// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2016 * Author: Amit Singh Tomar, amittomer25@gmail.com * * Ethernet driver for H3/A64/A83T based SoC's * * It is derived from the work done by * LABBE Corentin & Chen-Yu Tsai for Linux, THANKS! * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MDIO_CMD_MII_BUSY BIT(0) #define MDIO_CMD_MII_WRITE BIT(1) #define MDIO_CMD_MII_PHY_REG_ADDR_MASK 0x000001f0 #define MDIO_CMD_MII_PHY_REG_ADDR_SHIFT 4 #define MDIO_CMD_MII_PHY_ADDR_MASK 0x0001f000 #define MDIO_CMD_MII_PHY_ADDR_SHIFT 12 #define MDIO_CMD_MII_CLK_CSR_DIV_16 0x0 #define MDIO_CMD_MII_CLK_CSR_DIV_32 0x1 #define MDIO_CMD_MII_CLK_CSR_DIV_64 0x2 #define MDIO_CMD_MII_CLK_CSR_DIV_128 0x3 #define MDIO_CMD_MII_CLK_CSR_SHIFT 20 #define CFG_TX_DESCR_NUM 32 #define CFG_RX_DESCR_NUM 32 #define CFG_ETH_BUFSIZE 2048 /* Note must be dma aligned */ /* * The datasheet says that each descriptor can transfers up to 4096 bytes * But later, the register documentation reduces that value to 2048, * using 2048 cause strange behaviours and even BSP driver use 2047 */ #define CFG_ETH_RXSIZE 2044 /* Note must fit in ETH_BUFSIZE */ #define TX_TOTAL_BUFSIZE (CFG_ETH_BUFSIZE * CFG_TX_DESCR_NUM) #define RX_TOTAL_BUFSIZE (CFG_ETH_BUFSIZE * CFG_RX_DESCR_NUM) #define H3_EPHY_DEFAULT_VALUE 0x58000 #define H3_EPHY_DEFAULT_MASK GENMASK(31, 15) #define H3_EPHY_ADDR_SHIFT 20 #define REG_PHY_ADDR_MASK GENMASK(4, 0) #define H3_EPHY_LED_POL BIT(17) /* 1: active low, 0: active high */ #define H3_EPHY_SHUTDOWN BIT(16) /* 1: shutdown, 0: power up */ #define H3_EPHY_SELECT BIT(15) /* 1: internal PHY, 0: external PHY */ #define SC_RMII_EN BIT(13) #define SC_EPIT BIT(2) /* 1: RGMII, 0: MII */ #define SC_ETCS_MASK GENMASK(1, 0) #define SC_ETCS_EXT_GMII 0x1 #define SC_ETCS_INT_GMII 0x2 #define SC_ETXDC_MASK GENMASK(12, 10) #define SC_ETXDC_OFFSET 10 #define SC_ERXDC_MASK GENMASK(9, 5) #define SC_ERXDC_OFFSET 5 #define CFG_MDIO_TIMEOUT (3 * CONFIG_SYS_HZ) #define AHB_GATE_OFFSET_EPHY 0 /* H3/A64 EMAC Register's offset */ #define EMAC_CTL0 0x00 #define EMAC_CTL0_FULL_DUPLEX BIT(0) #define EMAC_CTL0_SPEED_MASK GENMASK(3, 2) #define EMAC_CTL0_SPEED_10 (0x2 << 2) #define EMAC_CTL0_SPEED_100 (0x3 << 2) #define EMAC_CTL0_SPEED_1000 (0x0 << 2) #define EMAC_CTL1 0x04 #define EMAC_CTL1_SOFT_RST BIT(0) #define EMAC_CTL1_BURST_LEN_SHIFT 24 #define EMAC_INT_STA 0x08 #define EMAC_INT_EN 0x0c #define EMAC_TX_CTL0 0x10 #define EMAC_TX_CTL0_TX_EN BIT(31) #define EMAC_TX_CTL1 0x14 #define EMAC_TX_CTL1_TX_MD BIT(1) #define EMAC_TX_CTL1_TX_DMA_EN BIT(30) #define EMAC_TX_CTL1_TX_DMA_START BIT(31) #define EMAC_TX_FLOW_CTL 0x1c #define EMAC_TX_DMA_DESC 0x20 #define EMAC_RX_CTL0 0x24 #define EMAC_RX_CTL0_RX_EN BIT(31) #define EMAC_RX_CTL1 0x28 #define EMAC_RX_CTL1_RX_MD BIT(1) #define EMAC_RX_CTL1_RX_RUNT_FRM BIT(2) #define EMAC_RX_CTL1_RX_ERR_FRM BIT(3) #define EMAC_RX_CTL1_RX_DMA_EN BIT(30) #define EMAC_RX_CTL1_RX_DMA_START BIT(31) #define EMAC_RX_DMA_DESC 0x34 #define EMAC_MII_CMD 0x48 #define EMAC_MII_DATA 0x4c #define EMAC_ADDR0_HIGH 0x50 #define EMAC_ADDR0_LOW 0x54 #define EMAC_TX_DMA_STA 0xb0 #define EMAC_TX_CUR_DESC 0xb4 #define EMAC_TX_CUR_BUF 0xb8 #define EMAC_RX_DMA_STA 0xc0 #define EMAC_RX_CUR_DESC 0xc4 #define EMAC_DESC_OWN_DMA BIT(31) #define