// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Google, Inc * Written by Simon Glass */ #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #ifndef CONFIG_SPL_LOAD_FIT_APPLY_OVERLAY_BUF_SZ #define CONFIG_SPL_LOAD_FIT_APPLY_OVERLAY_BUF_SZ (64 * 1024) #endif #ifndef CONFIG_SYS_BOOTM_LEN #define CONFIG_SYS_BOOTM_LEN (64 << 20) #endif struct spl_fit_info { const void *fit; /* Pointer to a valid FIT blob */ size_t ext_data_offset; /* Offset to FIT external data (end of FIT) */ int images_node; /* FDT offset to "/images" node */ int conf_node; /* FDT offset to selected configuration node */ }; __weak void board_spl_fit_post_load(const void *fit) { } __weak ulong board_spl_fit_size_align(ulong size) { return size; } static int find_node_from_desc(const void *fit, int node, const char *str) { int child; if (node < 0) return -EINVAL; /* iterate the FIT nodes and find a matching description */ for (child = fdt_first_subnode(fit, node); child >= 0; child = fdt_next_subnode(fit, child)) { int len; const char *desc = fdt_getprop(fit, child, "description", &len); if (!desc) continue; if (!strcmp(desc, str)) return child; } return -ENOENT; } /** * spl_fit_get_image_name(): By using the matching configuration subnode, * retrieve the name of an image, specified by a property name and an index * into that. * @fit: Pointer to the FDT blob. * @images: Offset of the /images subnode. * @type: Name of the property within the configuration subnode. * @index: Index into the list of strings in this property. * @outname: Name of the image * * Return: 0 on success, or a negative error number */ static int spl_fit_get_image_name(const struct spl_fit_info *ctx, const char *type, int index, const char **outname) { struct udevice *sysinfo; const char *name, *str; __maybe_unused int node; int len, i; bool found = true; name = fdt_getprop(ctx->fit, ctx->conf_node, type, &len); if (!name) { debug("cannot find property '%s': %d\n", type, len); return -EINVAL; } str = name; for (i = 0; i < index; i++) { str = strchr(str, '\0') + 1; if (!str || (str - name >= len)) { found = false; break; } } if (!found && CONFIG_IS_ENABLED(SYSINFO) && !sysinfo_get(&sysinfo)) { int rc; /* * no string in the property for this index. Check if the * sysinfo-level code can supply one. */ rc = sysinfo_detect(sysinfo); if (rc) return rc; rc = sysinfo_get_fit_loadable(sysinfo, index - i - 1, type, &str); if (rc && rc != -ENOENT) return rc; if (!rc) { /* * The sysinfo provided a name for a loadable. * Try to match it against the description properties * first. If no matching node is found, use it as a * node name. */ int node; int images = fdt_path_offset(ctx->fit, FIT_IMAGES_PATH); node = find_node_from_desc(ctx->fit, images, str); if (node > 0) str = fdt_get_name(ctx->fit, node, NULL); found = true; } } if (!found) { debug("no string for index %d\n", index); return -E2BIG; } *outname = str; return 0; } /** * spl_fit_get_image_node(): By using the matching configuration subnode, * retrieve the name of an image, specified by a property name and an index * into that. * @fit: Pointer to the FDT blob. * @images: Offset of the /images subnode. * @type: Name of the property within the configuration subnode. * @index: Index into the list of strings in this property. * * Return: the node offset of the respective image node or a negative * error number. */ static int spl_fit_get_image_node(const struct spl_fit_info *ctx, const char *type, int index) { const char *str; int err; int node; err = spl_fit_get_image_name(ctx, type, index, &str); if (err) return err; debug("%s: '%s'\n", type, str); node = fdt_subnode_offset(ctx->fit, ctx->images_node, str); if (node < 0) { pr_err("cannot find image node '%s': %d\n", str, node); return -EINVAL; } return node; } static int get_aligned_image_offset(struct spl_load_info *info, int offset) { /* * If it is a FS read, get the first address before offset which is * aligned to ARCH_DMA_MINALIGN. If it is raw read return the * block number to which offset belongs. */ if (info->filename) return offset & ~(ARCH_DMA_MINALIGN - 1); return offset / info->bl_len; } static int get_aligned_image_overhead(struct spl_load_info *info, int offset) { /* * If it is a FS read, get the difference between the offset and * the first address before offset which is aligned to * ARCH_DMA_MINALIGN. If it is raw read return the offset within the * block. */ if (info->filename) return offset & (ARCH_DMA_MINALIGN - 1); return offset % info->bl_len; } static int get_aligned_image_size(struct spl_load_info *info, int data_size, int offset) { data_size = data_size + get_aligned_image_overhead(info, offset); if (info->filename) return data_size; return (data_size + info->bl_len - 1) / info->bl_len; } /** * spl_load_fit_image(): load the image described in a certain FIT node * @info: points to information about the device to load data from * @sector: the start sector of the FIT image on the device * @ctx: points to the FIT context structure * @node: offset of the DT node describing the image to load (relative * to @fit) * @image_info: will be filled with information about the loaded image * If the FIT node does not contain a "load" (address) property, * the image gets loaded to the address pointed to by the * load_addr member in this struct, if load_addr is not 0 * * Return: 0 on success or a negative error number. */ static int spl_load_fit_image(struct spl_load_info *info, ulong sector, const struct spl_fit_info *ctx, int node, struct spl_image_info *image_info) { int offset; size_t length; int len; ulong size; ulong load_addr; void *load_ptr; void *src; ulong overhead; int nr_sectors; uint8_t image_comp = -1, type = -1; const void *data; const void *fit = ctx->fit; bool external_data = false; if (IS_ENABLED(CONFIG_SPL_FPGA) || (IS_ENABLED(CONFIG_SPL_OS_BOOT) && IS_ENABLED(CONFIG_SPL_GZIP))) { if (fit_image_get_type(fit, node, &type)) puts("Cannot get image type.