// SPDX-License-Identifier: GPL-2.0+ /* * Board functions for Siemens TAURUS (AT91SAM9G20) based boards * (C) Copyright Siemens AG * * Based on: * U-Boot file: board/atmel/at91sam9260ek/at91sam9260ek.c * * (C) Copyright 2007-2008 * Stelian Pop * Lead Tech Design */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_DM_ETH #include #endif DECLARE_GLOBAL_DATA_PTR; static void taurus_request_gpio(void) { gpio_request(CONFIG_SYS_NAND_ENABLE_PIN, "nand ena"); gpio_request(CONFIG_SYS_NAND_READY_PIN, "nand rdy"); gpio_request(AT91_PIN_PA25, "ena PHY"); } static void taurus_nand_hw_init(void) { struct at91_smc *smc = (struct at91_smc *)ATMEL_BASE_SMC; struct at91_matrix *matrix = (struct at91_matrix *)ATMEL_BASE_MATRIX; unsigned long csa; /* Assign CS3 to NAND/SmartMedia Interface */ csa = readl(&matrix->ebicsa); csa |= AT91_MATRIX_CS3A_SMC_SMARTMEDIA; writel(csa, &matrix->ebicsa); /* Configure SMC CS3 for NAND/SmartMedia */ writel(AT91_SMC_SETUP_NWE(2) | AT91_SMC_SETUP_NCS_WR(0) | AT91_SMC_SETUP_NRD(2) | AT91_SMC_SETUP_NCS_RD(0), &smc->cs[3].setup); writel(AT91_SMC_PULSE_NWE(4) | AT91_SMC_PULSE_NCS_WR(3) | AT91_SMC_PULSE_NRD(4) | AT91_SMC_PULSE_NCS_RD(3), &smc->cs[3].pulse); writel(AT91_SMC_CYCLE_NWE(7) | AT91_SMC_CYCLE_NRD(7), &smc->cs[3].cycle); writel(AT91_SMC_MODE_RM_NRD | AT91_SMC_MODE_WM_NWE | AT91_SMC_MODE_EXNW_DISABLE | AT91_SMC_MODE_DBW_8 | AT91_SMC_MODE_TDF_CYCLE(3), &smc->cs[3].mode); /* Configure RDY/BSY */ at91_set_gpio_input(CONFIG_SYS_NAND_READY_PIN, 1); /* Enable NandFlash */ at91_set_gpio_output(CONFIG_SYS_NAND_ENABLE_PIN, 1); } #if defined(CONFIG_SPL_BUILD) #include #include #include void matrix_init(void) { struct at91_matrix *mat = (struct at91_matrix *)ATMEL_BASE_MATRIX; writel((readl(&mat->scfg[3]) & (~AT91_MATRIX_SLOT_CYCLE)) | AT91_MATRIX_SLOT_CYCLE_(0x40), &mat->scfg[3]); } #if defined(CONFIG_BOARD_AXM) static int at91_is_recovery(void) { if ((at91_get_gpio_value(AT91_PIN_PA26) == 0) && (at91_get_gpio_value(AT91_PIN_PA27) == 0)) return 1; return 0; } #elif defined(CONFIG_BOARD_TAURUS) static int at91_is_recovery(void) { if (at91_get_gpio_value(AT91_PIN_PA31) == 0) return 1; return 0; } #endif void spl_board_init(void) { taurus_nand_hw_init(); at91_spi0_hw_init(TAURUS_SPI_MASK); #if defined(CONFIG_BOARD_AXM) /* Configure LED PINs */ at91_set_gpio_output(AT91_PIN_PA6, 0); at91_set_gpio_output(AT91_PIN_PA8, 0); at91_set_gpio_output(AT91_PIN_PA9, 0); at91_set_gpio_output(AT91_PIN_PA10, 0); at91_set_gpio_output(AT91_PIN_PA11, 0); at91_set_gpio_output(AT91_PIN_PA12, 0); /* Configure recovery button PINs */ at91_set_gpio_input(AT91_PIN_PA26, 1); at91_set_gpio_input(AT91_PIN_PA27, 1); #elif defined(CONFIG_BOARD_TAURUS) at91_set_gpio_input(AT91_PIN_PA31, 1); #endif /* check for recovery mode */ if (at91_is_recovery() == 1) { struct spi_flash *flash; puts("Recovery button pressed\n"); nand_init(); spl_nand_erase_one(0, 0); flash = spi_flash_probe(CONFIG_SF_DEFAULT_BUS, 0, CONFIG_SF_DEFAULT_SPEED, CONFIG_SF_DEFAULT_MODE); if (!flash) { puts("no flash\n"); } else { puts("erase spi flash sector 0\n"); spi_flash_erase(flash, 0, CONFIG_SYS_NAND_U_BOOT_SIZE); } } } #define