// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2019 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; struct cpu_imx_plat { const char *name; const char *rev; const char *type; u32 cpu_rsrc; u32 cpurev; u32 freq_mhz; u32 mpidr; }; static const char *get_imx_type_str(u32 imxtype) { switch (imxtype) { case MXC_CPU_IMX8QXP: case MXC_CPU_IMX8QXP_A0: return "8QXP"; case MXC_CPU_IMX8QM: return "8QM"; case MXC_CPU_IMX93: return "93(52)";/* iMX93 Dual core with NPU */ default: return "??"; } } static const char *get_imx_rev_str(u32 rev) { static char revision[4]; if (IS_ENABLED(CONFIG_IMX8)) { switch (rev) { case CHIP_REV_A: return "A"; case CHIP_REV_B: return "B"; case CHIP_REV_C: return "C"; default: return "?"; } } else { revision[0] = '1' + (((rev & 0xf0) - CHIP_REV_1_0) >> 4); revision[1] = '.'; revision[2] = '0' + (rev & 0xf); revision[3] = '\0'; return revision; } } static void set_core_data(struct udevice *dev) { struct cpu_imx_plat *plat = dev_get_plat(dev); if (device_is_compatible(dev, "arm,cortex-a35")) { plat->cpu_rsrc = SC_R_A35; plat->name = "A35"; } else if (device_is_compatible(dev, "arm,cortex-a53")) { plat->cpu_rsrc = SC_R_A53; plat->name = "A53"; } else if (device_is_compatible(dev, "arm,cortex-a72")) { plat->cpu_rsrc = SC_R_A72; plat->name = "A72"; } else if (device_is_compatible(dev, "arm,cortex-a55")) { plat->name = "A55"; } else { plat->cpu_rsrc = SC_R_A53; plat->name = "?"; } } #if IS_ENABLED(CONFIG_DM_THERMAL) static int cpu_imx_get_temp(struct cpu_imx_plat *plat) { struct udevice *thermal_dev; int cpu_tmp, ret; int idx = 1; /* use "cpu-thermal0" device */ if (IS_ENABLED(CONFIG_IMX8)) { if (plat->cpu_rsrc == SC_R_A72) idx = 2; /* use "cpu-thermal1" device */ } else { idx = 1; } ret = uclass_get_device(UCLASS_THERMAL, idx, &thermal_dev); if (!ret) { ret = thermal_get_temp(thermal_dev, &cpu_tmp); if (ret) return 0xdeadbeef; } else { return 0xdeadbeef; } return cpu_tmp; } #else static int cpu_imx_get_temp(struct cpu_imx_plat *plat) { return 0; } #endif __weak u32 get_cpu_temp_grade(int *minc, int *maxc) { return 0; } static int cpu_imx_get_desc(const struct udevice *dev, char *buf, int size) { struct cpu_imx_plat *plat = dev_get_plat(dev); const char *grade; int ret, temp; int minc, maxc; if (size < 100) return -ENOSPC; ret = snprintf(buf, size, "NXP i.MX%s Rev%s %s at %u MHz", plat->type, plat->rev, plat->name, plat->freq_mhz); if (IS_ENABLED(CONFIG_IMX9)) { switch (get_cpu_temp_grade(&minc, &maxc)) { case TEMP_AUTOMOTIVE: grade = "Automotive temperature grade "; break; case TEMP_INDUSTRIAL: grade = "Industrial temperature grade "; break; case TEMP_EXTCOMMERCIAL: grade = "Extended Consumer temperature grade "; break; default: grade = "Consumer temperature grade "; break; } buf = buf + ret; size = size - ret; ret = snprintf(buf, size, "\nCPU: %s (%dC to %dC)", grade, minc, maxc); } if (IS_ENABLED(CONFIG_DM_THERMAL)) { temp = cpu_imx_get_temp(plat); buf = buf + ret; size = size - ret; if (temp != 0xdeadbeef) ret = snprintf(buf, size, " at %dC", temp); else ret = snprintf(buf, size, " - invalid sensor data"); } snprintf(buf + ret, size - ret, "\n"); return 0; } static int cpu_imx_get_info(const struct udevice *dev, struct cpu_info *info) { struct cpu_imx_plat *plat = dev_get_plat(dev); info->cpu_freq = plat->freq_mhz * 1000; info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU); return 0; } static int cpu_imx_get_count(const struct udevice *dev) { ofnode node; int num = 0; ofnode_for_each_subnode(node, dev_ofnode(dev->parent)) { const char *device_type; if (!ofnode_is_enabled(node)) continue; device_type = ofnode_read_string(node, "device_type"); if (!device_type) continue; if (!strcmp(device_type, "cpu")) num++; } return num; } static int cpu_imx_get_vendor(const struct udevice *dev, char *buf, int size) { snprintf(buf, size, "NXP"); return 0; } static int cpu_imx_is_current(struct udevice *dev) { struct cpu_imx_plat *plat = dev_get_plat(dev); if (plat->mpidr == (read_mpidr() & 0xffff)) return 1; return 0; } static const struct cpu_ops cpu_imx_ops = { .get_desc = cpu_imx_get_desc, .get_info = cpu_imx_get_info, .get_count = cpu_imx_get_count, .get_vendor = cpu_imx_get_vendor, .is_current = cpu_imx_is_current, }; static const struct udevice_id cpu_imx_ids[] = { { .compatible = "arm,cortex-a35" }, { .compatible = "arm,cortex-a53" }, { .compatible = "arm,cortex-a55" }, { .compatible = "arm,cortex-a72" }, { } }; static ulong imx_get_cpu_rate(struct udevice *dev) { struct cpu_imx_plat *plat = dev_get_plat(dev); struct clk clk; ulong rate; int ret; if (IS_ENABLED(CONFIG_IMX8)) { ret = sc_pm_get_clock_rate(-1, plat->cpu_rsrc, SC_PM_CLK_CPU, (sc_pm_clock_rate_t *)&rate); } else { ret = clk_get_by_index(dev, 0, &clk); if (!ret) { rate = clk_get_rate(&clk); if (!rate) ret = -EOPNOTSUPP; } } if (ret) { printf("Could not read CPU frequency: %d\n", ret); return 0; } return rate; } static int imx_cpu_probe(struct udevice *dev) { struct cpu_imx_plat *plat = dev_get_plat(dev); u32 cpurev; set_core_data(dev); cpurev = get_cpu_rev(); plat->cpurev = cpurev; plat->rev = get_imx_rev_str(cpurev & 0xFFF); plat->type = get_imx_type_str((cpurev & 0xFF000) >> 12); plat->freq_mhz = imx_get_cpu_rate(dev) / 1000000; plat->mpidr = dev_read_addr(dev); if (plat->mpidr == FDT_ADDR_T_NONE) { printf("%s: Failed to get CPU reg property\n", __func__); return -EINVAL; } return 0; } U_BOOT_DRIVER(cpu_imx_drv) = { .name = "imx_cpu", .id = UCLASS_CPU, .of_match = cpu_imx_ids, .ops = &cpu_imx_ops, .probe = imx_cpu_probe, .plat_auto = sizeof(struct cpu_imx_plat), .flags = DM_FLAG_PRE_RELOC, };