// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2018 Marek Behun */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mox_sp.h" #define MAX_MOX_MODULES 10 #define MOX_MODULE_SFP 0x1 #define MOX_MODULE_PCI 0x2 #define MOX_MODULE_TOPAZ 0x3 #define MOX_MODULE_PERIDOT 0x4 #define MOX_MODULE_USB3 0x5 #define MOX_MODULE_PASSPCI 0x6 #define ARMADA_37XX_NB_GPIO_SEL (MVEBU_REGISTER(0x13830)) #define ARMADA_37XX_SPI_CTRL (MVEBU_REGISTER(0x10600)) #define ARMADA_37XX_SPI_CFG (MVEBU_REGISTER(0x10604)) #define ARMADA_37XX_SPI_DOUT (MVEBU_REGISTER(0x10608)) #define ARMADA_37XX_SPI_DIN (MVEBU_REGISTER(0x1060c)) #define ETH1_PATH "/soc/internal-regs@d0000000/ethernet@40000" #define MDIO_PATH "/soc/internal-regs@d0000000/mdio@32004" #define SFP_GPIO_PATH "/soc/internal-regs@d0000000/spi@10600/moxtet@1/gpio@0" #define PCIE_PATH "/soc/pcie@d0070000" #define SFP_PATH "/sfp" #define LED_PATH "/leds/led" #define BUTTON_PATH "/gpio-keys/reset" DECLARE_GLOBAL_DATA_PTR; #if defined(CONFIG_OF_BOARD_FIXUP) int board_fix_fdt(void *blob) { u8 topology[MAX_MOX_MODULES]; int i, size, node; bool enable; /* * SPI driver is not loaded in driver model yet, but we have to find out * if pcie should be enabled in U-Boot's device tree. Therefore we have * to read SPI by reading/writing SPI registers directly */ writel(0x10df, ARMADA_37XX_SPI_CFG); /* put pin from GPIO to SPI mode */ clrbits_le32(ARMADA_37XX_NB_GPIO_SEL, BIT(12)); /* enable SPI CS1 */ setbits_le32(ARMADA_37XX_SPI_CTRL, BIT(17)); while (!(readl(ARMADA_37XX_SPI_CTRL) & 0x2)) udelay(1); for (i = 0; i < MAX_MOX_MODULES; ++i) { writel(0x0, ARMADA_37XX_SPI_DOUT); while (!(readl(ARMADA_37XX_SPI_CTRL) & 0x2)) udelay(1); topology[i] = readl(ARMADA_37XX_SPI_DIN) & 0xff; if (topology[i] == 0xff) break; topology[i] &= 0xf; } size = i; /* disable SPI CS1 */ clrbits_le32(ARMADA_37XX_SPI_CTRL, BIT(17)); if (size > 1 && (topology[1] == MOX_MODULE_PCI || topology[1] == MOX_MODULE_USB3 || topology[1] == MOX_MODULE_PASSPCI)) enable = true; else enable = false; node = fdt_path_offset(blob, PCIE_PATH); if (node < 0) { printf("Cannot find PCIe node in U-Boot's device tree!\n"); return 0; } if (fdt_setprop_string(blob, node, "status", enable ? "okay" : "disabled") < 0) { printf("Cannot %s PCIe in U-Boot's device tree!\n", enable ? "enable" : "disable"); return 0; } if (a3700_fdt_fix_pcie_regions(blob) < 0) { printf("Cannot fix PCIe regions in U-Boot's device tree!\n"); return 0; } return 0; } #endif int board_init(void) { /* address of boot parameters */ gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100; return 0; } static int mox_do_spi(u8 *in, u8 *out, size_t size) { struct spi_slave *slave; struct udevice *dev; int ret; ret = spi_get_bus_and_cs(0, 1, 1000000, SPI_CPHA | SPI_CPOL, "spi_generic_drv", "moxtet@1", &dev, &slave); if (ret) goto fail; ret = spi_claim_bus(slave); if (ret) goto fail_free; ret = spi_xfer(slave, size * 8, out, in, SPI_XFER_ONCE); spi_release_bus(slave); fail_free: spi_free_slave(slave); fail: return ret; } static int mox_get_topology(const u8 **ptopology, int *psize, int *pis_sd) { static int is_sd; static u8 