mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-28 07:31:15 +00:00
a94a4071d4
Replace instances of http://www.ti.com with https://www.ti.com Signed-off-by: Nishanth Menon <nm@ti.com>
963 lines
22 KiB
C
963 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2015
|
|
* Texas Instruments Incorporated - https://www.ti.com/
|
|
*/
|
|
|
|
#define LOG_CATEGORY UCLASS_REMOTEPROC
|
|
|
|
#define pr_fmt(fmt) "%s: " fmt, __func__
|
|
#include <common.h>
|
|
#include <elf.h>
|
|
#include <errno.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <virtio_ring.h>
|
|
#include <remoteproc.h>
|
|
#include <asm/io.h>
|
|
#include <dm/device-internal.h>
|
|
#include <dm.h>
|
|
#include <dm/uclass.h>
|
|
#include <dm/uclass-internal.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/printk.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
struct resource_table {
|
|
u32 ver;
|
|
u32 num;
|
|
u32 reserved[2];
|
|
u32 offset[0];
|
|
} __packed;
|
|
|
|
typedef int (*handle_resource_t) (struct udevice *, void *, int offset, int avail);
|
|
|
|
static struct resource_table *rsc_table;
|
|
|
|
/**
|
|
* for_each_remoteproc_device() - iterate through the list of rproc devices
|
|
* @fn: check function to call per match, if this function returns fail,
|
|
* iteration is aborted with the resultant error value
|
|
* @skip_dev: Device to skip calling the callback about.
|
|
* @data: Data to pass to the callback function
|
|
*
|
|
* Return: 0 if none of the callback returned a non 0 result, else returns the
|
|
* result from the callback function
|
|
*/
|
|
static int for_each_remoteproc_device(int (*fn) (struct udevice *dev,
|
|
struct dm_rproc_uclass_pdata *uc_pdata,
|
|
const void *data),
|
|
struct udevice *skip_dev,
|
|
const void *data)
|
|
{
|
|
struct udevice *dev;
|
|
struct dm_rproc_uclass_pdata *uc_pdata;
|
|
int ret;
|
|
|
|
for (ret = uclass_find_first_device(UCLASS_REMOTEPROC, &dev); dev;
|
|
ret = uclass_find_next_device(&dev)) {
|
|
if (ret || dev == skip_dev)
|
|
continue;
|
|
uc_pdata = dev_get_uclass_plat(dev);
|
|
ret = fn(dev, uc_pdata, data);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* _rproc_name_is_unique() - iteration helper to check if rproc name is unique
|
|
* @dev: device that we are checking name for
|
|
* @uc_pdata: uclass platform data
|
|
* @data: compare data (this is the name we want to ensure is unique)
|
|
*
|
|
* Return: 0 is there is no match(is unique); if there is a match(we dont
|
|
* have a unique name), return -EINVAL.
|
|
*/
|
|
static int _rproc_name_is_unique(struct udevice *dev,
|
|
struct dm_rproc_uclass_pdata *uc_pdata,
|
|
const void *data)
|
|
{
|
|
const char *check_name = data;
|
|
|
|
/* devices not yet populated with data - so skip them */
|
|
if (!uc_pdata->name || !check_name)
|
|
return 0;
|
|
|
|
/* Return 0 to search further if we dont match */
|
|
if (strlen(uc_pdata->name) != strlen(check_name))
|
|
return 0;
|
|
|
|
if (!strcmp(uc_pdata->name, check_name))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_name_is_unique() - Check if the rproc name is unique
|
|
* @check_dev: Device we are attempting to ensure is unique
|
|
* @check_name: Name we are trying to ensure is unique.
|
|
*
|
|
* Return: true if we have a unique name, false if name is not unique.
|
|
*/
|
|
static bool rproc_name_is_unique(struct udevice *check_dev,
|
|
const char *check_name)
|
|
{
|
|
int ret;
|
|
|
|
ret = for_each_remoteproc_device(_rproc_name_is_unique,
|
|
check_dev, check_name);
|
|
return ret ? false : true;
|
|
}
|
|
|
|
/**
|
|
* rproc_pre_probe() - Pre probe accessor for the uclass
|
|
* @dev: device for which we are preprobing
|
|
*
|
|
* Parses and fills up the uclass pdata for use as needed by core and
|
|
* remote proc drivers.
