u-boot/lib/efi_loader/efi_memory.c
Ilias Apalodimas 65b38a519b Revert "efi_memory: do not add U-Boot memory to the memory map"
This reverts commit ("commit a68c9ac5d8 ("efi_memory: do not add
U-Boot memory to the memory map").

This code was removed when the EFI subsystem started using LMB calls for
the reservations. In hindsight it unearthed two problems.

The e820 code is adding u-boot memory as EfiReservedMemory while it
should look at what LMB added and decide instead of blindly overwriting
it. The reason this worked is that we marked that code properly late,
when the EFI came up. But now with the LMB changes, the EFI map gets
added first and the e820 code overwrites it.

The second problem is that we never mark SetVirtualAddressMap as runtime
code, which we should according to the spec. Until we fix this the
current hack can't go away, at least for architectures that *need* to
call SVAM.

More specifically x86 currently requires SVAM and sets the NX bit for
pages not marked as *_CODE. So unless we do that late, it will crash
trying to execute from non-executable memory. It's also worth noting
that x86 calls SVAM late in the boot, so this will work until someone
decides to overwrite/use BootServicesCode from the OS.

Notably arm64 disables it explicitly if the VA space is > 48bits, so
doesn't suffer from any of these problems.

This doesn't really deserve a fixes tag, since it brings back a hack to
remedy a situation that was wrong long before that commit, but in case
anyone hits the same bug ...
Simon sent the original revert in the link, but we need a proper
justification for it.

Link: https://lore.kernel.org/u-boot/20241112131830.576864-1-sjg@chromium.org/
Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Acked-by: Sughosh Ganu <sughosh.ganu@linaro.org>
Reported-by: Simon Glass <sjg@chromium.org>
2024-11-30 08:37:53 -06:00

867 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* EFI application memory management
*
* Copyright (c) 2016 Alexander Graf
*/
#define LOG_CATEGORY LOGC_EFI
#include <efi_loader.h>
#include <init.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <mapmem.h>
#include <watchdog.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/sections.h>
#include <linux/list_sort.h>
#include <linux/sizes.h>
DECLARE_GLOBAL_DATA_PTR;
/* Magic number identifying memory allocated from pool */
#define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2
efi_uintn_t efi_memory_map_key;
struct efi_mem_list {
struct list_head link;
struct efi_mem_desc desc;
};
#define EFI_CARVE_NO_OVERLAP -1
#define EFI_CARVE_LOOP_AGAIN -2
#define EFI_CARVE_OVERLAPS_NONRAM -3
#define EFI_CARVE_OUT_OF_RESOURCES -4
/* This list contains all memory map items */
static LIST_HEAD(efi_mem);
#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
void *efi_bounce_buffer;
#endif
/**
* struct efi_pool_allocation - memory block allocated from pool
*
* @num_pages: number of pages allocated
* @checksum: checksum
* @data: allocated pool memory
*
* U-Boot services each UEFI AllocatePool() request as a separate
* (multiple) page allocation. We have to track the number of pages
* to be able to free the correct amount later.
*
* The checksum calculated in function checksum() is used in FreePool() to avoid
* freeing memory not allocated by AllocatePool() and duplicate freeing.
*
* EFI requires 8 byte alignment for pool allocations, so we can
* prepend each allocation with these header fields.
*/
struct efi_pool_allocation {
u64 num_pages;
u64 checksum;
char data[] __aligned(ARCH_DMA_MINALIGN);
};
/**
* checksum() - calculate checksum for memory allocated from pool
*
* @alloc: allocation header
* Return: checksum, always non-zero
*/
static u64 checksum(struct efi_pool_allocation *alloc)
{
u64 addr = (uintptr_t)alloc;
u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^
EFI_ALLOC_POOL_MAGIC;
if (!ret)
++ret;
return ret;
}
/**
* efi_mem_cmp() - comparator function for sorting memory map
*
* Sorts the memory list from highest address to lowest address
*
* When allocating memory we should always start from the highest
* address chunk, so sort the memory list such that the first list
* iterator gets the highest address and goes lower from there.