topology[MAX_MOX_MODULES - 1]; static int size; u8 din[MAX_MOX_MODULES], dout[MAX_MOX_MODULES]; int ret, i; if (size) { if (ptopology) *ptopology = topology; if (psize) *psize = size; if (pis_sd) *pis_sd = is_sd; return 0; } memset(din, 0, MAX_MOX_MODULES); memset(dout, 0, MAX_MOX_MODULES); ret = mox_do_spi(din, dout, MAX_MOX_MODULES); if (ret) return ret; if (din[0] == 0x10) is_sd = 1; else if (din[0] == 0x00) is_sd = 0; else return -ENODEV; for (i = 1; i < MAX_MOX_MODULES && din[i] != 0xff; ++i) topology[i - 1] = din[i] & 0xf; size = i - 1; if (ptopology) *ptopology = topology; if (psize) *psize = size; if (pis_sd) *pis_sd = is_sd; return 0; } int comphy_update_map(struct comphy_map *serdes_map, int count) { int ret, i, size, sfpindex = -1, swindex = -1; const u8 *topology; ret = mox_get_topology(&topology, &size, NULL); if (ret) return ret; for (i = 0; i < size; ++i) { if (topology[i] == MOX_MODULE_SFP && sfpindex == -1) sfpindex = i; else if ((topology[i] == MOX_MODULE_TOPAZ || topology[i] == MOX_MODULE_PERIDOT) && swindex == -1) swindex = i; } if (sfpindex >= 0 && swindex >= 0) { if (sfpindex < swindex) serdes_map[0].speed = COMPHY_SPEED_1_25G; else serdes_map[0].speed = COMPHY_SPEED_3_125G; } else if (sfpindex >= 0) { serdes_map[0].speed = COMPHY_SPEED_1_25G; } else if (swindex >= 0) { serdes_map[0].speed = COMPHY_SPEED_3_125G; } return 0; } #define SW_SMI_CMD_R(d, r) (0x9800 | (((d) & 0x1f) << 5) | ((r) & 0x1f)) #define SW_SMI_CMD_W(d, r) (0x9400 | (((d) & 0x1f) << 5) | ((r) & 0x1f)) static int sw_multi_read(struct mii_dev *bus, int sw, int dev, int reg) { bus->write(bus, sw, 0, 0, SW_SMI_CMD_R(dev, reg)); mdelay(5); return bus->read(bus, sw, 0, 1); } static void sw_multi_write(struct mii_dev *bus, int sw, int dev, int reg, u16 val) { bus->write(bus, sw, 0, 1, val); bus->write(bus, sw, 0, 0, SW_SMI_CMD_W(dev, reg)); mdelay(5); } static int sw_scratch_read(struct mii_dev *bus, int sw, int reg) { sw_multi_write(bus, sw, 0x1c, 0x1a, (reg & 0x7f) << 8); return sw_multi_read(bus, sw, 0x1c, 0x1a) & 0xff; } static void sw_led_write(struct mii_dev *bus, int sw, int port, int reg, u16 val) { sw_multi_write(bus, sw, port, 0x16, 0x8000 | ((reg & 7) << 12) | (val & 0x7ff)); } static void sw_blink_leds(struct mii_dev *bus, int peridot, int topaz) { int i, p; struct { int port; u16 val; int wait; } regs[] = { { 2, 0xef, 1 }, { 2, 0xfe, 1 }, { 2, 0x33, 0 }, { 4, 0xef, 1 }, { 4, 0xfe, 1 }, { 4, 0x33, 0 }, { 3, 0xfe, 1 }, { 3, 0xef, 1 }, { 3, 0x33, 0 }, { 1, 0xfe, 1 }, { 1, 0xef, 1 }, { 1, 0x33, 0 } }; for (i = 0; i < 12; ++i) { for (p = 0; p < peridot; ++p) { sw_led_write(bus, 0x10 + p, regs[i].port, 0, regs[i].val); sw_led_write(bus, 0x10 + p, regs[i].port + 4, 0, regs[i].val); } if (topaz) { sw_led_write(bus, 0x2, 0x10 + regs[i].port, 0, regs[i].val); } if (regs[i].wait) mdelay(75); } } static void check_switch_address(struct mii_dev *bus, int addr) { if (sw_scratch_read(bus, addr, 0x70) >> 3 != addr) printf("Check of switch MDIO address failed for 0x%02x\n", addr); } static int sfp, pci, topaz, peridot, usb, passpci; static int sfp_pos, peridot_pos[3]; static int module_count; static