|
|
*
|
|
* Return: 0 if all wernt ok, else appropriate error value.
|
|
*/
|
|
static int rproc_pre_probe(struct udevice *dev)
|
|
{
|
|
struct dm_rproc_uclass_pdata *uc_pdata;
|
|
const struct dm_rproc_ops *ops;
|
|
|
|
uc_pdata = dev_get_uclass_plat(dev);
|
|
|
|
/* See if we need to populate via fdt */
|
|
|
|
if (!dev_get_plat(dev)) {
|
|
#if CONFIG_IS_ENABLED(OF_CONTROL)
|
|
bool tmp;
|
|
debug("'%s': using fdt\n", dev->name);
|
|
uc_pdata->name = dev_read_string(dev, "remoteproc-name");
|
|
|
|
/* Default is internal memory mapped */
|
|
uc_pdata->mem_type = RPROC_INTERNAL_MEMORY_MAPPED;
|
|
tmp = dev_read_bool(dev, "remoteproc-internal-memory-mapped");
|
|
if (tmp)
|
|
uc_pdata->mem_type = RPROC_INTERNAL_MEMORY_MAPPED;
|
|
#else
|
|
/* Nothing much we can do about this, can we? */
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
} else {
|
|
struct dm_rproc_uclass_pdata *pdata = dev_get_plat(dev);
|
|
|
|
debug("'%s': using legacy data\n", dev->name);
|
|
if (pdata->name)
|
|
uc_pdata->name = pdata->name;
|
|
uc_pdata->mem_type = pdata->mem_type;
|
|
uc_pdata->driver_plat_data = pdata->driver_plat_data;
|
|
}
|
|
|
|
/* Else try using device Name */
|
|
if (!uc_pdata->name)
|
|
uc_pdata->name = dev->name;
|
|
if (!uc_pdata->name) {
|
|
debug("Unnamed device!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!rproc_name_is_unique(dev, uc_pdata->name)) {
|
|
debug("%s duplicate name '%s'\n", dev->name, uc_pdata->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ops->load || !ops->start) {
|
|
debug("%s driver has missing mandatory ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_post_probe() - post probe accessor for the uclass
|
|
* @dev: deivce we finished probing
|
|
*
|
|
* initiate init function after the probe is completed. This allows
|
|
* the remote processor drivers to split up the initializations between
|
|
* probe and init as needed.
|
|
*
|
|
* Return: if the remote proc driver has a init routine, invokes it and
|
|
* hands over the return value. overall, 0 if all went well, else appropriate
|
|
* error value.
|
|
*/
|
|
static int rproc_post_probe(struct udevice *dev)
|
|
{
|
|
const struct dm_rproc_ops *ops;
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ops->init)
|
|
return ops->init(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_add_res() - After parsing the resource table add the mappings
|
|
* @dev: device we finished probing
|
|
* @mapping: rproc_mem_entry for the resource
|
|
*
|
|
* Return: if the remote proc driver has a add_res routine, invokes it and
|
|
* hands over the return value. overall, 0 if all went well, else appropriate
|
|
* error value.
|
|
*/
|
|
static int rproc_add_res(struct udevice *dev, struct rproc_mem_entry *mapping)
|
|
{
|
|
const struct dm_rproc_ops *ops = rproc_get_ops(dev);
|
|
|
|
if (!ops->add_res)
|
|
return -ENOSYS;
|
|
|
|
return ops->add_res(dev, mapping);
|
|
}
|
|
|
|
/**
|
|
* rproc_alloc_mem() - After parsing the resource table allocat mem
|
|
* @dev: device we finished probing
|
|
* @len: rproc_mem_entry for the resource
|
|
* @align: alignment for the resource
|
|
*
|
|
* Return: if the remote proc driver has a add_res routine, invokes it and
|
|
* hands over the return value. overall, 0 if all went well, else appropriate
|
|
* error value.
|
|
*/
|
|
static void *rproc_alloc_mem(struct udevice *dev, unsigned long len,
|
|
unsigned long align)
|
|
{
|
|
const struct dm_rproc_ops *ops;
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return NULL;
|
|
}
|
|
|
|
if (ops->alloc_mem)
|
|
return ops->alloc_mem(dev, len, align);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* rproc_config_pagetable() - Configure page table for remote processor
|
|
* @dev: device we finished probing
|
|
* @virt: Virtual address of the resource
|
|
* @phys: Physical address the resource
|
|
* @len: length the resource
|
|
*
|
|
* Return: if the remote proc driver has a add_res routine, invokes it and
|
|
* hands over the return value. overall, 0 if all went well, else appropriate
|
|
* error value.
