u-boot/board/phytec/pcm058/pcm058.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

568 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2016 Stefano Babic <sbabic@denx.de>
*/
/*
* Please note: there are two version of the board
* one with NAND and the other with eMMC.
* Both NAND and eMMC cannot be set because they share the
* same pins (SD4)
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/mx6-ddr.h>
#include <asm/arch/iomux.h>
#include <asm/arch/mx6-pins.h>
#include <asm/mach-imx/iomux-v3.h>
#include <asm/mach-imx/boot_mode.h>
#include <asm/mach-imx/mxc_i2c.h>
#include <asm/mach-imx/spi.h>
#include <linux/errno.h>
#include <asm/gpio.h>
#include <mmc.h>
#include <i2c.h>
#include <fsl_esdhc.h>
#include <nand.h>
#include <miiphy.h>
#include <netdev.h>
#include <asm/arch/sys_proto.h>
#include <asm/sections.h>
DECLARE_GLOBAL_DATA_PTR;
#define UART_PAD_CTRL (PAD_CTL_PUS_100K_UP | \
PAD_CTL_SPEED_MED | PAD_CTL_DSE_40ohm | \
PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define USDHC_PAD_CTRL (PAD_CTL_PUS_47K_UP | \
PAD_CTL_SPEED_LOW | PAD_CTL_DSE_80ohm | \
PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define ENET_PAD_CTRL (PAD_CTL_PUS_100K_UP | \
PAD_CTL_SPEED_MED | PAD_CTL_DSE_40ohm | PAD_CTL_HYS)
#define SPI_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST)
#define I2C_PAD_CTRL (PAD_CTL_PUS_100K_UP | \
PAD_CTL_SPEED_MED | PAD_CTL_DSE_40ohm | PAD_CTL_HYS | \
PAD_CTL_ODE | PAD_CTL_SRE_FAST)
#define I2C_PAD MUX_PAD_CTRL(I2C_PAD_CTRL)
#define ASRC_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_100K_UP | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST)
#define NAND_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST)
#define ENET_PHY_RESET_GPIO IMX_GPIO_NR(1, 14)
#define USDHC1_CD_GPIO IMX_GPIO_NR(6, 31)
#define USER_LED IMX_GPIO_NR(1, 4)
#define IMX6Q_DRIVE_STRENGTH 0x30
int dram_init(void)
{
gd->ram_size = imx_ddr_size();
return 0;
}
void board_turn_off_led(void)
{
gpio_direction_output(USER_LED, 0);
}
static iomux_v3_cfg_t const uart1_pads[] = {
MX6_PAD_EIM_D26__UART2_TX_DATA | MUX_PAD_CTRL(UART_PAD_CTRL),
MX6_PAD_EIM_D27__UART2_RX_DATA | MUX_PAD_CTRL(UART_PAD_CTRL),
};
static iomux_v3_cfg_t const enet_pads[] = {
MX6_PAD_ENET_MDIO__ENET_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET_MDC__ENET_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_TXC__RGMII_TXC | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_TD0__RGMII_TD0 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_TD1__RGMII_TD1 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_TD2__RGMII_TD2 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_TD3__RGMII_TD3 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_TX_CTL__RGMII_TX_CTL | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET_REF_CLK__ENET_TX_CLK | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_RXC__RGMII_RXC | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_RD0__RGMII_RD0 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_RD1__RGMII_RD1 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_RD2__RGMII_RD2 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_RD3__RGMII_RD3 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_RGMII_RX_CTL__RGMII_RX_CTL | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_SD2_DAT1__GPIO1_IO14 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