int configure_peridots(struct gpio_desc *reset_gpio) { int i, ret; u8 dout[MAX_MOX_MODULES]; memset(dout, 0, MAX_MOX_MODULES); /* set addresses of Peridot modules */ for (i = 0; i < peridot; ++i) dout[module_count - peridot_pos[i]] = (~i) & 3; /* * if there is a SFP module connected to the last Peridot module, set * the P10_SMODE to 1 for the Peridot module */ if (sfp) dout[module_count - peridot_pos[i - 1]] |= 1 << 3; dm_gpio_set_value(reset_gpio, 1); mdelay(10); ret = mox_do_spi(NULL, dout, module_count + 1); mdelay(10); dm_gpio_set_value(reset_gpio, 0); mdelay(50); return ret; } static int get_reset_gpio(struct gpio_desc *reset_gpio) { int node; node = fdt_node_offset_by_compatible(gd->fdt_blob, 0, "cznic,moxtet"); if (node < 0) { printf("Cannot find Moxtet bus device node!\n"); return -1; } gpio_request_by_name_nodev(offset_to_ofnode(node), "reset-gpios", 0, reset_gpio, GPIOD_IS_OUT); if (!dm_gpio_is_valid(reset_gpio)) { printf("Cannot find reset GPIO for Moxtet bus!\n"); return -1; } return 0; } int misc_init_r(void) { u8 mac[2][6]; int i, ret; ret = mbox_sp_get_board_info(NULL, mac[0], mac[1], NULL, NULL); if (ret < 0) { printf("Cannot read data from OTP!\n"); return 0; } for (i = 0; i < 2; ++i) { u8 oldmac[6]; if (is_valid_ethaddr(mac[i]) && !eth_env_get_enetaddr_by_index("eth", i, oldmac)) eth_env_set_enetaddr_by_index("eth", i, mac[i]); } return 0; } static void mox_phy_modify(struct phy_device *phydev, int page, int reg, u16 mask, u16 set) { int val; val = phydev->drv->readext(phydev, MDIO_DEVAD_NONE, page, reg); val &= ~mask; val |= set; phydev->drv->writeext(phydev, MDIO_DEVAD_NONE, page, reg, val); } static void mox_phy_leds_start_blinking(void) { struct phy_device *phydev; struct mii_dev *bus; bus = miiphy_get_dev_by_name("neta@30000"); if (!bus) { printf("Cannot get MDIO bus device!\n"); return; } phydev = phy_find_by_mask(bus, BIT(1), PHY_INTERFACE_MODE_RGMII); if (!phydev) { printf("Cannot get ethernet PHY!\n"); return; } mox_phy_modify(phydev, 3, 0x12, 0x700, 0x400); mox_phy_modify(phydev, 3, 0x10, 0xff, 0xbb); } static bool read_reset_button(void) { struct udevice *button, *led; int i; if (device_get_global_by_ofnode(ofnode_path(BUTTON_PATH), &button)) { printf("Cannot find reset button!\n"); return false; } if (device_get_global_by_ofnode(ofnode_path(LED_PATH), &led)) { printf("Cannot find status LED!\n"); return false; } led_set_state(led, LEDST_ON); for (i = 0; i < 21; ++i) { if (button_get_state(button) != BUTTON_ON) return false; if (i < 20) mdelay(50); } led_set_state(led, LEDST_OFF); return true; } static void handle_reset_button(void) { const char * const vars[1] = { "bootcmd_rescue", }; /* * Ensure that bootcmd_rescue has always stock value, so that running * run bootcmd_rescue * always works correctly. */ env_set_default_vars(1, (char * const *)vars, 0); if (read_reset_button()) { const char * const vars[2] = { "bootcmd", "distro_bootcmd", }; /* * Set the above envs to their default values, in case the user * managed to break them. */ env_set_default_vars(2, (char * const *)vars, 0); /* Ensure bootcmd_rescue is used by distroboot */ env_set("boot_targets", "rescue"); /* start blinking PHY LEDs */ mox_phy_leds_start_blinking(); printf("RESET button was pressed, overwriting boot_targets!