|
|
*/
|
|
static int rproc_config_pagetable(struct udevice *dev, unsigned int virt,
|
|
unsigned int phys, unsigned int len)
|
|
{
|
|
const struct dm_rproc_ops *ops;
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ops->config_pagetable)
|
|
return ops->config_pagetable(dev, virt, phys, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
UCLASS_DRIVER(rproc) = {
|
|
.id = UCLASS_REMOTEPROC,
|
|
.name = "remoteproc",
|
|
.flags = DM_UC_FLAG_SEQ_ALIAS,
|
|
.pre_probe = rproc_pre_probe,
|
|
.post_probe = rproc_post_probe,
|
|
.per_device_plat_auto = sizeof(struct dm_rproc_uclass_pdata),
|
|
};
|
|
|
|
/* Remoteproc subsystem access functions */
|
|
/**
|
|
* _rproc_probe_dev() - iteration helper to probe a rproc device
|
|
* @dev: device to probe
|
|
* @uc_pdata: uclass data allocated for the device
|
|
* @data: unused
|
|
*
|
|
* Return: 0 if all ok, else appropriate error value.
|
|
*/
|
|
static int _rproc_probe_dev(struct udevice *dev,
|
|
struct dm_rproc_uclass_pdata *uc_pdata,
|
|
const void *data)
|
|
{
|
|
int ret;
|
|
|
|
ret = device_probe(dev);
|
|
|
|
if (ret)
|
|
debug("%s: Failed to initialize - %d\n", dev->name, ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* _rproc_dev_is_probed() - check if the device has been probed
|
|
* @dev: device to check
|
|
* @uc_pdata: unused
|
|
* @data: unused
|
|
*
|
|
* Return: -EAGAIN if not probed else return 0
|
|
*/
|
|
static int _rproc_dev_is_probed(struct udevice *dev,
|
|
struct dm_rproc_uclass_pdata *uc_pdata,
|
|
const void *data)
|
|
{
|
|
if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
|
|
return 0;
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
bool rproc_is_initialized(void)
|
|
{
|
|
int ret = for_each_remoteproc_device(_rproc_dev_is_probed, NULL, NULL);
|
|
return ret ? false : true;
|
|
}
|
|
|
|
int rproc_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (rproc_is_initialized()) {
|
|
debug("Already initialized\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = for_each_remoteproc_device(_rproc_probe_dev, NULL, NULL);
|
|
return ret;
|
|
}
|
|
|
|
int rproc_dev_init(int id)
|
|
{
|
|
struct udevice *dev = NULL;
|
|
int ret;
|
|
|
|
ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
|
|
if (ret) {
|
|
debug("Unknown remote processor id '%d' requested(%d)\n",
|
|
id, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = device_probe(dev);
|
|
if (ret)
|
|
debug("%s: Failed to initialize - %d\n", dev->name, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int rproc_load(int id, ulong addr, ulong size)
|
|
{
|
|
struct udevice *dev = NULL;
|
|
struct dm_rproc_uclass_pdata *uc_pdata;
|
|
const struct dm_rproc_ops *ops;
|
|
int ret;
|
|
|
|
ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
|
|
if (ret) {
|
|
debug("Unknown remote processor id '%d' requested(%d)\n",
|
|
id, ret);
|
|
return ret;
|
|
}
|
|
|
|
uc_pdata = dev_get_uclass_plat(dev);
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("Loading to '%s' from address 0x%08lX size of %lu bytes\n",
|
|
uc_pdata->name, addr, size);
|
|
if (ops->load)
|
|
return ops->load(dev, addr, size);
|
|
|
|
debug("%s: data corruption?? mandatory function is missing!\n",
|
|
dev->name);
|
|
|
|
return -EINVAL;
|
|
};
|
|
|
|
/*
|
|
* Completely internal helper enums..
|
|
* Keeping this isolated helps this code evolve independent of other
|
|
* parts..