static iomux_v3_cfg_t const ecspi1_pads[] = {
MX6_PAD_EIM_D16__ECSPI1_SCLK | MUX_PAD_CTRL(SPI_PAD_CTRL),
MX6_PAD_EIM_D17__ECSPI1_MISO | MUX_PAD_CTRL(SPI_PAD_CTRL),
MX6_PAD_EIM_D18__ECSPI1_MOSI | MUX_PAD_CTRL(SPI_PAD_CTRL),
MX6_PAD_EIM_D19__GPIO3_IO19 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
#ifdef CONFIG_CMD_NAND
/* NAND */
static iomux_v3_cfg_t const nfc_pads[] = {
MX6_PAD_NANDF_CLE__NAND_CLE | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_ALE__NAND_ALE | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_WP_B__NAND_WP_B | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_RB0__NAND_READY_B | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_CS0__NAND_CE0_B | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_CS1__NAND_CE1_B | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_CS2__NAND_CE2_B | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_CS3__NAND_CE3_B | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_SD4_CMD__NAND_RE_B | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_SD4_CLK__NAND_WE_B | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_D0__NAND_DATA00 | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_D1__NAND_DATA01 | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_D2__NAND_DATA02 | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_D3__NAND_DATA03 | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_D4__NAND_DATA04 | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_D5__NAND_DATA05 | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_D6__NAND_DATA06 | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_NANDF_D7__NAND_DATA07 | MUX_PAD_CTRL(NAND_PAD_CTRL),
MX6_PAD_SD4_DAT0__NAND_DQS | MUX_PAD_CTRL(NAND_PAD_CTRL),
};
#endif
static struct i2c_pads_info i2c_pad_info2 = {
.scl = {
.i2c_mode = MX6_PAD_GPIO_5__I2C3_SCL | I2C_PAD,
.gpio_mode = MX6_PAD_GPIO_5__GPIO1_IO05 | I2C_PAD,
.gp = IMX_GPIO_NR(1, 5)
},
.sda = {
.i2c_mode = MX6_PAD_GPIO_6__I2C3_SDA | I2C_PAD,
.gpio_mode = MX6_PAD_GPIO_6__GPIO1_IO06 | I2C_PAD,
.gp = IMX_GPIO_NR(1, 6)
}
};
static struct fsl_esdhc_cfg usdhc_cfg[] = {
{.esdhc_base = USDHC1_BASE_ADDR,
.max_bus_width = 4},
#ifndef CONFIG_CMD_NAND
{USDHC4_BASE_ADDR},
#endif
};
static iomux_v3_cfg_t const usdhc1_pads[] = {
MX6_PAD_SD1_CLK__SD1_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_CMD__SD1_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DAT0__SD1_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DAT1__SD1_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DAT2__SD1_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DAT3__SD1_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_EIM_BCLK__GPIO6_IO31 | MUX_PAD_CTRL(NO_PAD_CTRL), /* CD */
};
#if !defined(CONFIG_CMD_NAND) && !defined(CONFIG_SPL_BUILD)
static iomux_v3_cfg_t const usdhc4_pads[] = {