*
* @priv: unused
* @a: first memory area
* @b: second memory area
* Return: 1 if @a is before @b, -1 if @b is before @a, 0 if equal
*/
static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
if (mema->desc.physical_start == memb->desc.physical_start)
return 0;
else if (mema->desc.physical_start < memb->desc.physical_start)
return 1;
else
return -1;
}
/**
* desc_get_end() - get end address of memory area
*
* @desc: memory descriptor
* Return: end address + 1
*/
static uint64_t desc_get_end(struct efi_mem_desc *desc)
{
return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
}
/**
* efi_mem_sort() - sort memory map
*
* Sort the memory map and then try to merge adjacent memory areas.
*/
static void efi_mem_sort(void)
{
struct efi_mem_list *lmem;
struct efi_mem_list *prevmem = NULL;
bool merge_again = true;
list_sort(NULL, &efi_mem, efi_mem_cmp);
/* Now merge entries that can be merged */
while (merge_again) {
merge_again = false;
list_for_each_entry(lmem, &efi_mem, link) {
struct efi_mem_desc *prev;
struct efi_mem_desc *cur;
uint64_t pages;
if (!prevmem) {
prevmem = lmem;
continue;
}
cur = &lmem->desc;
prev = &prevmem->desc;
if ((desc_get_end(cur) == prev->physical_start) &&
(prev->type == cur->type) &&
(prev->attribute == cur->attribute)) {
/* There is an existing map before, reuse it */
pages = cur->num_pages;
prev->num_pages += pages;
prev->physical_start -= pages << EFI_PAGE_SHIFT;
prev->virtual_start -= pages << EFI_PAGE_SHIFT;
list_del(&lmem->link);
free(lmem);
merge_again = true;
break;
}
prevmem = lmem;
}
}
}
/**
* efi_mem_carve_out() - unmap memory region
*
* @map: memory map
* @carve_desc: memory region to unmap
* @overlap_conventional: the carved out region may only overlap free,
* or conventional memory
* Return: the number of overlapping pages which have been
* removed from the map,
* EFI_CARVE_NO_OVERLAP, if the regions don't
* overlap, EFI_CARVE_OVERLAPS_NONRAM, if the carve
* and map overlap, and the map contains anything
* but free ram(only when overlap_conventional is
* true),
* EFI_CARVE_LOOP_AGAIN, if the mapping list should
* be traversed again, as it has been altered.
*
* Unmaps all memory occupied by the carve_desc region from the list entry
* pointed to by map.
*
* In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
* to re-add the already carved out pages to the mapping.
*/
static s64 efi_mem_carve_out(struct efi_mem_list *map,
struct efi_mem_desc *carve_desc,
bool overlap_conventional)
{
struct efi_mem_list *newmap;
struct efi_mem_desc *map_desc = &map->desc;
uint64_t map_start = map_desc->physical_start;
uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
uint64_t carve_start = carve_desc->physical_start;
uint64_t carve_end = carve_start +
(carve_desc->num_pages << EFI_PAGE_SHIFT);
/* check whether we're overlapping */
if ((carve_end <= map_start) || (carve_start >= map_end))
return EFI_CARVE_NO_OVERLAP;
/* We're overlapping with non-RAM, warn the caller if desired */
if (overlap_conventional && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
return EFI_CARVE_OVERLAPS_NONRAM;
/* Sanitize carve_start and carve_end to lie within our bounds */
carve_start = max(carve_start, map_start);
carve_end = min(carve_end, map_end);
/* Carving at the beginning of our map? Just move it! */
if (carve_start == map_start) {
if (map_end == carve_end) {
/* Full overlap, just remove map */
list_del(&map->link);
free(map);
} else {
map->desc.physical_start = carve_end;
map->desc.virtual_start = carve_end;
map->desc.num_pages = (map_end - carve_end)
>> EFI_PAGE_SHIFT;
}
return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
}
/*
* Overlapping maps, just split the list map at carve_start,
* it will get moved or removed in the next iteration.
