc.read_page = mxc_nand_read_page_syndrome;
|
|
this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
|
|
this->ecc.read_oob = mxc_nand_read_oob_syndrome;
|
|
this->ecc.write_page = mxc_nand_write_page_syndrome;
|
|
this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
|
|
this->ecc.write_oob = mxc_nand_write_oob_syndrome;
|
|
this->ecc.bytes = 9;
|
|
this->ecc.prepad = 7;
|
|
} else {
|
|
this->ecc.mode = NAND_ECC_HW;
|
|
}
|
|
|
|
if (is_mxc_nfc_1())
|
|
this->ecc.strength = 1;
|
|
else
|
|
this->ecc.strength = 4;
|
|
|
|
host->pagesize_2k = 0;
|
|
|
|
this->ecc.size = 512;
|
|
_mxc_nand_enable_hwecc(mtd, 1);
|
|
#else
|
|
this->ecc.layout = &nand_soft_eccoob;
|
|
this->ecc.mode = NAND_ECC_SOFT;
|
|
_mxc_nand_enable_hwecc(mtd, 0);
|
|
#endif
|
|
/* Reset NAND */
|
|
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
|
|
|
|
/* NAND bus width determines access functions used by upper layer */
|
|
if (is_16bit_nand())
|
|
this->options |= NAND_BUSWIDTH_16;
|
|
|
|
#ifdef CONFIG_SYS_NAND_LARGEPAGE
|
|
host->pagesize_2k = 1;
|
|
this->ecc.layout = &nand_hw_eccoob2k;
|
|
#else
|
|
host->pagesize_2k = 0;
|
|
this->ecc.layout = &nand_hw_eccoob;
|
|
#endif
|
|
|
|
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
|
|
#ifdef MXC_NFC_V2_1
|
|
tmp = readnfc(&host->regs->config1);
|
|
tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
|
|
tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
|
|
writenfc(tmp, &host->regs->config1);
|
|
if (host->pagesize_2k)
|
|
writenfc(64/2, &host->regs->spare_area_size);
|
|
else
|
|
writenfc(16/2, &host->regs->spare_area_size);
|
|
#endif
|
|
|
|
/*
|
|
* preset operation
|
|
* Unlock the internal RAM Buffer
|
|
*/
|
|
writenfc(0x2, &host->regs->config);
|
|
|
|
/* Blocks to be unlocked */
|
|
writenfc(0x0, &host->regs->unlockstart_blkaddr);
|
|
/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
|
|
* unlockend_blkaddr, but the magic 0x4000 does not always work
|
|
* when writing more than some 32 megabytes (on 2k page nands)
|
|
* However 0xFFFF doesn't seem to have this kind
|
|
* of limitation (tried it back and forth several times).
|
|
* The linux kernel driver sets this to 0xFFFF for the v2 controller
|
|
* only, but probably this was not tested there for v1.
|
|
* The very same limitation seems to apply to this kernel driver.
|
|
* This might be NAND chip specific and the i.MX31 datasheet is
|
|
* extremely vague about the semantics of this register.
|
|
*/
|
|
writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
|
|
|
|
/* Unlock Block Command for given address range */
|
|
writenfc(0x4, &host->regs->wrprot);
|
|
#elif defined(MXC_NFC_V3_2)
|
|
writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
|
|
writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
|
|
|
|
/* Unlock the internal RAM Buffer */
|
|
writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
|
|
&host->ip_regs->wrprot);
|
|
|
|
/* Blocks to be unlocked */
|
|
for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
|
|
writenfc(0x0 | 0xFFFF << 16,
|
|
&host->ip_regs->wrprot_unlock_blkaddr[tmp]);
|
|
|
|
writenfc(0, &host->ip_regs->ipc);
|
|
|
|
tmp = readnfc(&host->ip_regs->config2);
|
|
tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
|
|
NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
|
|
tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
|
|
|
|
if (host->pagesize_2k) {
|
|
tmp |= NFC_V3_CONFIG2_SPAS(64/2);
|
|
tmp |= NFC_V3_CONFIG2_PS_2048;
|
|
} else {
|
|
tmp |= NFC_V3_CONFIG2_SPAS(16/2);
|
|
tmp |= NFC_V3_CONFIG2_PS_512;
|
|
}
|
|
|
|
writenfc(tmp, &host->ip_regs->config2);
|
|
|
|
tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
|
|
NFC_V3_CONFIG3_NO_SDMA |
|
|
NFC_V3_CONFIG3_RBB_MODE |
|
|
NFC_V3_CONFIG3_SBB(6) | /* Reset default */
|
|
NFC_V3_CONFIG3_ADD_OP(0);
|
|
|
|
if (!(this->options & NAND_BUSWIDTH_16))
|
|
tmp |= NFC_V3_CONFIG3_FW8;
|
|
|
|
writenfc(tmp, &host->ip_regs->config3);
|
|
|
|
writenfc(0, &host->ip_regs->delay_line);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|