\n"); } else { /* * In case the user somehow managed to save environment with * boot_targets=rescue, reset boot_targets to default value. * This could happen in subsequent commands if bootcmd_rescue * failed. */ if (!strcmp(env_get("boot_targets"), "rescue")) { const char * const vars[1] = { "boot_targets", }; env_set_default_vars(1, (char * const *)vars, 0); } } } int show_board_info(void) { int i, ret, board_version, ram_size, is_sd; const char *pub_key; const u8 *topology; u64 serial_number; printf("Model: CZ.NIC Turris Mox Board\n"); ret = mbox_sp_get_board_info(&serial_number, NULL, NULL, &board_version, &ram_size); if (ret < 0) { printf(" Cannot read board info: %i\n", ret); } else { printf(" Board version: %i\n", board_version); printf(" RAM size: %i MiB\n", ram_size); printf(" Serial Number: %016llX\n", serial_number); } pub_key = mox_sp_get_ecdsa_public_key(); if (pub_key) printf(" ECDSA Public Key: %s\n", pub_key); else printf(" Cannot read ECDSA Public Key\n"); ret = mox_get_topology(&topology, &module_count, &is_sd); if (ret) printf("Cannot read module topology!\n"); printf(" SD/eMMC version: %s\n", is_sd ? "SD" : "eMMC"); if (module_count) printf("Module Topology:\n"); for (i = 0; i < module_count; ++i) { switch (topology[i]) { case MOX_MODULE_SFP: printf("% 4i: SFP Module\n", i + 1); break; case MOX_MODULE_PCI: printf("% 4i: Mini-PCIe Module\n", i + 1); break; case MOX_MODULE_TOPAZ: printf("% 4i: Topaz Switch Module (4-port)\n", i + 1); break; case MOX_MODULE_PERIDOT: printf("% 4i: Peridot Switch Module (8-port)\n", i + 1); break; case MOX_MODULE_USB3: printf("% 4i: USB 3.0 Module (4 ports)\n", i + 1); break; case MOX_MODULE_PASSPCI: printf("% 4i: Passthrough Mini-PCIe Module\n", i + 1); break; default: printf("% 4i: unknown (ID %i)\n", i + 1, topology[i]); } } /* check if modules are connected in supported mode */ for (i = 0; i < module_count; ++i) { switch (topology[i]) { case MOX_MODULE_SFP: if (sfp) { printf("Error: Only one SFP module is supported!\n"); } else if (topaz) { printf("Error: SFP module cannot be connected after Topaz Switch module!\n"); } else { sfp_pos = i; ++sfp; } break; case MOX_MODULE_PCI: if (pci) printf("Error: Only one Mini-PCIe module is supported!\n"); else if (usb) printf("Error: Mini-PCIe module cannot come after USB 3.0 module!\n"); else if (i && (i != 1 || !passpci)) printf("Error: Mini-PCIe module should be the first connected module or come right after Passthrough Mini-PCIe module!\n"); else ++pci; break; case MOX_MODULE_TOPAZ: if (topaz) printf("Error: Only one Topaz module is supported!\n"); else if (peridot >= 3) printf("Error: At most two Peridot modules can come before Topaz module!\n"); else ++topaz; break; case MOX_MODULE_PERIDOT: if (sfp || topaz) { printf("Error: Peridot module must come before SFP or Topaz module!\n"); } else if (peridot >= 3) { printf("Error: At most three Peridot modules are supported!