*
* [ map_desc |__carve_start__| newmap ]
*/
/* Create a new map from [ carve_start ... map_end ] */
newmap = calloc(1, sizeof(*newmap));
if (!newmap)
return EFI_CARVE_OUT_OF_RESOURCES;
newmap->desc = map->desc;
newmap->desc.physical_start = carve_start;
newmap->desc.virtual_start = carve_start;
newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
/* Insert before current entry (descending address order) */
list_add_tail(&newmap->link, &map->link);
/* Shrink the map to [ map_start ... carve_start ] */
map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
return EFI_CARVE_LOOP_AGAIN;
}
/**
* efi_add_memory_map_pg() - add pages to the memory map
*
* @start: start address, must be a multiple of
* EFI_PAGE_SIZE
* @pages: number of pages to add
* @memory_type: type of memory added
* @overlap_conventional: region may only overlap free(conventional)
* memory
* Return: status code
*/
efi_status_t efi_add_memory_map_pg(u64 start, u64 pages,
int memory_type,
bool overlap_conventional)
{
struct efi_mem_list *lmem;
struct efi_mem_list *newlist;
bool carve_again;
uint64_t carved_pages = 0;
struct efi_event *evt;
EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__,
start, pages, memory_type, overlap_conventional ?
"yes" : "no");
if (memory_type >= EFI_MAX_MEMORY_TYPE)
return EFI_INVALID_PARAMETER;
if (!pages)
return EFI_SUCCESS;
++efi_memory_map_key;
newlist = calloc(1, sizeof(*newlist));
if (!newlist)
return EFI_OUT_OF_RESOURCES;
newlist->desc.type = memory_type;
newlist->desc.physical_start = start;
newlist->desc.virtual_start = start;
newlist->desc.num_pages = pages;
switch (memory_type) {
case EFI_RUNTIME_SERVICES_CODE:
case EFI_RUNTIME_SERVICES_DATA:
newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
break;
case EFI_MMAP_IO:
newlist->desc.attribute = EFI_MEMORY_RUNTIME;
break;
default:
newlist->desc.attribute = EFI_MEMORY_WB;
break;
}
/* Add our new map */
do {
carve_again = false;
list_for_each_entry(lmem, &efi_mem, link) {
s64 r;
r = efi_mem_carve_out(lmem, &newlist->desc,
overlap_conventional);
switch (r) {
case EFI_CARVE_OUT_OF_RESOURCES:
free(newlist);
return EFI_OUT_OF_RESOURCES;
case EFI_CARVE_OVERLAPS_NONRAM:
/*
* The user requested to only have RAM overlaps,
* but we hit a non-RAM region. Error out.
*/
free(newlist);
return EFI_NO_MAPPING;
case EFI_CARVE_NO_OVERLAP:
/* Just ignore this list entry */
break;
case EFI_CARVE_LOOP_AGAIN:
/*
* We split an entry, but need to loop through
* the list again to actually carve it.
*/
carve_again = true;
break;
default:
/* We carved a number of pages */
carved_pages += r;
carve_again = true;
break;
}
if (carve_again) {
/* The list changed, we need to start over */
break;
}
}
} while (carve_again);
if (overlap_conventional && (carved_pages != pages)) {
/*
* The payload wanted to have RAM overlaps, but we overlapped
* with an unallocated region. Error out.
*/
free(newlist);
return EFI_NO_MAPPING;
}
/* Add our new map */
list_add_tail(&newlist->link, &efi_mem);
/* And make sure memory is listed in descending order */
efi_mem_sort();
/* Notify that the memory map was changed */
list_for_each_entry(evt, &efi_events, link) {
if (evt->group &&
!guidcmp(evt->group,
&efi_guid_event_group_memory_map_change)) {
efi_signal_event(evt);
break;
}
}
return EFI_SUCCESS;
}
/**
* efi_add_memory_map() - add memory area to the memory map
*
* @start: start address of the memory area
* @size: length in bytes of the memory area
* @memory_type: type of memory added
*
* Return: status code
*
* This function automatically aligns the start and size of the memory area
* to EFI_PAGE_SIZE.
*/
efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type)
{
u64 pages;
pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK));
start &= ~EFI_PAGE_MASK;
return efi_add_memory_map_pg(start, pages, memory_type, false);
}
/**
* efi_check_allocated() - validate address to be freed
*
* Check that the address is within allocated memory:
*
* * The address must be in a range of the memory map.
* * The address may not point to EFI_CONVENTIONAL_MEMORY.
*
* Page alignment is not checked as this is not a requirement of
* efi_free_pool().