MX6_PAD_SD4_CLK__SD4_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_CMD__SD4_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DAT0__SD4_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DAT1__SD4_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DAT2__SD4_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DAT3__SD4_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DAT4__SD4_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DAT5__SD4_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DAT6__SD4_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD4_DAT7__SD4_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
};
#endif
int board_mmc_get_env_dev(int devno)
{
return devno - 1;
}
int board_mmc_getcd(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
int ret = 0;
switch (cfg->esdhc_base) {
case USDHC1_BASE_ADDR:
ret = !gpio_get_value(USDHC1_CD_GPIO);
break;
case USDHC4_BASE_ADDR:
ret = 1; /* eMMC/uSDHC4 is always present */
break;
}
return ret;
}
int board_mmc_init(bd_t *bis)
{
#ifndef CONFIG_SPL_BUILD
int ret;
int i;
for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) {
switch (i) {
case 0:
imx_iomux_v3_setup_multiple_pads(
usdhc1_pads, ARRAY_SIZE(usdhc1_pads));
gpio_direction_input(USDHC1_CD_GPIO);
usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK);
break;
#ifndef CONFIG_CMD_NAND
case 1:
imx_iomux_v3_setup_multiple_pads(
usdhc4_pads, ARRAY_SIZE(usdhc4_pads));
usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC4_CLK);
break;
#endif
default:
printf("Warning: you configured more USDHC controllers"
"(%d) then supported by the board (%d)\n",
i + 1, CONFIG_SYS_FSL_USDHC_NUM);
return -EINVAL;
}
ret = fsl_esdhc_initialize(bis, &usdhc_cfg[i]);
if (ret)
return ret;
}
return 0;
#else
struct src *psrc = (struct src *)SRC_BASE_ADDR;
unsigned reg = readl(&psrc->sbmr1) >> 11;
/*
* Upon reading BOOT_CFG register the following map is done:
* Bit 11 and 12 of BOOT_CFG register can determine the current
* mmc port
* 0x1 SD1
* 0x2 SD2
* 0x3 SD4
*/
switch (reg & 0x3) {
case 0x0:
imx_iomux_v3_setup_multiple_pads(
usdhc1_pads, ARRAY_SIZE(usdhc1_pads));
gpio_direction_input(USDHC1_CD_GPIO);
usdhc_cfg[0].esdhc_base = USDHC1_BASE_ADDR;
usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK);
usdhc_cfg[0].max_bus_width = 4;
gd->arch.sdhc_clk = usdhc_cfg[0].sdhc_clk;
break;
}
return fsl_esdhc_initialize(bis, &usdhc_cfg[0]);
#endif
}
static void setup_iomux_uart(void)
{
imx_iomux_v3_setup_multiple_pads(uart1_pads, ARRAY_SIZE(uart1_pads));
}
static void setup_iomux_enet(void)
{
imx_iomux_v3_setup_multiple_pads(enet_pads, ARRAY_SIZE(enet_pads));
gpio_direction_output(ENET_PHY_RESET_GPIO, 0);
mdelay(10);
gpio_set_value(ENET_PHY_RESET_GPIO, 1);
mdelay(30);
}
static void setup_spi(void)
{
gpio_request(IMX_GPIO_NR(3, 19), "spi_cs0");
gpio_direction_output(IMX_GPIO_NR(3, 19), 1);
imx_iomux_v3_setup_multiple_pads(ecspi1_pads, ARRAY_SIZE(ecspi1_pads));
enable_spi_clk(true, 0);
}
#ifdef CONFIG_CMD_NAND
static void setup_gpmi_nand(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
/* config gpmi nand iomux */
imx_iomux_v3_setup_multiple_pads(nfc_pads, ARRAY_SIZE(nfc_pads));
