/* * Allwinner sun4i USB PHY driver * * Copyright (C) 2017 Jagan Teki * Copyright (C) 2015 Hans de Goede * Copyright (C) 2014 Roman Byshko * * Modelled arch/arm/mach-sunxi/usb_phy.c to compatible with generic-phy. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define REG_ISCR 0x00 #define REG_PHYCTL_A10 0x04 #define REG_PHYBIST 0x08 #define REG_PHYTUNE 0x0c #define REG_PHYCTL_A33 0x10 #define REG_PHY_OTGCTL 0x20 #define REG_HCI_PHY_CTL 0x10 /* Common Control Bits for Both PHYs */ #define PHY_PLL_BW 0x03 #define PHY_RES45_CAL_EN 0x0c /* Private Control Bits for Each PHY */ #define PHY_TX_AMPLITUDE_TUNE 0x20 #define PHY_TX_SLEWRATE_TUNE 0x22 #define PHY_DISCON_TH_SEL 0x2a #define PHY_SQUELCH_DETECT 0x3c #define PHYCTL_DATA BIT(7) #define OTGCTL_ROUTE_MUSB BIT(0) #define PHY_TX_RATE BIT(4) #define PHY_TX_MAGNITUDE BIT(2) #define PHY_TX_AMPLITUDE_LEN 5 #define PHY_RES45_CAL_DATA BIT(0) #define PHY_RES45_CAL_LEN 1 #define PHY_DISCON_TH_LEN 2 #define SUNXI_AHB_ICHR8_EN BIT(10) #define SUNXI_AHB_INCR4_BURST_EN BIT(9) #define SUNXI_AHB_INCRX_ALIGN_EN BIT(8) #define SUNXI_ULPI_BYPASS_EN BIT(0) /* A83T specific control bits for PHY0 */ #define PHY_CTL_VBUSVLDEXT BIT(5) #define PHY_CTL_SIDDQ BIT(3) #define PHY_CTL_H3_SIDDQ BIT(1) /* A83T specific control bits for PHY2 HSIC */ #define SUNXI_EHCI_HS_FORCE BIT(20) #define SUNXI_HSIC_CONNECT_INT BIT(16) #define SUNXI_HSIC BIT(1) #define MAX_PHYS 4 enum sun4i_usb_phy_type { sun4i_a10_phy, sun6i_a31_phy, sun8i_a33_phy, sun8i_a83t_phy, sun8i_h3_phy, sun8i_r40_phy, sun8i_v3s_phy, sun50i_a64_phy, sun50i_h6_phy, }; struct sun4i_usb_phy_cfg { int num_phys; enum sun4i_usb_phy_type type; u32 disc_thresh; u32 hci_phy_ctl_clear; u8 phyctl_offset; bool dedicated_clocks; bool phy0_dual_route; int missing_phys; }; struct sun4i_usb_phy_info { const char *gpio_vbus; const char *gpio_vbus_det; const char *gpio_id_det; } phy_info[] = { { .gpio_vbus = CONFIG_USB0_VBUS_PIN, .gpio_vbus_det = CONFIG_USB0_VBUS_DET, .gpio_id_det = CONFIG_USB0_ID_DET, }, { .gpio_vbus = CONFIG_USB1_VBUS_PIN, .gpio_vbus_det = NULL, .gpio_id_det = NULL, }, { .gpio_vbus = CONFIG_USB2_VBUS_PIN, .gpio_vbus_det = NULL, .gpio_id_det = NULL, }, { .gpio_vbus = CONFIG_USB3_VBUS_PIN, .gpio_vbus_det = NULL, .gpio_id_det = NULL, }, }; struct sun4i_usb_phy_plat { void __iomem *pmu; struct gpio_desc gpio_vbus; struct gpio_desc gpio_vbus_det; struct gpio_desc gpio_id_det; struct clk clocks; struct reset_ctl resets; int id; }; struct sun4i_usb_phy_data { void __iomem *base; const struct sun4i_usb_phy_cfg *cfg; struct sun4i_usb_phy_plat *usb_phy; struct udevice *vbus_power_supply; }; static int initial_usb_scan_delay = CONFIG_INITIAL_USB_SCAN_DELAY; static void sun4i_usb_phy_write(struct phy *phy, u32 addr, u32 data, int len) { struct sun4i_usb_phy_data *phy_data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &phy_data->usb_phy[phy->id]; u32 temp, usbc_bit = BIT(usb_phy->id * 2); void __iomem *phyctl = phy_data->base + phy_data->cfg->phyctl_offset; int i; if (phy_data->cfg->phyctl_offset == REG_PHYCTL_A33) { /* SoCs newer than A33 need us to set phyctl to 0 explicitly */ writel(0, phyctl); } for (i = 0; i < len; i++) { temp = readl(phyctl); /* clear the address portion */ temp &= ~(0xff << 8); /* set the address */ temp |= ((addr + i) << 8); writel(temp, phyctl); /* set the data bit and clear usbc bit*/ temp = readb(phyctl); if (data & 0x1) temp |= PHYCTL_DATA; else temp &= ~PHYCTL_DATA; temp &= ~usbc_bit; writeb(temp, phyctl); /* pulse usbc_bit */ temp = readb(phyctl); temp |= usbc_bit; writeb(temp, phyctl); temp = readb(phyctl); temp &= ~usbc_bit; writeb(temp, phyctl); data >>= 1; } } static void sun4i_usb_phy_passby(struct phy *phy, bool enable) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; u32 bits, reg_value; if (!usb_phy->pmu) return; bits = SUNXI_AHB_ICHR8_EN | SUNXI_AHB_INCR4_BURST_EN | SUNXI_AHB_INCRX_ALIGN_EN | SUNXI_ULPI_BYPASS_EN; /* A83T USB2 is HSIC */ if (data->cfg->type == sun8i_a83t_phy && usb_phy->id == 2) bits |= SUNXI_EHCI_HS_FORCE | SUNXI_HSIC_CONNECT_INT | SUNXI_HSIC; reg_value = readl(usb_phy->pmu); if (enable) reg_value |= bits; else reg_value &= ~bits; writel(reg_value, usb_phy->pmu); } static int sun4i_usb_phy_power_on(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; if (initial_usb_scan_delay) { mdelay(initial_usb_scan_delay); initial_usb_scan_delay = 0; } /* For phy0 only turn on Vbus if we don't have an ext. Vbus */ if (phy->id == 0 && sun4i_usb_phy_vbus_detect(phy)) { dev_warn(phy->dev, "External vbus detected, not enabling our own vbus\n"); return 0; } if (dm_gpio_is_valid(&usb_phy->gpio_vbus)) dm_gpio_set_value(&usb_phy->gpio_vbus, 1); return 0; } static int sun4i_usb_phy_power_off(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; if (dm_gpio_is_valid(&usb_phy->gpio_vbus)) dm_gpio_set_value(&usb_phy->gpio_vbus, 0); return 0; } static void sun4i_usb_phy0_reroute(struct sun4i_usb_phy_data *data, bool id_det) { u32 regval; regval = readl(data->base + REG_PHY_OTGCTL); if (!id_det) { /* Host mode. Route phy0 to EHCI/OHCI */ regval &= ~OTGCTL_ROUTE_MUSB; } else { /* Peripheral mode. Route phy0 to MUSB */ regval |= OTGCTL_ROUTE_MUSB; } writel(regval, data->base + REG_PHY_OTGCTL); } static int sun4i_usb_phy_init(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; u32 val; int ret; ret = clk_enable(&usb_phy->clocks); if (ret) { dev_err(phy->dev, "failed to enable usb_%ldphy clock\n", phy->id); return ret; } ret = reset_deassert(&usb_phy->resets); if (ret) { dev_err(phy->dev, "failed to deassert usb_%ldreset reset\n", phy->id); return ret; } if (usb_phy->pmu && data->cfg->hci_phy_ctl_clear) { val = readl(usb_phy->pmu + REG_HCI_PHY_CTL); val &= ~data->cfg->hci_phy_ctl_clear; writel(val, usb_phy->pmu + REG_HCI_PHY_CTL); } if (data->cfg->type == sun8i_a83t_phy || data->cfg->type == sun50i_h6_phy) { if (phy->id == 0) { val = readl(data->base + data->cfg->phyctl_offset); val |= PHY_CTL_VBUSVLDEXT; val &= ~PHY_CTL_SIDDQ; writel(val, data->base + data->cfg->phyctl_offset); } } else { if (usb_phy->id == 0) sun4i_usb_phy_write(phy, PHY_RES45_CAL_EN, PHY_RES45_CAL_DATA, PHY_RES45_CAL_LEN); /* Adjust PHY's magnitude and rate */ sun4i_usb_phy_write(phy, PHY_TX_AMPLITUDE_TUNE, PHY_TX_MAGNITUDE | PHY_TX_RATE, PHY_TX_AMPLITUDE_LEN); /* Disconnect threshold adjustment */ sun4i_usb_phy_write(phy, PHY_DISCON_TH_SEL, data->cfg->disc_thresh, PHY_DISCON_TH_LEN); } #ifdef CONFIG_USB_MUSB_SUNXI /* Needed for HCI and conflicts with MUSB, keep PHY0 on MUSB */ if (usb_phy->id != 0) sun4i_usb_phy_passby(phy, true); /* Route PHY0 to MUSB to allow USB gadget */ if (data->cfg->phy0_dual_route) sun4i_usb_phy0_reroute(data, true); #else sun4i_usb_phy_passby(phy, true); /* Route PHY0 to HCI to allow USB host */ if (data->cfg->phy0_dual_route) sun4i_usb_phy0_reroute(data, false); #endif return 0; } static int sun4i_usb_phy_exit(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; int ret; if (phy->id == 0) { if (data->cfg->type == sun8i_a83t_phy || data->cfg->type == sun50i_h6_phy) { void __iomem *phyctl = data->base + data->cfg->phyctl_offset; writel(readl(phyctl) | PHY_CTL_SIDDQ, phyctl); } } sun4i_usb_phy_passby(phy, false); ret = clk_disable(&usb_phy->clocks); if (ret) { dev_err(phy->dev, "failed to disable usb_%ldphy clock\n", phy->id); return ret; } ret = reset_assert(&usb_phy->resets); if (ret) { dev_err(phy->dev, "failed to assert usb_%ldreset reset\n", phy->id); return ret; } return 0; } static int sun4i_usb_phy_xlate(struct phy *phy, struct ofnode_phandle_args *args) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); if (args->args_count != 1) return -EINVAL; if (args->args[0] >= data->cfg->num_phys) return -EINVAL; if (data->cfg->missing_phys & BIT(args->args[0])) return -ENODEV; if (args->args_count) phy->id = args->args[0]; else phy->id = 0; debug("%s: phy_id = %ld\n", __func__, phy->id); return 0; } int sun4i_usb_phy_vbus_detect(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; int err = 1, retries = 3; if (dm_gpio_is_valid(&usb_phy->gpio_vbus_det)) { err = dm_gpio_get_value(&usb_phy->gpio_vbus_det); /* * Vbus may have been provided by the board and just turned off * some milliseconds ago on reset. What we're measuring then is * a residual charge on Vbus. Sleep a bit and try again. */ while (err > 0 && retries--) { mdelay(100); err = dm_gpio_get_value(&usb_phy->gpio_vbus_det); } } else if (data->vbus_power_supply) { err = regulator_get_enable(data->vbus_power_supply); } return err; } int sun4i_usb_phy_id_detect(struct phy *phy) { struct sun4i_usb_phy_data *data = dev_get_priv(phy->dev); struct sun4i_usb_phy_plat *usb_phy = &data->usb_phy[phy->id]; if (!dm_gpio_is_valid(&usb_phy->gpio_id_det)) return -1; return dm_gpio_get_value(&usb_phy->gpio_id_det); } void sun4i_usb_phy_set_squelch_detect(struct phy *phy, bool enabled) { sun4i_usb_phy_write(phy, PHY_SQUELCH_DETECT, enabled ? 0 : 2, 2); } static struct phy_ops sun4i_usb_phy_ops = { .of_xlate = sun4i_usb_phy_xlate, .init = sun4i_usb_phy_init, .power_on = sun4i_usb_phy_power_on, .power_off = sun4i_usb_phy_power_off, .exit = sun4i_usb_phy_exit, }; static int sun4i_usb_phy_probe(struct udevice *dev) { struct sun4i_usb_phy_plat *plat = dev_get_plat(dev); struct sun4i_usb_phy_data *data = dev_get_priv(dev); int i, ret; data->cfg = (const struct sun4i_usb_phy_cfg *)dev_get_driver_data(dev); if (!data->cfg) return -EINVAL; data->base = (void __iomem *)devfdt_get_addr_name(dev, "phy_ctrl"); if (IS_ERR(data->base)) return PTR_ERR(data->base); device_get_supply_regulator(dev, "usb0_vbus_power-supply", &data->vbus_power_supply); data->usb_phy = plat; for (i = 0; i < data->cfg->num_phys; i++) { struct sun4i_usb_phy_plat *phy = &plat[i]; struct sun4i_usb_phy_info *info = &phy_info[i]; char name[16]; if (data->cfg->missing_phys & BIT(i)) continue; ret = dm_gpio_lookup_name(info->gpio_vbus, &phy->gpio_vbus); if (ret == 0) { ret = dm_gpio_request(&phy->gpio_vbus, "usb_vbus"); if (ret) return ret; ret = dm_gpio_set_dir_flags(&phy->gpio_vbus, GPIOD_IS_OUT); if (ret) return ret; ret = dm_gpio_set_value(&phy->gpio_vbus, 0); if (ret) return ret; } ret = dm_gpio_lookup_name(info->gpio_vbus_det, &phy->gpio_vbus_det); if (ret == 0) { ret = dm_gpio_request(&phy->gpio_vbus_det, "usb_vbus_det"); if (ret) return ret; ret = dm_gpio_set_dir_flags(&phy->gpio_vbus_det, GPIOD_IS_IN); if (ret) return ret; } ret = dm_gpio_lookup_name(info->gpio_id_det, &phy->gpio_id_det); if (ret == 0) { ret = dm_gpio_request(&phy->gpio_id_det, "usb_id_det"); if (ret) return ret; ret = dm_gpio_set_dir_flags(&phy->gpio_id_det, GPIOD_IS_IN | GPIOD_PULL_UP); if (ret) return ret; } if (data->cfg->dedicated_clocks) snprintf(name, sizeof(name), "usb%d_phy", i); else strlcpy(name, "usb_phy", sizeof(name)); ret = clk_get_by_name(dev, name, &phy->clocks); if (ret) { dev_err(dev, "failed to get usb%d_phy clock phandle\n", i); return ret; } snprintf(name, sizeof(name), "usb%d_reset", i); ret = reset_get_by_name(dev, name, &phy->resets); if (ret) { dev_err(dev, "failed to get usb%d_reset reset phandle\n", i); return ret; } if (i || data->cfg->phy0_dual_route) { snprintf(name, sizeof(name), "pmu%d", i); phy->pmu = (void __iomem *)devfdt_get_addr_name(dev, name); if (IS_ERR(phy->pmu)) return PTR_ERR(phy->pmu); } phy->id = i; }; debug("Allwinner Sun4I USB PHY driver loaded\n"); return 0; } static const struct sun4i_usb_phy_cfg sun4i_a10_cfg = { .num_phys = 3, .type = sun4i_a10_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A10, .dedicated_clocks = false, }; static const struct sun4i_usb_phy_cfg sun5i_a13_cfg = { .num_phys = 2, .type = sun4i_a10_phy, .disc_thresh = 2, .phyctl_offset = REG_PHYCTL_A10, .dedicated_clocks = false, }; static const struct sun4i_usb_phy_cfg sun6i_a31_cfg = { .num_phys = 3, .type = sun6i_a31_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A10, .dedicated_clocks = true, }; static const struct sun4i_usb_phy_cfg sun7i_a20_cfg = { .num_phys = 3, .type = sun4i_a10_phy, .disc_thresh = 2, .phyctl_offset = REG_PHYCTL_A10, .dedicated_clocks = false, }; static const struct sun4i_usb_phy_cfg sun8i_a23_cfg = { .num_phys = 2, .type = sun4i_a10_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A10, .dedicated_clocks = true, }; static const struct sun4i_usb_phy_cfg sun8i_a33_cfg = { .num_phys = 2, .type = sun8i_a33_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A33, .dedicated_clocks = true, }; static const struct sun4i_usb_phy_cfg sun8i_a83t_cfg = { .num_phys = 3, .type = sun8i_a83t_phy, .phyctl_offset = REG_PHYCTL_A33, .dedicated_clocks = true, }; static const struct sun4i_usb_phy_cfg sun8i_h3_cfg = { .num_phys = 4, .type = sun8i_h3_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A33, .dedicated_clocks = true, .hci_phy_ctl_clear = PHY_CTL_H3_SIDDQ, .phy0_dual_route = true, }; static const struct sun4i_usb_phy_cfg sun8i_r40_cfg = { .num_phys = 3, .type = sun8i_r40_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A33, .dedicated_clocks = true, .hci_phy_ctl_clear = PHY_CTL_H3_SIDDQ, .phy0_dual_route = true, }; static const struct sun4i_usb_phy_cfg sun8i_v3s_cfg = { .num_phys = 1, .type = sun8i_v3s_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A33, .dedicated_clocks = true, .hci_phy_ctl_clear = PHY_CTL_H3_SIDDQ, .phy0_dual_route = true, }; static const struct sun4i_usb_phy_cfg sun20i_d1_cfg = { .num_phys = 2, .type = sun50i_h6_phy, .phyctl_offset = REG_PHYCTL_A33, .dedicated_clocks = true, .hci_phy_ctl_clear = PHY_CTL_SIDDQ, .phy0_dual_route = true, }; static const struct sun4i_usb_phy_cfg sun50i_a64_cfg = { .num_phys = 2, .type = sun50i_a64_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A33, .dedicated_clocks = true, .hci_phy_ctl_clear = PHY_CTL_H3_SIDDQ, .phy0_dual_route = true, }; static const struct sun4i_usb_phy_cfg sun50i_h6_cfg = { .num_phys = 4, .type = sun50i_h6_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A33, .dedicated_clocks = true, .phy0_dual_route = true, .missing_phys = BIT(1) | BIT(2), }; static const struct sun4i_usb_phy_cfg suniv_f1c100s_cfg = { .num_phys = 1, .type = sun4i_a10_phy, .disc_thresh = 3, .phyctl_offset = REG_PHYCTL_A10, .dedicated_clocks = true, }; static const struct udevice_id sun4i_usb_phy_ids[] = { { .compatible = "allwinner,sun4i-a10-usb-phy", .data = (ulong)&sun4i_a10_cfg }, { .compatible = "allwinner,sun5i-a13-usb-phy", .data = (ulong)&sun5i_a13_cfg }, { .compatible = "allwinner,sun6i-a31-usb-phy", .data = (ulong)&sun6i_a31_cfg }, { .compatible = "allwinner,sun7i-a20-usb-phy", .data = (ulong)&sun7i_a20_cfg }, { .compatible = "allwinner,sun8i-a23-usb-phy", .data = (ulong)&sun8i_a23_cfg }, { .compatible = "allwinner,sun8i-a33-usb-phy", .data = (ulong)&sun8i_a33_cfg }, { .compatible = "allwinner,sun8i-a83t-usb-phy", .data = (ulong)&sun8i_a83t_cfg }, { .compatible = "allwinner,sun8i-h3-usb-phy", .data = (ulong)&sun8i_h3_cfg }, { .compatible = "allwinner,sun8i-r40-usb-phy", .data = (ulong)&sun8i_r40_cfg }, { .compatible = "allwinner,sun8i-v3s-usb-phy", .data = (ulong)&sun8i_v3s_cfg }, { .compatible = "allwinner,sun20i-d1-usb-phy", .data = (ulong)&sun20i_d1_cfg }, { .compatible = "allwinner,sun50i-a64-usb-phy", .data = (ulong)&sun50i_a64_cfg}, { .compatible = "allwinner,sun50i-h6-usb-phy", .data = (ulong)&sun50i_h6_cfg}, { .compatible = "allwinner,suniv-f1c100s-usb-phy", .data = (ulong)&suniv_f1c100s_cfg }, { } }; U_BOOT_DRIVER(sun4i_usb_phy) = { .name = "sun4i_usb_phy", .id = UCLASS_PHY, .of_match = sun4i_usb_phy_ids, .ops = &sun4i_usb_phy_ops, .probe = sun4i_usb_phy_probe, .plat_auto = sizeof(struct sun4i_usb_phy_plat[MAX_PHYS]), .priv_auto = sizeof(struct sun4i_usb_phy_data), };