\n"); } else { peridot_pos[peridot] = i; ++peridot; } break; case MOX_MODULE_USB3: if (pci) printf("Error: USB 3.0 module cannot come after Mini-PCIe module!\n"); else if (usb) printf("Error: Only one USB 3.0 module is supported!\n"); else if (i && (i != 1 || !passpci)) printf("Error: USB 3.0 module should be the first connected module or come right after Passthrough Mini-PCIe module!\n"); else ++usb; break; case MOX_MODULE_PASSPCI: if (passpci) printf("Error: Only one Passthrough Mini-PCIe module is supported!\n"); else if (i != 0) printf("Error: Passthrough Mini-PCIe module should be the first connected module!\n"); else ++passpci; } } if (module_count) printf("\n"); return 0; } int last_stage_init(void) { struct gpio_desc reset_gpio = {}; /* configure modules */ if (get_reset_gpio(&reset_gpio) < 0) goto handle_reset_btn; if (peridot > 0) { if (configure_peridots(&reset_gpio) < 0) { printf("Cannot configure Peridot modules!\n"); peridot = 0; } } else { dm_gpio_set_value(&reset_gpio, 1); mdelay(50); dm_gpio_set_value(&reset_gpio, 0); mdelay(50); } /* * check if the addresses are set by reading Scratch & Misc register * 0x70 of Peridot (and potentially Topaz) modules */ if (peridot || topaz) { struct mii_dev *bus; bus = miiphy_get_dev_by_name("neta@30000"); if (!bus) { printf("Cannot get MDIO bus device!\n"); } else { int i; for (i = 0; i < peridot; ++i) check_switch_address(bus, 0x10 + i); if (topaz) check_switch_address(bus, 0x2); sw_blink_leds(bus, peridot, topaz); } } handle_reset_btn: handle_reset_button(); return 0; } #if defined(CONFIG_OF_BOARD_SETUP) static int vnode_by_path(void *blob, const char *fmt, va_list ap) { char path[128]; vsnprintf(path, 128, fmt, ap); return fdt_path_offset(blob, path); } static int node_by_path(void *blob, const char *fmt, ...) { va_list ap; int res; va_start(ap, fmt); res = vnode_by_path(blob, fmt, ap); va_end(ap); return res; } static int phandle_by_path(void *blob, const char *fmt, ...) { va_list ap; int node, phandle, res; va_start(ap, fmt); node = vnode_by_path(blob, fmt, ap); va_end(ap); if (node < 0) return node; phandle = fdt_get_phandle(blob, node); if (phandle > 0) return phandle; phandle = fdt_get_max_phandle(blob); if (phandle < 0) return phandle; phandle += 1; res = fdt_setprop_u32(blob, node, "linux,phandle", phandle); if (res < 0) return res; res = fdt_setprop_u32(blob, node, "phandle", phandle); if (res < 0) return res; return phandle; } static int enable_by_path(void *blob, const char *fmt, ...) { va_list ap; int node; va_start(ap, fmt); node = vnode_by_path(blob, fmt, ap); va_end(ap); if (node < 0) return node; return fdt_setprop_string(blob, node, "status", "okay"); } static bool is_topaz(int id) { return topaz && id == peridot + topaz - 1; } static int switch_addr(int id) { return is_topaz(id) ? 