|
|
*/
|
|
enum rproc_ops {
|
|
RPROC_START,
|
|
RPROC_STOP,
|
|
RPROC_RESET,
|
|
RPROC_PING,
|
|
RPROC_RUNNING,
|
|
};
|
|
|
|
/**
|
|
* _rproc_ops_wrapper() - wrapper for invoking remote proc driver callback
|
|
* @id: id of the remote processor
|
|
* @op: one of rproc_ops that indicate what operation to invoke
|
|
*
|
|
* Most of the checks and verification for remoteproc operations are more
|
|
* or less same for almost all operations. This allows us to put a wrapper
|
|
* and use the common checks to allow the driver to function appropriately.
|
|
*
|
|
* Return: 0 if all ok, else appropriate error value.
|
|
*/
|
|
static int _rproc_ops_wrapper(int id, enum rproc_ops op)
|
|
{
|
|
struct udevice *dev = NULL;
|
|
struct dm_rproc_uclass_pdata *uc_pdata;
|
|
const struct dm_rproc_ops *ops;
|
|
int (*fn)(struct udevice *dev);
|
|
bool mandatory = false;
|
|
char *op_str;
|
|
int ret;
|
|
|
|
ret = uclass_get_device_by_seq(UCLASS_REMOTEPROC, id, &dev);
|
|
if (ret) {
|
|
debug("Unknown remote processor id '%d' requested(%d)\n",
|
|
id, ret);
|
|
return ret;
|
|
}
|
|
|
|
uc_pdata = dev_get_uclass_plat(dev);
|
|
|
|
ops = rproc_get_ops(dev);
|
|
if (!ops) {
|
|
debug("%s driver has no ops?\n", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
switch (op) {
|
|
case RPROC_START:
|
|
fn = ops->start;
|
|
mandatory = true;
|
|
op_str = "Starting";
|
|
break;
|
|
case RPROC_STOP:
|
|
fn = ops->stop;
|
|
op_str = "Stopping";
|
|
break;
|
|
case RPROC_RESET:
|
|
fn = ops->reset;
|
|
op_str = "Resetting";
|
|
break;
|
|
case RPROC_RUNNING:
|
|
fn = ops->is_running;
|
|
op_str = "Checking if running:";
|
|
break;
|
|
case RPROC_PING:
|
|
fn = ops->ping;
|
|
op_str = "Pinging";
|
|
break;
|
|
default:
|
|
debug("what is '%d' operation??\n", op);
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("%s %s...\n", op_str, uc_pdata->name);
|
|
if (fn)
|
|
return fn(dev);
|
|
|
|
if (mandatory)
|
|
debug("%s: data corruption?? mandatory function is missing!\n",
|
|
dev->name);
|
|
|
|
return -ENOSYS;
|
|
}
|
|
|
|
int rproc_start(int id)
|
|
{
|
|
return _rproc_ops_wrapper(id, RPROC_START);
|
|
};
|
|
|
|
int rproc_stop(int id)
|
|
{
|
|
return _rproc_ops_wrapper(id, RPROC_STOP);
|
|
};
|
|
|
|
int rproc_reset(int id)
|
|
{
|
|
return _rproc_ops_wrapper(id, RPROC_RESET);
|
|
};
|
|
|
|
int rproc_ping(int id)
|
|
{
|
|
return _rproc_ops_wrapper(id, RPROC_PING);
|
|
};
|
|
|
|
int rproc_is_running(int id)
|
|
{
|
|
return _rproc_ops_wrapper(id, RPROC_RUNNING);
|
|
};
|
|
|
|
|
|
static int handle_trace(struct udevice *dev, struct fw_rsc_trace *rsc,
|
|
int offset, int avail)
|
|
{
|
|
if (sizeof(*rsc) > avail) {
|
|
debug("trace rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* make sure reserved bytes are zeroes
|
|
*/
|
|
if (rsc->reserved) {
|
|
debug("trace rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("trace rsc: da 0x%x, len 0x%x\n", rsc->da, rsc->len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_devmem(struct udevice *dev, struct fw_rsc_devmem *rsc,
|
|
int offset, int avail)
|
|
{
|
|
struct rproc_mem_entry *mapping;
|
|
|
|
if (sizeof(*rsc) > avail) {
|
|
debug("devmem rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* make sure reserved bytes are zeroes
|
|
*/
|
|
if (rsc->reserved) {
|
|
debug("devmem rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("devmem rsc: pa 0x%x, da 0x%x, len 0x%x\n",
|
|
rsc->pa, rsc->da, rsc->len);
|
|
|
|
rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len);
|
|
|
|
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
|
|
if (!mapping)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* We'll need this info later when we'll want to unmap everything
|
|
* (e.g. on shutdown).