EMAC_DESC_LAST_DESC BIT(30) #define EMAC_DESC_FIRST_DESC BIT(29) #define EMAC_DESC_CHAIN_SECOND BIT(24) #define EMAC_DESC_RX_ERROR_MASK 0x400068db DECLARE_GLOBAL_DATA_PTR; struct emac_variant { uint syscon_offset; bool soc_has_internal_phy; bool support_rmii; }; struct emac_dma_desc { u32 status; u32 ctl_size; u32 buf_addr; u32 next; } __aligned(ARCH_DMA_MINALIGN); struct emac_eth_dev { struct emac_dma_desc rx_chain[CFG_TX_DESCR_NUM]; struct emac_dma_desc tx_chain[CFG_RX_DESCR_NUM]; char rxbuffer[RX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN); char txbuffer[TX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN); u32 interface; u32 phyaddr; u32 link; u32 speed; u32 duplex; u32 phy_configured; u32 tx_currdescnum; u32 rx_currdescnum; u32 addr; u32 tx_slot; bool use_internal_phy; const struct emac_variant *variant; void *mac_reg; void *sysctl_reg; struct phy_device *phydev; struct mii_dev *bus; struct clk tx_clk; struct clk ephy_clk; struct reset_ctl tx_rst; struct reset_ctl ephy_rst; #if CONFIG_IS_ENABLED(DM_GPIO) struct gpio_desc reset_gpio; #endif struct udevice *phy_reg; }; struct sun8i_eth_pdata { struct eth_pdata eth_pdata; u32 reset_delays[3]; int tx_delay_ps; int rx_delay_ps; }; static int sun8i_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) { struct udevice *dev = bus->priv; struct emac_eth_dev *priv = dev_get_priv(dev); u32 mii_cmd; int ret; mii_cmd = (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) & MDIO_CMD_MII_PHY_REG_ADDR_MASK; mii_cmd |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) & MDIO_CMD_MII_PHY_ADDR_MASK; /* * The EMAC clock is either 200 or 300 MHz, so we need a divider * of 128 to get the MDIO frequency below the required 2.5 MHz. */ if (!priv->use_internal_phy) mii_cmd |= MDIO_CMD_MII_CLK_CSR_DIV_128 << MDIO_CMD_MII_CLK_CSR_SHIFT; mii_cmd |= MDIO_CMD_MII_BUSY; writel(mii_cmd, priv->mac_reg + EMAC_MII_CMD); ret = wait_for_bit_le32(priv->mac_reg + EMAC_MII_CMD, MDIO_CMD_MII_BUSY, false, CFG_MDIO_TIMEOUT, true); if (ret < 0) return ret; return readl(priv->mac_reg + EMAC_MII_DATA); } static int sun8i_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, u16 val) { struct udevice *dev = bus->priv; struct emac_eth_dev *priv = dev_get_priv(dev); u32 mii_cmd; mii_cmd = (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) & MDIO_CMD_MII_PHY_REG_ADDR_MASK; mii_cmd |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) & MDIO_CMD_MII_PHY_ADDR_MASK; /* * The EMAC clock is either 200 or 300 MHz, so we need a divider * of 128 to get the MDIO frequency below the required 2.5 MHz. */ if (!priv->use_internal_phy) mii_cmd |= MDIO_CMD_MII_CLK_CSR_DIV_128 << MDIO_CMD_MII_CLK_CSR_SHIFT; mii_cmd |= MDIO_CMD_MII_WRITE; mii_cmd |= MDIO_CMD_MII_BUSY; writel(val, priv->mac_reg + EMAC_MII_DATA); writel(mii_cmd, priv->mac_reg + EMAC_MII_CMD); return wait_for_bit_le32(priv->mac_reg + EMAC_MII_CMD, MDIO_CMD_MII_BUSY, false, CFG_MDIO_TIMEOUT, true); } static int sun8i_eth_write_hwaddr(struct udevice *dev) { struct emac_eth_dev *priv = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_plat(dev); uchar *mac_id = pdata->enetaddr; u32 macid_lo, macid_hi; macid_lo = mac_id[0] + (mac_id[1] << 8) + (mac_id[2] << 16) + (mac_id[3] << 24); macid_hi = mac_id[4] + (mac_id[5] << 