/* gate ENFC_CLK_ROOT clock first,before clk source switch */
clrbits_le32(&mxc_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
/* config gpmi and bch clock to 100 MHz */
clrsetbits_le32(&mxc_ccm->cs2cdr,
MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
MXC_CCM_CS2CDR_ENFC_CLK_PODF(0) |
MXC_CCM_CS2CDR_ENFC_CLK_PRED(3) |
MXC_CCM_CS2CDR_ENFC_CLK_SEL(3));
/* enable ENFC_CLK_ROOT clock */
setbits_le32(&mxc_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
/* enable gpmi and bch clock gating */
setbits_le32(&mxc_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_OFFSET);
/* enable apbh clock gating */
setbits_le32(&mxc_ccm->CCGR0, MXC_CCM_CCGR0_APBHDMA_MASK);
}
#endif
int board_spi_cs_gpio(unsigned bus, unsigned cs)
{
if (bus != 0 || (cs != 0))
return -EINVAL;
return IMX_GPIO_NR(3, 19);
}
int board_eth_init(bd_t *bis)
{
setup_iomux_enet();
return cpu_eth_init(bis);
}
int board_early_init_f(void)
{
setup_iomux_uart();
return 0;
}
int board_init(void)
{
/* address of boot parameters */
gd->bd->bi_boot_params = PHYS_SDRAM + 0x100;
#ifdef CONFIG_SYS_I2C_MXC
setup_i2c(2, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info2);
#endif
#ifdef CONFIG_MXC_SPI
setup_spi();
#endif
#ifdef CONFIG_CMD_NAND
setup_gpmi_nand();
#endif
return 0;
}
#ifdef CONFIG_CMD_BMODE
/*
* BOOT_CFG1, BOOT_CFG2, BOOT_CFG3, BOOT_CFG4
* see Table 8-11 and Table 5-9
* BOOT_CFG1[7] = 1 (boot from NAND)
* BOOT_CFG1[5] = 0 - raw NAND
* BOOT_CFG1[4] = 0 - default pad settings
* BOOT_CFG1[3:2] = 00 - devices = 1
* BOOT_CFG1[1:0] = 00 - Row Address Cycles = 3
* BOOT_CFG2[4:3] = 00 - Boot Search Count = 2
* BOOT_CFG2[2:1] = 01 - Pages In Block = 64
* BOOT_CFG2[0] = 0 - Reset time 12ms
*/
static const struct boot_mode board_boot_modes[] = {
/* NAND: 64pages per block, 3 row addr cycles, 2 copies of FCB/DBBT */
{"nand", MAKE_CFGVAL(0x80, 0x02, 0x00, 0x00)},
{"mmc0", MAKE_CFGVAL(0x40, 0x20, 0x00, 0x00)},
{NULL, 0},
};
#endif
int board_late_init(void)
{
#ifdef CONFIG_CMD_BMODE
add_board_boot_modes(board_boot_modes);
#endif
return 0;
}
#ifdef CONFIG_SPL_BUILD
#include <spl.h>
#include <linux/libfdt.h>
static const struct mx6dq_iomux_ddr_regs mx6_ddr_ioregs = {
.dram_sdclk_0 = 0x00000030,
.dram_sdclk_1 = 0x00000030,
.dram_cas = 0x00000030,
.dram_ras = 0x00000030,
.dram_reset = 0x00000030,
.dram_sdcke0 = 0x00000030,
.dram_sdcke1 = 0x00000030,
.dram_sdba2 = 0x00000000,
.dram_sdodt0 = 0x00000030,
.dram_sdodt1 = 0x00000030,
.dram_sdqs0 = 0x00000030,
.dram_sdqs1 = 0x00000030,
.dram_sdqs2 = 0x00000030,
.dram_sdqs3 = 0x00000030,
.dram_sdqs4 = 0x00000030,
.dram_sdqs5 = 0x00000030,
.dram_sdqs6 = 0x00000030,
.dram_sdqs7 = 0x00000030,
.dram_dqm0 = 0x00000030,
.dram_dqm1 = 0x00000030,
.dram_dqm2 = 0x00000030,
.dram_dqm3 = 0x00000030,
.dram_dqm4 = 0x00000030,
.dram_dqm5 = 0x00000030,
.dram_dqm6 = 0x00000030,
.dram_dqm7 = 0x00000030,
};
static const struct mx6dq_iomux_grp_regs mx6_grp_ioregs = {
.grp_ddr_type = 0x000C0000,
.grp_ddrmode_ctl = 0x00020000,
.grp_ddrpke = 0x00000000,
.grp_addds = IMX6Q_DRIVE_STRENGTH,
.grp_ctlds = IMX6Q_DRIVE_STRENGTH,
.grp_ddrmode = 0x00020000,