|
|
*
|
|
* We can't trust the remote processor not to change the resource
|
|
* table, so we must maintain this info independently.
|
|
*/
|
|
mapping->dma = rsc->pa;
|
|
mapping->da = rsc->da;
|
|
mapping->len = rsc->len;
|
|
rproc_add_res(dev, mapping);
|
|
|
|
debug("mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
|
|
rsc->pa, rsc->da, rsc->len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_carveout(struct udevice *dev, struct fw_rsc_carveout *rsc,
|
|
int offset, int avail)
|
|
{
|
|
struct rproc_mem_entry *mapping;
|
|
|
|
if (sizeof(*rsc) > avail) {
|
|
debug("carveout rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* make sure reserved bytes are zeroes
|
|
*/
|
|
if (rsc->reserved) {
|
|
debug("carveout rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("carveout rsc: da %x, pa %x, len %x, flags %x\n",
|
|
rsc->da, rsc->pa, rsc->len, rsc->flags);
|
|
|
|
rsc->pa = (uintptr_t)rproc_alloc_mem(dev, rsc->len, 8);
|
|
if (!rsc->pa) {
|
|
debug
|
|
("failed to allocate carveout rsc: da %x, pa %x, len %x, flags %x\n",
|
|
rsc->da, rsc->pa, rsc->len, rsc->flags);
|
|
return -ENOMEM;
|
|
}
|
|
rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len);
|
|
|
|
/*
|
|
* Ok, this is non-standard.
|
|
*
|
|
* Sometimes we can't rely on the generic iommu-based DMA API
|
|
* to dynamically allocate the device address and then set the IOMMU
|
|
* tables accordingly, because some remote processors might
|
|
* _require_ us to use hard coded device addresses that their
|
|
* firmware was compiled with.
|
|
*
|
|
* In this case, we must use the IOMMU API directly and map
|
|
* the memory to the device address as expected by the remote
|
|
* processor.
|
|
*
|
|
* Obviously such remote processor devices should not be configured
|
|
* to use the iommu-based DMA API: we expect 'dma' to contain the
|
|
* physical address in this case.
|
|
*/
|
|
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
|
|
if (!mapping)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* We'll need this info later when we'll want to unmap
|
|
* everything (e.g. on shutdown).
|
|
*
|
|
* We can't trust the remote processor not to change the
|
|
* resource table, so we must maintain this info independently.
|
|
*/
|
|
mapping->dma = rsc->pa;
|
|
mapping->da = rsc->da;
|
|
mapping->len = rsc->len;
|
|
rproc_add_res(dev, mapping);
|
|
|
|
debug("carveout mapped 0x%x to 0x%x\n", rsc->da, rsc->pa);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define RPROC_PAGE_SHIFT 12
|
|
#define RPROC_PAGE_SIZE BIT(RPROC_PAGE_SHIFT)
|
|
#define RPROC_PAGE_ALIGN(x) (((x) + (RPROC_PAGE_SIZE - 1)) & ~(RPROC_PAGE_SIZE - 1))
|
|
|
|
static int alloc_vring(struct udevice *dev, struct fw_rsc_vdev *rsc, int i)
|
|
{
|
|
struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
|
|
int size;
|
|
int order;
|
|
void *pa;
|
|
|
|
debug("vdev rsc: vring%d: da %x, qsz %d, align %d\n",
|
|
i, vring->da, vring->num, vring->align);
|
|
|
|
/*
|
|
* verify queue size and vring alignment are sane
|
|
*/
|
|
if (!vring->num || !vring->align) {
|
|
debug("invalid qsz (%d) or alignment (%d)\n", vring->num,
|
|
vring->align);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* actual size of vring (in bytes)
|
|
*/
|
|
size = RPROC_PAGE_ALIGN(vring_size(vring->num, vring->align));
|
|
order = vring->align >> RPROC_PAGE_SHIFT;
|
|
|
|
pa = rproc_alloc_mem(dev, size, order);
|
|
if (!pa) {
|
|
debug("failed to allocate vring rsc\n");
|
|
return -ENOMEM;
|
|
}
|
|