*
* @addr: address of page to be freed
* @must_be_allocated: return success if the page is allocated
* Return: status code
*/
static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)
{
struct efi_mem_list *item;
list_for_each_entry(item, &efi_mem, link) {
u64 start = item->desc.physical_start;
u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT);
if (addr >= start && addr < end) {
if (must_be_allocated ^
(item->desc.type == EFI_CONVENTIONAL_MEMORY))
return EFI_SUCCESS;
else
return EFI_NOT_FOUND;
}
}
return EFI_NOT_FOUND;
}
/**
* efi_allocate_pages - allocate memory pages
*
* @type: type of allocation to be performed
* @memory_type: usage type of the allocated memory
* @pages: number of pages to be allocated
* @memory: allocated memory
* Return: status code
*/
efi_status_t efi_allocate_pages(enum efi_allocate_type type,
enum efi_memory_type memory_type,
efi_uintn_t pages, uint64_t *memory)
{
u64 efi_addr, len;
uint flags;
efi_status_t ret;
phys_addr_t addr;
/* Check import parameters */
if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE &&
memory_type <= 0x6FFFFFFF)
return EFI_INVALID_PARAMETER;
if (!memory)
return EFI_INVALID_PARAMETER;
len = (u64)pages << EFI_PAGE_SHIFT;
/* Catch possible overflow on 64bit systems */
if (sizeof(efi_uintn_t) == sizeof(u64) &&
(len >> EFI_PAGE_SHIFT) != (u64)pages)
return EFI_OUT_OF_RESOURCES;
flags = LMB_NOOVERWRITE | LMB_NONOTIFY;
switch (type) {
case EFI_ALLOCATE_ANY_PAGES:
/* Any page */
addr = (u64)lmb_alloc_base_flags(len, EFI_PAGE_SIZE,
LMB_ALLOC_ANYWHERE, flags);
if (!addr)
return EFI_OUT_OF_RESOURCES;
break;
case EFI_ALLOCATE_MAX_ADDRESS:
/* Max address */
addr = map_to_sysmem((void *)(uintptr_t)*memory);
addr = (u64)lmb_alloc_base_flags(len, EFI_PAGE_SIZE, addr,
flags);
if (!addr)
return EFI_OUT_OF_RESOURCES;
break;
case EFI_ALLOCATE_ADDRESS:
if (*memory & EFI_PAGE_MASK)
return EFI_NOT_FOUND;
addr = map_to_sysmem((void *)(uintptr_t)*memory);
addr = (u64)lmb_alloc_addr_flags(addr, len, flags);
if (!addr)
return EFI_NOT_FOUND;
break;
default:
/* UEFI doesn't specify other allocation types */
return EFI_INVALID_PARAMETER;
}
efi_addr = (u64)(uintptr_t)map_sysmem(addr, 0);
/* Reserve that map in our memory maps */
ret = efi_add_memory_map_pg(efi_addr, pages, memory_type, true);
if (ret != EFI_SUCCESS) {
/* Map would overlap, bail out */
lmb_free_flags(addr, (u64)pages << EFI_PAGE_SHIFT, flags);
unmap_sysmem((void *)(uintptr_t)efi_addr);
return EFI_OUT_OF_RESOURCES;
}
*memory = efi_addr;
return EFI_SUCCESS;
}
/**
* efi_free_pages() - free memory pages
*
* @memory: start of the memory area to be freed
* @pages: number of pages to be freed
* Return: status code
*/
efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
{
u64 len;
long status;
efi_status_t ret;
ret = efi_check_allocated(memory, true);
if (ret != EFI_SUCCESS)
return ret;
/* Sanity check */
if (!memory || (memory & EFI_PAGE_MASK) || !pages) {
printf("%s: illegal free 0x%llx, 0x%zx\n", __func__,
memory, pages);
return EFI_INVALID_PARAMETER;
}
len = (u64)pages << EFI_PAGE_SHIFT;
/*
* The 'memory' variable for sandbox holds a pointer which has already
* been mapped with map_sysmem() from efi_allocate_pages(). Convert
* it back to an address LMB understands
*/
status = lmb_free_flags(map_to_sysmem((void *)(uintptr_t)memory), len,
LMB_NOOVERWRITE);