8); writel(macid_hi, priv->mac_reg + EMAC_ADDR0_HIGH); writel(macid_lo, priv->mac_reg + EMAC_ADDR0_LOW); return 0; } static void sun8i_adjust_link(struct emac_eth_dev *priv, struct phy_device *phydev) { u32 v; v = readl(priv->mac_reg + EMAC_CTL0); if (phydev->duplex) v |= EMAC_CTL0_FULL_DUPLEX; else v &= ~EMAC_CTL0_FULL_DUPLEX; v &= ~EMAC_CTL0_SPEED_MASK; switch (phydev->speed) { case 1000: v |= EMAC_CTL0_SPEED_1000; break; case 100: v |= EMAC_CTL0_SPEED_100; break; case 10: v |= EMAC_CTL0_SPEED_10; break; } writel(v, priv->mac_reg + EMAC_CTL0); } static u32 sun8i_emac_set_syscon_ephy(struct emac_eth_dev *priv, u32 reg) { if (priv->use_internal_phy) { /* H3 based SoC's that has an Internal 100MBit PHY * needs to be configured and powered up before use */ reg &= ~H3_EPHY_DEFAULT_MASK; reg |= H3_EPHY_DEFAULT_VALUE; reg |= priv->phyaddr << H3_EPHY_ADDR_SHIFT; reg &= ~H3_EPHY_SHUTDOWN; return reg | H3_EPHY_SELECT; } /* This is to select External Gigabit PHY on those boards with * an internal PHY. Does not hurt on other SoCs. Linux does * it as well. */ return reg & ~H3_EPHY_SELECT; } static int sun8i_emac_set_syscon(struct sun8i_eth_pdata *pdata, struct emac_eth_dev *priv) { u32 reg; reg = readl(priv->sysctl_reg); reg = sun8i_emac_set_syscon_ephy(priv, reg); reg &= ~(SC_ETCS_MASK | SC_EPIT); if (priv->variant->support_rmii) reg &= ~SC_RMII_EN; switch (priv->interface) { case PHY_INTERFACE_MODE_MII: /* default */ break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: reg |= SC_EPIT | SC_ETCS_INT_GMII; break; case PHY_INTERFACE_MODE_RMII: if (priv->variant->support_rmii) { reg |= SC_RMII_EN | SC_ETCS_EXT_GMII; break; } default: debug("%s: Invalid PHY interface\n", __func__); return -EINVAL; } if (pdata->tx_delay_ps) reg |= ((pdata->tx_delay_ps / 100) << SC_ETXDC_OFFSET) & SC_ETXDC_MASK; if (pdata->rx_delay_ps) reg |= ((pdata->rx_delay_ps / 100) << SC_ERXDC_OFFSET) & SC_ERXDC_MASK; writel(reg, priv->sysctl_reg); return 0; } static int sun8i_phy_init(struct emac_eth_dev *priv, void *dev) { struct phy_device *phydev; phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface); if (!phydev) return -ENODEV; priv->phydev = phydev; phy_config(priv->phydev); return 0; } #define cache_clean_descriptor(desc) \ flush_dcache_range((uintptr_t)(desc), \ (uintptr_t)(desc) + sizeof(struct emac_dma_desc)) #define cache_inv_descriptor(desc) \ invalidate_dcache_range((uintptr_t)(desc), \ (uintptr_t)(desc) + sizeof(struct emac_dma_desc)) static void rx_descs_init(struct emac_eth_dev *priv) { struct emac_dma_desc *desc_table_p = &priv->rx_chain[0]; char *rxbuffs = &priv->rxbuffer[0]; struct emac_dma_desc *desc_p; int i; /* * Make sure we don't have dirty cache lines around, which could * be cleaned to DRAM *after* the MAC has already written data to it. */ invalidate_dcache_range((uintptr_t)desc_table_p, (uintptr_t)desc_table_p + sizeof(priv->rx_chain)); invalidate_dcache_range((uintptr_t)rxbuffs, (uintptr_t)rxbuffs + sizeof(priv->rxbuffer)); for (i = 0; i < CFG_RX_DESCR_NUM; i++) { desc_p = &desc_table_p[i]; desc_p->buf_addr = (uintptr_t)&rxbuffs[i * CFG_ETH_BUFSIZE]; desc_p->next = (uintptr_t)&desc_table_p[i + 1]; desc_p->ctl_size = CFG_ETH_RXSIZE; desc_p->status = EMAC_DESC_OWN_DMA; } /* Correcting the last pointer of the