debug("alloc_mem(%#x, %d): %p\n", size, order, pa);
|
|
vring->da = (uintptr_t)pa;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_vdev(struct udevice *dev, struct fw_rsc_vdev *rsc,
|
|
int offset, int avail)
|
|
{
|
|
int i, ret;
|
|
void *pa;
|
|
|
|
/*
|
|
* make sure resource isn't truncated
|
|
*/
|
|
if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
|
|
+ rsc->config_len > avail) {
|
|
debug("vdev rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* make sure reserved bytes are zeroes
|
|
*/
|
|
if (rsc->reserved[0] || rsc->reserved[1]) {
|
|
debug("vdev rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
|
|
rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
|
|
|
|
/*
|
|
* we currently support only two vrings per rvdev
|
|
*/
|
|
if (rsc->num_of_vrings > 2) {
|
|
debug("too many vrings: %d\n", rsc->num_of_vrings);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* allocate the vrings
|
|
*/
|
|
for (i = 0; i < rsc->num_of_vrings; i++) {
|
|
ret = alloc_vring(dev, rsc, i);
|
|
if (ret)
|
|
goto alloc_error;
|
|
}
|
|
|
|
pa = rproc_alloc_mem(dev, RPMSG_TOTAL_BUF_SPACE, 6);
|
|
if (!pa) {
|
|
debug("failed to allocate vdev rsc\n");
|
|
return -ENOMEM;
|
|
}
|
|
debug("vring buffer alloc_mem(%#x, 6): %p\n", RPMSG_TOTAL_BUF_SPACE,
|
|
pa);
|
|
|
|
return 0;
|
|
|
|
alloc_error:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* A lookup table for resource handlers. The indices are defined in
|
|
* enum fw_resource_type.
|
|
*/
|
|
static handle_resource_t loading_handlers[RSC_LAST] = {
|
|
[RSC_CARVEOUT] = (handle_resource_t)handle_carveout,
|
|
[RSC_DEVMEM] = (handle_resource_t)handle_devmem,
|
|
[RSC_TRACE] = (handle_resource_t)handle_trace,
|
|
[RSC_VDEV] = (handle_resource_t)handle_vdev,
|
|
};
|
|
|
|
/*
|
|
* handle firmware resource entries before booting the remote processor
|
|
*/
|
|
static int handle_resources(struct udevice *dev, int len,
|
|
handle_resource_t handlers[RSC_LAST])
|
|
{
|
|
handle_resource_t handler;
|
|
int ret = 0, i;
|
|
|
|
for (i = 0; i < rsc_table->num; i++) {
|
|
int offset = rsc_table->offset[i];
|
|
struct fw_rsc_hdr *hdr = (void *)rsc_table + offset;
|
|
int avail = len - offset - sizeof(*hdr);
|
|
void *rsc = (void *)hdr + sizeof(*hdr);
|
|
|
|
/*
|
|
* make sure table isn't truncated
|
|
*/
|
|
if (avail < 0) {
|
|
debug("rsc table is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
debug("rsc: type %d\n", hdr->type);
|
|
|
|
if (hdr->type >= RSC_LAST) {
|
|
debug("unsupported resource %d\n", hdr->type);
|
|
continue;
|
|
}
|
|
|
|
handler = handlers[hdr->type];
|
|
if (!handler)
|
|
continue;
|
|
|
|
ret = handler(dev, rsc, offset + sizeof(*hdr), avail);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
handle_intmem_to_l3_mapping(struct udevice *dev,
|
|
struct rproc_intmem_to_l3_mapping *l3_mapping)
|
|
{
|
|
u32 i = 0;
|
|
|
|
for (i = 0; i < l3_mapping->num_entries; i++) {
|
|
struct l3_map *curr_map = &l3_mapping->mappings[i];
|
|
struct rproc_mem_entry *mapping;
|
|
|
|
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
|
|
if (!mapping)
|
|
return -ENOMEM;
|
|
|
|
mapping->dma = curr_map->l3_addr;
|
|
mapping->da = curr_map->priv_addr;
|
|
mapping->len = curr_map->len;
|
|
rproc_add_res(dev, mapping);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static Elf32_Shdr *rproc_find_table(unsigned int addr)
|
|
{
|
|
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
|
|
Elf32_Shdr *shdr; /* Section header structure pointer */
|
|
Elf32_Shdr sectionheader;