SDRAM_BASE_CONF (AT91_SDRAMC_NR_13 | AT91_SDRAMC_CAS_3 \ |AT91_SDRAMC_NB_4 | AT91_SDRAMC_DBW_32 \ | AT91_SDRAMC_TWR_VAL(3) | AT91_SDRAMC_TRC_VAL(9) \ | AT91_SDRAMC_TRP_VAL(3) | AT91_SDRAMC_TRCD_VAL(3) \ | AT91_SDRAMC_TRAS_VAL(6) | AT91_SDRAMC_TXSR_VAL(10)) void sdramc_configure(unsigned int mask) { struct at91_matrix *ma = (struct at91_matrix *)ATMEL_BASE_MATRIX; struct sdramc_reg setting; at91_sdram_hw_init(); setting.cr = SDRAM_BASE_CONF | mask; setting.mdr = AT91_SDRAMC_MD_SDRAM; setting.tr = (CONFIG_SYS_MASTER_CLOCK * 7) / 1000000; writel(readl(&ma->ebicsa) | AT91_MATRIX_CS1A_SDRAMC | AT91_MATRIX_VDDIOMSEL_3_3V | AT91_MATRIX_EBI_IOSR_SEL, &ma->ebicsa); sdramc_initialize(ATMEL_BASE_CS1, &setting); } void mem_init(void) { unsigned int ram_size = 0; /* Configure SDRAM for 128MB */ sdramc_configure(AT91_SDRAMC_NC_10); /* Do memtest for 128MB */ ram_size = get_ram_size((void *)CONFIG_SYS_SDRAM_BASE, CONFIG_SYS_SDRAM_SIZE); /* * If 32MB or 16MB should be supported check also for * expected mirroring at A16 and A17 * To find mirror addresses depends how the collumns are connected * at RAM (internaly or externaly) * If the collumns are not in inverted order the mirror size effect * behaves like normal SRAM with A0,A1,A2,etc. connected incremantal */ /* Mirrors at A15 on ATMEL G20 SDRAM Controller with 64MB*/ if (ram_size == 0x800) { printf("\n\r 64MB\n"); sdramc_configure(AT91_SDRAMC_NC_9); } else { /* Size already initialized */ printf("\n\r 128MB\n"); } } #endif #ifdef CONFIG_MACB static void siemens_phy_reset(void) { /* * we need to reset PHY for 200us * because of bug in ATMEL G20 CPU (undefined initial state of GPIO) */ if ((readl(AT91_ASM_RSTC_SR) & AT91_RSTC_RSTTYP) == AT91_RSTC_RSTTYP_GENERAL) at91_set_gpio_value(AT91_PIN_PA25, 0); /* reset eth switch */ } static void taurus_macb_hw_init(void) { /* Enable EMAC clock */ at91_periph_clk_enable(ATMEL_ID_EMAC0); /* * Disable pull-up on: * RXDV (PA17) => PHY normal mode (not Test mode) * ERX0 (PA14) => PHY ADDR0 * ERX1 (PA15) => PHY ADDR1 * ERX2 (PA25) => PHY ADDR2 * ERX3 (PA26) => PHY ADDR3 * ECRS (PA28) => PHY ADDR4 => PHYADDR = 0x0 * * PHY has internal pull-down */ at91_set_pio_pullup(AT91_PIO_PORTA, 14, 0); at91_set_pio_pullup(AT91_PIO_PORTA, 15, 0); at91_set_pio_pullup(AT91_PIO_PORTA, 17, 0); at91_set_pio_pullup(AT91_PIO_PORTA, 25, 0); at91_set_pio_pullup(AT91_PIO_PORTA, 26, 0); at91_set_pio_pullup(AT91_PIO_PORTA, 28, 0); siemens_phy_reset(); at91_phy_reset(); at91_set_gpio_input(AT91_PIN_PA25, 1); /* ERST tri-state */ /* Re-enable pull-up */ at91_set_pio_pullup(AT91_PIO_PORTA, 14, 1); at91_set_pio_pullup(AT91_PIO_PORTA, 15, 1); at91_set_pio_pullup(AT91_PIO_PORTA, 17, 1); at91_set_pio_pullup(AT91_PIO_PORTA, 25, 1); at91_set_pio_pullup(AT91_PIO_PORTA, 26, 1); at91_set_pio_pullup(AT91_PIO_PORTA, 28, 1); /* Initialize EMAC=MACB hardware */ at91_macb_hw_init(); } #endif #ifdef CONFIG_GENERIC_ATMEL_MCI int board_mmc_init(struct bd_info *bd) { at91_mci_hw_init(); return atmel_mci_init((void *)ATMEL_BASE_MCI); } #endif int board_early_init_f(void) { /* Enable clocks for all PIOs */ at91_periph_clk_enable(ATMEL_ID_PIOA); at91_periph_clk_enable(ATMEL_ID_PIOB); at91_periph_clk_enable(ATMEL_ID_PIOC); at91_seriald_hw_init(); taurus_request_gpio(); return 0; } #ifdef CONFIG_USB_GADGET_AT91 #include void at91_udp_hw_init(void) { /* Enable PLLB */ at91_pllb_clk_enable(get_pllb_init()); /* Enable UDPCK clock, MCK is enabled in at91_clock_init() */ at91_periph_clk_enable(ATMEL_ID_UDP); at91_system_clk_enable(AT91SAM926x_PMC_UDP); } struct at91_udc_data board_udc_data = { .baseaddr = ATMEL_BASE_UDP0, }; #endif int board_init(void) { /* adress of boot parameters */ gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100; taurus_request_gpio(); #ifdef CONFIG_CMD_NAND taurus_nand_hw_init(); #endif #ifdef CONFIG_MACB taurus_macb_hw_init(); #endif at91_spi0_hw_init(TAURUS_SPI_MASK); #ifdef CONFIG_USB_GADGET_AT91 at91_udp_hw_init(); at91_udc_probe(&board_udc_data); #endif return 0; } int dram_init(void) { gd->ram_size = get_ram_size((void *)CONFIG_SYS_SDRAM_BASE, CONFIG_SYS_SDRAM_SIZE); return 0; } #if !defined(CONFIG_SPL_BUILD) #if defined(CONFIG_BOARD_AXM) /* * Booting the Fallback Image. * * The function is used to provide and * boot the image with the fallback * parameters, incase if the faulty image * in upgraded over the base firmware. * */ static int upgrade_failure_fallback(void) { char *partitionset_active = NULL; char *rootfs = NULL; char *rootfs_fallback = NULL; char *kern_off; char *kern_off_fb; char *kern_size; char *kern_size_fb; partitionset_active = env_get("partitionset_active"); if (partitionset_active) { if (partitionset_active[0] == 'A') env_set("partitionset_active", "B"); else env_set("partitionset_active", "A"); } else { printf("partitionset_active missing.\n"); return -ENOENT; } rootfs = env_get("rootfs"); rootfs_fallback = env_get("rootfs_fallback"); env_set("rootfs", rootfs_fallback); env_set("rootfs_fallback", rootfs); kern_size = env_get("kernel_size"); kern_size_fb = env_get("kernel_size_fallback"); env_set("kernel_size", kern_size_fb); env_set("kernel_size_fallback", kern_size); kern_off = env_get("kernel_Off"); kern_off_fb = env_get("kernel_Off_fallback"); env_set("kernel_Off", kern_off_fb); env_set("kernel_Off_fallback", kern_off); env_set("bootargs", '\0'); env_set("upgrade_available", '\0'); env_set("boot_retries", '\0'); env_save(); return 0; } static int do_upgrade_available(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { unsigned long upgrade_available = 0; unsigned long boot_retry = 0; char boot_buf[10]; upgrade_available = dectoul(env_get("upgrade_available"), NULL); if (upgrade_available) { boot_retry = dectoul(env_get("boot_retries"), NULL); boot_retry++; sprintf(boot_buf, "%lx", boot_retry); env_set("boot_retries", boot_buf); env_save(); /* * Here the boot_retries count is checked, and if the * count becomes greater than 2 switch back to the * fallback, and reset the board. */ if (boot_retry > 2) { if (upgrade_failure_fallback() == 0) do_reset(NULL, 0, 0, NULL); return -1; } } return 0; } U_BOOT_CMD( upgrade_available, 1, 1, do_upgrade_available, "check Siemens update", "no parameters" ); #endif #endif