chain */ desc_p->next = (uintptr_t)&desc_table_p[0]; flush_dcache_range((uintptr_t)priv->rx_chain, (uintptr_t)priv->rx_chain + sizeof(priv->rx_chain)); writel((uintptr_t)&desc_table_p[0], (priv->mac_reg + EMAC_RX_DMA_DESC)); priv->rx_currdescnum = 0; } static void tx_descs_init(struct emac_eth_dev *priv) { struct emac_dma_desc *desc_table_p = &priv->tx_chain[0]; char *txbuffs = &priv->txbuffer[0]; struct emac_dma_desc *desc_p; int i; for (i = 0; i < CFG_TX_DESCR_NUM; i++) { desc_p = &desc_table_p[i]; desc_p->buf_addr = (uintptr_t)&txbuffs[i * CFG_ETH_BUFSIZE]; desc_p->next = (uintptr_t)&desc_table_p[i + 1]; desc_p->ctl_size = 0; desc_p->status = 0; } /* Correcting the last pointer of the chain */ desc_p->next = (uintptr_t)&desc_table_p[0]; /* Flush the first TX buffer descriptor we will tell the MAC about. */ cache_clean_descriptor(desc_table_p); writel((uintptr_t)&desc_table_p[0], priv->mac_reg + EMAC_TX_DMA_DESC); priv->tx_currdescnum = 0; } static int sun8i_emac_eth_start(struct udevice *dev) { struct emac_eth_dev *priv = dev_get_priv(dev); int ret; /* Soft reset MAC */ writel(EMAC_CTL1_SOFT_RST, priv->mac_reg + EMAC_CTL1); ret = wait_for_bit_le32(priv->mac_reg + EMAC_CTL1, EMAC_CTL1_SOFT_RST, false, 10, true); if (ret) { printf("%s: Timeout\n", __func__); return ret; } /* Rewrite mac address after reset */ sun8i_eth_write_hwaddr(dev); /* transmission starts after the full frame arrived in TX DMA FIFO */ setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_MD); /* * RX DMA reads data from RX DMA FIFO to host memory after a * complete frame has been written to RX DMA FIFO */ setbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_MD); /* DMA burst length */ writel(8 << EMAC_CTL1_BURST_LEN_SHIFT, priv->mac_reg + EMAC_CTL1); /* Initialize rx/tx descriptors */ rx_descs_init(priv); tx_descs_init(priv); /* PHY Start Up */ ret = phy_startup(priv->phydev); if (ret) return ret; sun8i_adjust_link(priv, priv->phydev); /* Start RX/TX DMA */ setbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_DMA_EN | EMAC_RX_CTL1_RX_ERR_FRM | EMAC_RX_CTL1_RX_RUNT_FRM); setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_EN); /* Enable RX/TX */ setbits_le32(priv->mac_reg + EMAC_RX_CTL0, EMAC_RX_CTL0_RX_EN); setbits_le32(priv->mac_reg + EMAC_TX_CTL0, EMAC_TX_CTL0_TX_EN); return 0; } static int sun8i_emac_eth_recv(struct udevice *dev, int flags, uchar **packetp) { struct emac_eth_dev *priv = dev_get_priv(dev); u32 status, desc_num = priv->rx_currdescnum; struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num]; uintptr_t data_start = (uintptr_t)desc_p->buf_addr; int length; /* Invalidate entire buffer descriptor */ cache_inv_descriptor(desc_p); status = desc_p->status; /* Check for DMA own bit */ if (status & EMAC_DESC_OWN_DMA) return -EAGAIN; length = (status >> 16) & 0x3fff; /* make sure we read from DRAM, not our cache */ invalidate_dcache_range(data_start, data_start + roundup(length, ARCH_DMA_MINALIGN)); if (status & EMAC_DESC_RX_ERROR_MASK) { debug("RX: packet error: 0x%x\n", status & EMAC_DESC_RX_ERROR_MASK); return 0; } if (length < 0x40) { debug("RX: Bad Packet (runt)\n"); return 0; } if (length > CFG_ETH_RXSIZE) { debug("RX: Too large packet (%d bytes)\n", length); return 0; } *packetp = (uchar *)(ulong)desc_p->buf_addr; return length; } static int sun8i_emac_eth_send(struct udevice *dev, void *packet, int length) { struct emac_eth_dev *priv = dev_get_priv(dev); u32 desc_num = priv->tx_currdescnum; struct emac_dma_desc *desc_p = &priv->tx_chain[desc_num]; uintptr_t data_start = (uintptr_t)desc_p->buf_addr; uintptr_t data_end = data_start + roundup(length, ARCH_DMA_MINALIGN); desc_p->ctl_size = length | EMAC_DESC_CHAIN_SECOND; memcpy((void *)data_start, packet, length); /* Flush data to be sent */ flush_dcache_range(data_start, data_end); /* frame begin and end */ desc_p->ctl_size |= EMAC_DESC_LAST_DESC | EMAC_DESC_FIRST_DESC; desc_p->status = EMAC_DESC_OWN_DMA; /* make sure the MAC reads the actual data from DRAM */ cache_clean_descriptor(desc_p); /* Move to next Descriptor and wrap around */ if (++desc_num >= CFG_TX_DESCR_NUM) desc_num = 0; priv->tx_currdescnum = desc_num; /* Start the DMA */ setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_START); /* * Since we copied the data above, we return here without waiting * for the packet to be actually send out. */ return 0; } static int sun8i_emac_board_setup(struct udevice *dev, struct emac_eth_dev *priv) { int ret; ret = clk_enable(&priv->tx_clk); if (ret) { dev_err(dev, "failed to enable TX clock\n"); return ret; } if (reset_valid(&priv->tx_rst)) { ret = reset_deassert(&priv->tx_rst); if (ret) { dev_err(dev, "failed to deassert TX reset\n"); goto err_tx_clk; } } /* Only H3/H5 have clock controls for internal EPHY */ if (clk_valid(&priv->ephy_clk)) { ret = clk_enable(&priv->ephy_clk); if (ret) { dev_err(dev, "failed to enable EPHY TX clock\n"); return ret; } } if (reset_valid(&priv->ephy_rst)) { ret = reset_deassert(&priv->ephy_rst); if (ret) { dev_err(dev, "failed to deassert EPHY TX clock\n"); return ret; } } return 0; err_tx_clk: clk_disable(&priv->tx_clk); return ret; } #if CONFIG_IS_ENABLED(DM_GPIO) static int sun8i_mdio_reset(struct mii_dev *bus) { struct udevice *dev = bus->priv; struct emac_eth_dev *priv = dev_get_priv(dev); struct sun8i_eth_pdata *pdata = dev_get_plat(dev); int ret; if (!dm_gpio_is_valid(&priv->reset_gpio)) return 0; /* reset the phy */ ret = dm_gpio_set_value(&priv->reset_gpio, 0); if (ret) return ret; udelay(pdata->reset_delays[0]); ret = dm_gpio_set_value(&priv->reset_gpio, 1); if (ret) return ret; udelay(pdata->reset_delays[1]); ret = dm_gpio_set_value(&priv->reset_gpio, 0); if (ret) return ret; udelay(pdata->reset_delays[2]); return 0; } #endif static int sun8i_mdio_init(const char *name, struct udevice *priv) { struct mii_dev *bus = mdio_alloc(); if (!bus) { debug("Failed to allocate MDIO bus\n"); return -ENOMEM; } bus->read = sun8i_mdio_read; bus->write = sun8i_mdio_write; snprintf(bus->name, sizeof(bus->name), name); bus->priv = (void *)priv; #if CONFIG_IS_ENABLED(DM_GPIO) bus->reset = sun8i_mdio_reset; #endif return mdio_register(bus); } static int sun8i_eth_free_pkt(struct udevice *dev, uchar *packet, int length) { struct emac_eth_dev *priv = dev_get_priv(dev); u32 desc_num = priv->rx_currdescnum; struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num]; /* give the current descriptor back to the MAC */ desc_p->status |= EMAC_DESC_OWN_DMA; /* Flush Status field of descriptor */ cache_clean_descriptor(desc_p); /* Move