.grp_b0ds = IMX6Q_DRIVE_STRENGTH,
.grp_b1ds = IMX6Q_DRIVE_STRENGTH,
.grp_b2ds = IMX6Q_DRIVE_STRENGTH,
.grp_b3ds = IMX6Q_DRIVE_STRENGTH,
.grp_b4ds = IMX6Q_DRIVE_STRENGTH,
.grp_b5ds = IMX6Q_DRIVE_STRENGTH,
.grp_b6ds = IMX6Q_DRIVE_STRENGTH,
.grp_b7ds = IMX6Q_DRIVE_STRENGTH,
};
static const struct mx6_mmdc_calibration mx6_mmcd_calib = {
.p0_mpwldectrl0 = 0x00140014,
.p0_mpwldectrl1 = 0x000A0015,
.p1_mpwldectrl0 = 0x000A001E,
.p1_mpwldectrl1 = 0x000A0015,
.p0_mpdgctrl0 = 0x43080314,
.p0_mpdgctrl1 = 0x02680300,
.p1_mpdgctrl0 = 0x430C0318,
.p1_mpdgctrl1 = 0x03000254,
.p0_mprddlctl = 0x3A323234,
.p1_mprddlctl = 0x3E3C3242,
.p0_mpwrdlctl = 0x2A2E3632,
.p1_mpwrdlctl = 0x3C323E34,
};
static struct mx6_ddr3_cfg mem_ddr = {
.mem_speed = 1600,
.density = 2,
.width = 16,
.banks = 8,
.rowaddr = 14,
.coladdr = 10,
.pagesz = 2,
.trcd = 1375,
.trcmin = 4875,
.trasmin = 3500,
.SRT = 1,
};
static void ccgr_init(void)
{
struct mxc_ccm_reg *ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
writel(0x00C03F3F, &ccm->CCGR0);
writel(0x0030FC03, &ccm->CCGR1);
writel(0x0FFFC000, &ccm->CCGR2);
writel(0x3FF00000, &ccm->CCGR3);
writel(0x00FFF300, &ccm->CCGR4);
writel(0x0F0000C3, &ccm->CCGR5);
writel(0x000003FF, &ccm->CCGR6);
}
static void spl_dram_init(void)
{
struct mx6_ddr_sysinfo sysinfo = {
/* width of data bus:0=16,1=32,2=64 */
.dsize = 2,
/* config for full 4GB range so that get_mem_size() works */
.cs_density = 32, /* 32Gb per CS */
/* single chip select */
.ncs = 1,
.cs1_mirror = 0,
.rtt_wr = 1 /*DDR3_RTT_60_OHM*/, /* RTT_Wr = RZQ/4 */
.rtt_nom = 1 /*DDR3_RTT_60_OHM*/, /* RTT_Nom = RZQ/4 */
.walat = 1, /* Write additional latency */
.ralat = 5, /* Read additional latency */
.mif3_mode = 3, /* Command prediction working mode */
.bi_on = 1, /* Bank interleaving enabled */
.sde_to_rst = 0x10, /* 14 cycles, 200us (JEDEC default) */
.rst_to_cke = 0x23, /* 33 cycles, 500us (JEDEC default) */
.ddr_type = DDR_TYPE_DDR3,
.refsel = 1, /* Refresh cycles at 32KHz */
.refr = 7, /* 8 refresh commands per refresh cycle */
};
mx6dq_dram_iocfg(64, &mx6_ddr_ioregs, &mx6_grp_ioregs);
mx6_dram_cfg(&sysinfo, &mx6_mmcd_calib, &mem_ddr);
}
void board_boot_order(u32 *spl_boot_list)
{
spl_boot_list[0] = spl_boot_device();
printf("Boot device %x\n", spl_boot_list[0]);
switch (spl_boot_list[0]) {
case BOOT_DEVICE_SPI:
spl_boot_list[1] = BOOT_DEVICE_UART;
break;
case BOOT_DEVICE_MMC1:
spl_boot_list[1] = BOOT_DEVICE_SPI;
spl_boot_list[2] = BOOT_DEVICE_UART;
break;
default:
printf("Boot device %x\n", spl_boot_list[0]);
}
}
void board_init_f(ulong dummy)
{
#ifdef CONFIG_CMD_NAND
/* Enable NAND */
setup_gpmi_nand();
#endif
/* setup clock gating */
ccgr_init();
/* setup AIPS and disable watchdog */
arch_cpu_init();
/* setup AXI */
gpr_init();
board_early_init_f();
/* setup GP timer */
timer_init();
setup_spi();
/* UART clocks enabled and gd valid - init serial console */
preloader_console_init();
/* DDR initialization */
spl_dram_init();
/* Clear the BSS. */
memset(__bss_start, 0, __bss_end - __bss_start);
/* load/boot image from boot device */
board_init_r(NULL, 0);
}
#endif