0x2 : 0x10 + id; } static int setup_switch(void *blob, int id) { int res, addr, i, node, phandle; addr = switch_addr(id); /* first enable the switch by setting status = "okay" */ res = enable_by_path(blob, MDIO_PATH "/switch%i@%x", id, addr); if (res < 0) return res; /* * now if there are more switches or a SFP module coming after, * enable corresponding ports */ if (id < peridot + topaz - 1) { res = enable_by_path(blob, MDIO_PATH "/switch%i@%x/ports/port@a", id, addr); } else if (id == peridot - 1 && !topaz && sfp) { res = enable_by_path(blob, MDIO_PATH "/switch%i@%x/ports/port-sfp@a", id, addr); } else { res = 0; } if (res < 0) return res; if (id >= peridot + topaz - 1) return 0; /* finally change link property if needed */ node = node_by_path(blob, MDIO_PATH "/switch%i@%x/ports/port@a", id, addr); if (node < 0) return node; for (i = id + 1; i < peridot + topaz; ++i) { phandle = phandle_by_path(blob, MDIO_PATH "/switch%i@%x/ports/port@%x", i, switch_addr(i), is_topaz(i) ? 5 : 9); if (phandle < 0) return phandle; if (i == id + 1) res = fdt_setprop_u32(blob, node, "link", phandle); else res = fdt_appendprop_u32(blob, node, "link", phandle); if (res < 0) return res; } return 0; } static int remove_disabled_nodes(void *blob) { while (1) { int res, offset; offset = fdt_node_offset_by_prop_value(blob, -1, "status", "disabled", 9); if (offset < 0) break; res = fdt_del_node(blob, offset); if (res < 0) return res; } return 0; } int ft_board_setup(void *blob, struct bd_info *bd) { int node, phandle, res; /* * If MOX B (PCI), MOX F (USB) or MOX G (Passthrough PCI) modules are * connected, enable the PCIe node. */ if (pci || usb || passpci) { node = fdt_path_offset(blob, PCIE_PATH); if (node < 0) return node; res = fdt_setprop_string(blob, node, "status", "okay"); if (res < 0) return res; /* Fix PCIe regions for devices with 4 GB RAM */ res = a3700_fdt_fix_pcie_regions(blob); if (res < 0) return res; } /* * If MOX C (Topaz switch) and/or MOX E (Peridot switch) are connected, * enable the eth1 node and setup the switches. */ if (peridot || topaz) { int i; res = enable_by_path(blob, ETH1_PATH); if (res < 0) return res; for (i = 0; i < peridot + topaz; ++i) { res = setup_switch(blob, i); if (res < 0) return res; } } /* * If MOX D (SFP cage module) is connected, enable the SFP node and eth1 * node. If there is no Peridot switch between MOX A and MOX D, add link * to the SFP node to eth1 node. * Also enable and configure SFP GPIO controller node. */ if (sfp) { res = enable_by_path(blob, SFP_PATH); if (res < 0) return res; res = enable_by_path(blob, ETH1_PATH); if (res < 0) return res; if (!peridot) { phandle = phandle_by_path(blob, SFP_PATH); if (phandle < 0) return res; node = node_by_path(blob, ETH1_PATH); if (node < 0) return node; res = fdt_setprop_u32(blob, node, "sfp", phandle); if (res < 0) return res; res = fdt_setprop_string(blob, node, "phy-mode", "sgmii"); if (res < 0) return res; } res = enable_by_path(blob, SFP_GPIO_PATH); if (res < 0) return res; if (sfp_pos) { char newname[16]; /* moxtet-sfp is on non-zero position, change default */ node = node_by_path(blob, SFP_GPIO_PATH); if (node < 0) return node; res = fdt_setprop_u32(blob, node, "reg", sfp_pos); if (res < 0) return res; sprintf(newname, "gpio@%x", sfp_pos); res = fdt_set_name(blob, node, newname); if (res < 0) return res; } } fdt_fixup_ethernet(blob); /* Finally remove disabled nodes, as per Rob Herring's request. */ remove_disabled_nodes(blob); return 0; } #endif