to next desc and wrap-around condition. */ if (++desc_num >= CFG_RX_DESCR_NUM) desc_num = 0; priv->rx_currdescnum = desc_num; return 0; } static void sun8i_emac_eth_stop(struct udevice *dev) { struct emac_eth_dev *priv = dev_get_priv(dev); /* Stop Rx/Tx transmitter */ clrbits_le32(priv->mac_reg + EMAC_RX_CTL0, EMAC_RX_CTL0_RX_EN); clrbits_le32(priv->mac_reg + EMAC_TX_CTL0, EMAC_TX_CTL0_TX_EN); /* Stop RX/TX DMA */ clrbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_EN); clrbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_DMA_EN); phy_shutdown(priv->phydev); } static int sun8i_emac_eth_probe(struct udevice *dev) { struct sun8i_eth_pdata *sun8i_pdata = dev_get_plat(dev); struct eth_pdata *pdata = &sun8i_pdata->eth_pdata; struct emac_eth_dev *priv = dev_get_priv(dev); int ret; priv->mac_reg = (void *)pdata->iobase; ret = sun8i_emac_board_setup(dev, priv); if (ret) return ret; sun8i_emac_set_syscon(sun8i_pdata, priv); if (priv->phy_reg) regulator_set_enable(priv->phy_reg, true); sun8i_mdio_init(dev->name, dev); priv->bus = miiphy_get_dev_by_name(dev->name); return sun8i_phy_init(priv, dev); } static const struct eth_ops sun8i_emac_eth_ops = { .start = sun8i_emac_eth_start, .write_hwaddr = sun8i_eth_write_hwaddr, .send = sun8i_emac_eth_send, .recv = sun8i_emac_eth_recv, .free_pkt = sun8i_eth_free_pkt, .stop = sun8i_emac_eth_stop, }; static int sun8i_handle_internal_phy(struct udevice *dev, struct emac_eth_dev *priv) { struct ofnode_phandle_args phandle; int ret; ret = ofnode_parse_phandle_with_args(dev_ofnode(dev), "phy-handle", NULL, 0, 0, &phandle); if (ret) return ret; /* If the PHY node is not a child of the internal MDIO bus, we are * using some external PHY. */ if (!ofnode_device_is_compatible(ofnode_get_parent(phandle.node), "allwinner,sun8i-h3-mdio-internal")) return 0; ret = clk_get_by_index_nodev(phandle.node, 0, &priv->ephy_clk); if (ret) { dev_err(dev, "failed to get EPHY TX clock\n"); return ret; } ret = reset_get_by_index_nodev(phandle.node, 0, &priv->ephy_rst); if (ret) { dev_err(dev, "failed to get EPHY TX reset\n"); return ret; } priv->use_internal_phy = true; return 0; } static int sun8i_emac_eth_of_to_plat(struct udevice *dev) { struct sun8i_eth_pdata *sun8i_pdata = dev_get_plat(dev); struct eth_pdata *pdata = &sun8i_pdata->eth_pdata; struct emac_eth_dev *priv = dev_get_priv(dev); phys_addr_t syscon_base; const fdt32_t *reg; int node = dev_of_offset(dev); int offset = 0; #if CONFIG_IS_ENABLED(DM_GPIO) int reset_flags = GPIOD_IS_OUT; #endif int ret; pdata->iobase = dev_read_addr(dev); if (pdata->iobase == FDT_ADDR_T_NONE) { debug("%s: Cannot find MAC base address\n", __func__); return -EINVAL; } priv->variant = (const void *)dev_get_driver_data(dev); if (!priv->variant) { printf("%s: Missing variant\n", __func__); return -EINVAL; } ret = clk_get_by_name(dev, "stmmaceth", &priv->tx_clk); if (ret) { dev_err(dev, "failed to get TX clock\n"); return ret; } ret = reset_get_by_name(dev, "stmmaceth", &priv->tx_rst); if (ret && ret != -ENOENT) { dev_err(dev, "failed to get TX reset\n"); return ret; } offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "syscon"); if (offset < 0) { debug("%s: cannot find syscon node\n", __func__); return -EINVAL; } reg = fdt_getprop(gd->fdt_blob, offset, "reg", NULL); if (!reg) { debug("%s: cannot find reg property in syscon node\n", __func__); return -EINVAL; } syscon_base = fdt_translate_address((void *)gd->fdt_blob, offset, reg); if (syscon_base == FDT_ADDR_T_NONE) { debug("%s: Cannot find syscon base address\n", __func__); return -EINVAL; } priv->sysctl_reg = (void *)syscon_base + priv->variant->syscon_offset; device_get_supply_regulator(dev, "phy-supply", &priv->phy_reg); pdata->phy_interface = -1; priv->phyaddr = -1; priv->use_internal_phy = false; offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "phy-handle"); if (offset < 0) { debug("%s: Cannot find PHY address\n", __func__); return -EINVAL; } priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg", -1); pdata->phy_interface = dev_read_phy_mode(dev); debug("phy interface %d\n", pdata->phy_interface); if (pdata->phy_interface == PHY_INTERFACE_MODE_NA) return -EINVAL; if (priv->variant->soc_has_internal_phy) { ret = sun8i_handle_internal_phy(dev, priv); if (ret) return ret; } priv->interface = pdata->phy_interface; sun8i_pdata->tx_delay_ps = fdtdec_get_int(gd->fdt_blob, node, "allwinner,tx-delay-ps", 0); if (sun8i_pdata->tx_delay_ps < 0 || sun8i_pdata->tx_delay_ps > 700) printf("%s: Invalid TX delay value %d\n", __func__, sun8i_pdata->tx_delay_ps); sun8i_pdata->rx_delay_ps = fdtdec_get_int(gd->fdt_blob, node, "allwinner,rx-delay-ps", 0); if (sun8i_pdata->rx_delay_ps < 0 || sun8i_pdata->rx_delay_ps > 3100) printf("%s: Invalid RX delay value %d\n", __func__, sun8i_pdata->rx_delay_ps); #if CONFIG_IS_ENABLED(DM_GPIO) if (fdtdec_get_bool(gd->fdt_blob, dev_of_offset(dev), "snps,reset-active-low")) reset_flags |= GPIOD_ACTIVE_LOW; ret = gpio_request_by_name(dev, "snps,reset-gpio", 0, &priv->reset_gpio, reset_flags); if (ret == 0) { ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev), "snps,reset-delays-us", sun8i_pdata->reset_delays, 3); } else if (ret == -ENOENT) { ret = 0; } #endif return 0; } static const struct emac_variant emac_variant_a83t = { .syscon_offset = 0x30, }; static const struct emac_variant emac_variant_h3 = { .syscon_offset = 0x30, .soc_has_internal_phy = true, .support_rmii = true, }; static const struct emac_variant emac_variant_r40 = { .syscon_offset = 0x164, }; static const struct emac_variant emac_variant_a64 = { .syscon_offset = 0x30, .support_rmii = true, }; static const struct emac_variant emac_variant_h6 = { .syscon_offset = 0x30, .support_rmii = true, }; static const struct udevice_id sun8i_emac_eth_ids[] = { { .compatible = "allwinner,sun8i-a83t-emac", .data = (ulong)&emac_variant_a83t }, { .compatible = "allwinner,sun8i-h3-emac", .data = (ulong)&emac_variant_h3 }, { .compatible = "allwinner,sun8i-r40-gmac", .data = (ulong)&emac_variant_r40 }, { .compatible = "allwinner,sun50i-a64-emac", .data = (ulong)&emac_variant_a64 }, { .compatible = "allwinner,sun50i-h6-emac", .data = (ulong)&emac_variant_h6 }, { } }; U_BOOT_DRIVER(eth_sun8i_emac) = { .name = "eth_sun8i_emac", .id = UCLASS_ETH, .of_match = sun8i_emac_eth_ids, .of_to_plat = sun8i_emac_eth_of_to_plat, .probe = sun8i_emac_eth_probe, .ops = &sun8i_emac_eth_ops, .priv_auto = sizeof(struct emac_eth_dev), .plat_auto = sizeof(struct sun8i_eth_pdata), .flags = DM_FLAG_ALLOC_PRIV_DMA, };