|
|
int i;
|
|
u8 *elf_data;
|
|
char *name_table;
|
|
struct resource_table *ptable;
|
|
|
|
ehdr = (Elf32_Ehdr *)(uintptr_t)addr;
|
|
elf_data = (u8 *)ehdr;
|
|
shdr = (Elf32_Shdr *)(elf_data + ehdr->e_shoff);
|
|
memcpy(§ionheader, &shdr[ehdr->e_shstrndx], sizeof(sectionheader));
|
|
name_table = (char *)(elf_data + sectionheader.sh_offset);
|
|
|
|
for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
|
|
memcpy(§ionheader, shdr, sizeof(sectionheader));
|
|
u32 size = sectionheader.sh_size;
|
|
u32 offset = sectionheader.sh_offset;
|
|
|
|
if (strcmp
|
|
(name_table + sectionheader.sh_name, ".resource_table"))
|
|
continue;
|
|
|
|
ptable = (struct resource_table *)(elf_data + offset);
|
|
|
|
/*
|
|
* make sure table has at least the header
|
|
*/
|
|
if (sizeof(struct resource_table) > size) {
|
|
debug("header-less resource table\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* we don't support any version beyond the first
|
|
*/
|
|
if (ptable->ver != 1) {
|
|
debug("unsupported fw ver: %d\n", ptable->ver);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* make sure reserved bytes are zeroes
|
|
*/
|
|
if (ptable->reserved[0] || ptable->reserved[1]) {
|
|
debug("non zero reserved bytes\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* make sure the offsets array isn't truncated
|
|
*/
|
|
if (ptable->num * sizeof(ptable->offset[0]) +
|
|
sizeof(struct resource_table) > size) {
|
|
debug("resource table incomplete\n");
|
|
return NULL;
|
|
}
|
|
|
|
return shdr;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct resource_table *rproc_find_resource_table(struct udevice *dev,
|
|
unsigned int addr,
|
|
int *tablesz)
|
|
{
|
|
Elf32_Shdr *shdr;
|
|
Elf32_Shdr sectionheader;
|
|
struct resource_table *ptable;
|
|
u8 *elf_data = (u8 *)(uintptr_t)addr;
|
|
|
|
shdr = rproc_find_table(addr);
|
|
if (!shdr) {
|
|
debug("%s: failed to get resource section header\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
memcpy(§ionheader, shdr, sizeof(sectionheader));
|
|
ptable = (struct resource_table *)(elf_data + sectionheader.sh_offset);
|
|
if (tablesz)
|
|
*tablesz = sectionheader.sh_size;
|
|
|
|
return ptable;
|
|
}
|
|
|
|
unsigned long rproc_parse_resource_table(struct udevice *dev, struct rproc *cfg)
|
|
{
|
|
struct resource_table *ptable = NULL;
|
|
int tablesz;
|
|
int ret;
|
|
unsigned long addr;
|
|
|
|
addr = cfg->load_addr;
|
|
|
|
ptable = rproc_find_resource_table(dev, addr, &tablesz);
|
|
if (!ptable) {
|
|
debug("%s : failed to find resource table\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
debug("%s : found resource table\n", __func__);
|
|
rsc_table = kzalloc(tablesz, GFP_KERNEL);
|
|
if (!rsc_table) {
|
|
debug("resource table alloc failed!\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy the resource table into a local buffer before handling the
|
|
* resource table.
|
|
*/
|
|
memcpy(rsc_table, ptable, tablesz);
|
|
if (cfg->intmem_to_l3_mapping)
|
|
handle_intmem_to_l3_mapping(dev, cfg->intmem_to_l3_mapping);
|
|
ret = handle_resources(dev, tablesz, loading_handlers);
|
|
if (ret) {
|
|
debug("handle_resources failed: %d\n", ret);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Instead of trying to mimic the kernel flow of copying the
|
|
* processed resource table into its post ELF load location in DDR
|
|
* copying it into its original location.
|
|
*/
|
|
memcpy(ptable, rsc_table, tablesz);
|
|
free(rsc_table);
|
|
rsc_table = NULL;
|
|
|
|
return 1;
|
|
}
|