if (status)
return EFI_NOT_FOUND;
unmap_sysmem((void *)(uintptr_t)memory);
return ret;
}
/**
* efi_alloc_aligned_pages() - allocate aligned memory pages
*
* @len: len in bytes
* @memory_type: usage type of the allocated memory
* @align: alignment in bytes
* Return: aligned memory or NULL
*/
void *efi_alloc_aligned_pages(u64 len, int memory_type, size_t align)
{
u64 req_pages = efi_size_in_pages(len);
u64 true_pages = req_pages + efi_size_in_pages(align) - 1;
u64 free_pages;
u64 aligned_mem;
efi_status_t r;
u64 mem;
/* align must be zero or a power of two */
if (align & (align - 1))
return NULL;
/* Check for overflow */
if (true_pages < req_pages)
return NULL;
if (align < EFI_PAGE_SIZE) {
r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
req_pages, &mem);
return (r == EFI_SUCCESS) ? (void *)(uintptr_t)mem : NULL;
}
r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
true_pages, &mem);
if (r != EFI_SUCCESS)
return NULL;
aligned_mem = ALIGN(mem, align);
/* Free pages before alignment */
free_pages = efi_size_in_pages(aligned_mem - mem);
if (free_pages)
efi_free_pages(mem, free_pages);
/* Free trailing pages */
free_pages = true_pages - (req_pages + free_pages);
if (free_pages) {
mem = aligned_mem + req_pages * EFI_PAGE_SIZE;
efi_free_pages(mem, free_pages);
}
return (void *)(uintptr_t)aligned_mem;
}
/**
* efi_allocate_pool - allocate memory from pool
*
* @pool_type: type of the pool from which memory is to be allocated
* @size: number of bytes to be allocated
* @buffer: allocated memory
* Return: status code
*/
efi_status_t efi_allocate_pool(enum efi_memory_type pool_type, efi_uintn_t size, void **buffer)
{
efi_status_t r;
u64 addr;
struct efi_pool_allocation *alloc;
u64 num_pages = efi_size_in_pages(size +
sizeof(struct efi_pool_allocation));
if (!buffer)
return EFI_INVALID_PARAMETER;
if (size == 0) {
*buffer = NULL;
return EFI_SUCCESS;
}
r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
&addr);
if (r == EFI_SUCCESS) {
alloc = (struct efi_pool_allocation *)(uintptr_t)addr;
alloc->num_pages = num_pages;
alloc->checksum = checksum(alloc);
*buffer = alloc->data;
}
return r;
}
/**
* efi_alloc() - allocate boot services data pool memory
*
* Allocate memory from pool and zero it out.
*
* @size: number of bytes to allocate
* Return: pointer to allocated memory or NULL
*/
void *efi_alloc(size_t size)
{
void *buf;
if (efi_allocate_pool(EFI_BOOT_SERVICES_DATA, size, &buf) !=
EFI_SUCCESS) {
log_err("out of memory\n");
return NULL;
}
memset(buf, 0, size);
return buf;
}
/**
* efi_free_pool() - free memory from pool
*
* @buffer: start of memory to be freed
* Return: status code
*/
efi_status_t efi_free_pool(void *buffer)
{
efi_status_t ret;
struct efi_pool_allocation *alloc;
if (!buffer)
return EFI_INVALID_PARAMETER;
ret = efi_check_allocated((uintptr_t)buffer, true);
if (ret != EFI_SUCCESS)
return ret;
alloc = container_of(buffer, struct efi_pool_allocation, data);
/* Check that this memory was allocated by efi_allocate_pool() */
if (((uintptr_t)alloc & EFI_PAGE_MASK) ||
alloc->checksum != checksum(alloc)) {
printf("%s: illegal free 0x%p\n", __func__, buffer);
return EFI_INVALID_PARAMETER;
}
/* Avoid double free */
alloc->checksum = 0;
ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
return ret;
}
/**
* efi_get_memory_map() - get map describing memory usage.
*
* @memory_map_size: on entry the size, in bytes, of the memory map buffer,
* on exit the size of the copied memory map
* @memory_map: buffer to which the memory map is written
* @map_key: key for the memory map
* @descriptor_size: size of an individual memory descriptor
* @descriptor_version: version number of the memory descriptor structure
* Return: status code
*/
efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
struct efi_mem_desc *memory_map,
efi_uintn_t *map_key,
efi_uintn_t *descriptor_size,
uint32_t *descriptor_version)
{
size_t map_entries;
efi_uintn_t map_size = 0;
struct efi_mem_list *lmem;
efi_uintn_t provided_map_size;
if (!memory_map_size)
return EFI_INVALID_PARAMETER;
provided_map_size = *memory_map_size;
map_entries = list_count_nodes(&efi_mem);
map_size = map_entries * sizeof(struct efi_mem_desc);
*memory_map_size = map_size;
if (descriptor_size)
*descriptor_size = sizeof(struct efi_mem_desc);
if (descriptor_version)
*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
if (provided_map_size < map_size)
return EFI_BUFFER_TOO_SMALL;
if (!memory_map)
return EFI_INVALID_PARAMETER;
/* Copy list into array */
/* Return the list in ascending order */
memory_map = &memory_map[map_entries - 1];
list_for_each_entry(lmem, &efi_mem, link) {
*memory_map = lmem->desc;
memory_map--;
}
if (map_key)
*map_key = efi_memory_map_key;
return EFI_SUCCESS;
}
/**
* efi_get_memory_map_alloc() - allocate map describing memory usage
*
* The caller is responsible for calling FreePool() if the call succeeds.
*
* @map_size: size of the memory map
* @memory_map: buffer to which the memory map is written
* Return: status code
*/
efi_status_t efi_get_memory_map_alloc(efi_uintn_t *map_size,
struct efi_mem_desc **memory_map)
{
efi_status_t ret;
*memory_map = NULL;
*map_size = 0;
ret = efi_get_memory_map(map_size, *memory_map, NULL, NULL, NULL);
if (ret == EFI_BUFFER_TOO_SMALL) {
*map_size += sizeof(struct efi_mem_desc); /* for the map */
ret = efi_allocate_pool(EFI_BOOT_SERVICES_DATA, *map_size,
(void **)memory_map);
if (ret != EFI_SUCCESS)
return ret;
ret = efi_get_memory_map(map_size, *memory_map,
NULL, NULL, NULL);
if (ret != EFI_SUCCESS) {
efi_free_pool(*memory_map);
*memory_map = NULL;
}
}
return ret;
}
/**
* efi_add_known_memory() - add memory types to the EFI memory map
*
* This function is to be used to add different memory types other
* than EFI_CONVENTIONAL_MEMORY to the EFI memory map. The conventional
* memory is handled by the LMB module and gets added to the memory
* map through the LMB module.
*
* This function may be overridden for architectures specific purposes.
*/
__weak void efi_add_known_memory(void)
{
}
/**
* add_u_boot_and_runtime() - add U-Boot code to memory map
*
* Add memory regions for U-Boot's memory and for the runtime services code.
*/
static void add_u_boot_and_runtime(void)
{
unsigned long runtime_start, runtime_end, runtime_pages;
unsigned long runtime_mask = EFI_PAGE_MASK;
unsigned long uboot_start, uboot_pages;
unsigned long uboot_stack_size = CONFIG_STACK_SIZE;
/* Add U-Boot */
uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) -
uboot_stack_size) & ~EFI_PAGE_MASK;
uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) -
uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
efi_add_memory_map_pg(uboot_start, uboot_pages, EFI_BOOT_SERVICES_CODE,
false);
#if defined(__aarch64__)
/*
* Runtime Services must be 64KiB aligned according to the
* "AArch64 Platforms" section in the UEFI spec (2.7+).
*/
runtime_mask = SZ_64K - 1;
#endif
/*
* Add Runtime Services. We mark surrounding boottime code as runtime as
* well to fulfill the runtime alignment constraints but avoid padding.
*/
runtime_start = (uintptr_t)__efi_runtime_start & ~runtime_mask;
runtime_end = (uintptr_t)__efi_runtime_stop;
runtime_end = (runtime_end + runtime_mask) & ~runtime_mask;
runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
efi_add_memory_map_pg(runtime_start, runtime_pages,
EFI_RUNTIME_SERVICES_CODE, false);
}
int efi_memory_init(void)
{
efi_add_known_memory();
add_u_boot_and_runtime();
#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
/* Request a 32bit 64MB bounce buffer region */
uint64_t efi_bounce_buffer_addr = 0xffffffff;
if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_BOOT_SERVICES_DATA,
(64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
&efi_bounce_buffer_addr) != EFI_SUCCESS)
return -1;
efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
#endif
return 0;
}