\n"); else debug("%s ", genimg_get_type_name(type)); } if (IS_ENABLED(CONFIG_SPL_GZIP)) { fit_image_get_comp(fit, node, &image_comp); debug("%s ", genimg_get_comp_name(image_comp)); } if (fit_image_get_load(fit, node, &load_addr)) { if (!image_info->load_addr) { printf("Can't load %s: No load address and no buffer\n", fit_get_name(fit, node, NULL)); return -ENOBUFS; } load_addr = image_info->load_addr; } if (!fit_image_get_data_position(fit, node, &offset)) { external_data = true; } else if (!fit_image_get_data_offset(fit, node, &offset)) { offset += ctx->ext_data_offset; external_data = true; } if (external_data) { void *src_ptr; /* External data */ if (fit_image_get_data_size(fit, node, &len)) return -ENOENT; /* Dont bother to copy 0 byte data, but warn, though */ if (!len) { log_warning("%s: Skip load '%s': image size is 0!\n", __func__, fit_get_name(fit, node, NULL)); return 0; } src_ptr = map_sysmem(ALIGN(load_addr, ARCH_DMA_MINALIGN), len); length = len; overhead = get_aligned_image_overhead(info, offset); nr_sectors = get_aligned_image_size(info, length, offset); if (info->read(info, sector + get_aligned_image_offset(info, offset), nr_sectors, src_ptr) != nr_sectors) return -EIO; debug("External data: dst=%p, offset=%x, size=%lx\n", src_ptr, offset, (unsigned long)length); src = src_ptr + overhead; } else { /* Embedded data */ if (fit_image_get_data(fit, node, &data, &length)) { puts("Cannot get image data/size\n"); return -ENOENT; } debug("Embedded data: dst=%lx, size=%lx\n", load_addr, (unsigned long)length); src = (void *)data; /* cast away const */ } if (CONFIG_IS_ENABLED(FIT_SIGNATURE)) { printf("## Checking hash(es) for Image %s ... ", fit_get_name(fit, node, NULL)); if (!fit_image_verify_with_data(fit, node, gd_fdt_blob(), src, length)) return -EPERM; puts("OK\n"); } if (CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS)) board_fit_image_post_process(fit, node, &src, &length); load_ptr = map_sysmem(load_addr, length); if (IS_ENABLED(CONFIG_SPL_GZIP) && image_comp == IH_COMP_GZIP) { size = length; if (gunzip(load_ptr, CONFIG_SYS_BOOTM_LEN, src, &size)) { puts("Uncompressing error\n"); return -EIO; } length = size; } else { memcpy(load_ptr, src, length); } if (image_info) { ulong entry_point; image_info->load_addr = load_addr; image_info->size = length; if (!fit_image_get_entry(fit, node, &entry_point)) image_info->entry_point = entry_point; else image_info->entry_point = FDT_ERROR; } return 0; } static bool os_takes_devicetree(uint8_t os) { switch (os) { case IH_OS_U_BOOT: return true; case IH_OS_LINUX: return IS_ENABLED(CONFIG_SPL_OS_BOOT); default: return false; } } static int spl_fit_append_fdt(struct spl_image_info *spl_image, struct spl_load_info *info, ulong sector, const struct spl_fit_info *ctx) { struct spl_image_info image_info; int node, ret = 0, index = 0; /* * Use the address following the image as target address for the * device tree. */ image_info.load_addr = spl_image->load_addr + spl_image->size; /* Figure out which device tree the board wants to use */ node = spl_fit_get_image_node(ctx, FIT_FDT_PROP, index++); if (node < 0) { debug("%s: cannot find FDT node\n", __func__); /* * U-Boot did not find a device tree inside the FIT image. Use * the U-Boot device tree instead. */ if (gd->fdt_blob) memcpy((void *)image_info.load_addr, gd->fdt_blob, fdt_totalsize(gd->fdt_blob)); else return node; } else { ret = spl_load_fit_image(info, sector, ctx, node, &image_info); if (ret < 0) return ret; } /* Make the load-address of the FDT available for the SPL framework */ spl_image->fdt_addr = map_sysmem(image_info.load_addr, 0); if (CONFIG_IS_ENABLED(FIT_IMAGE_TINY)) return 0; if (CONFIG_IS_ENABLED(LOAD_FIT_APPLY_OVERLAY)) { void *tmpbuffer = NULL; for (; ; index++) { node = spl_fit_get_image_node(ctx, FIT_FDT_PROP, index); if (node == -E2BIG) { debug("%s: No additional FDT node\n", __func__); break; } else if (node < 0) { debug("%s: unable to find FDT node %d\n", __func__, index); continue; } if (!tmpbuffer) { /* * allocate memory to store the DT overlay * before it is applied. It may not be used * depending on how the overlay is stored, so * don't fail yet if the allocation failed. */ tmpbuffer = malloc(CONFIG_SPL_LOAD_FIT_APPLY_OVERLAY_BUF_SZ); if (!tmpbuffer) debug("%s: unable to allocate space for overlays\n", __func__); } image_info.load_addr = (ulong)tmpbuffer; ret = spl_load_fit_image(info, sector, ctx, node, &image_info); if (ret < 0) break; /* Make room in FDT for changes from the overlay */ ret = fdt_increase_size(spl_image->fdt_addr, image_info.size); if (ret < 0) break; ret = fdt_overlay_apply_verbose(spl_image->fdt_addr, (void *)image_info.load_addr); if (ret) { pr_err("failed to apply DT overlay %s\n", fit_get_name(ctx->fit, node, NULL)); break; } debug("%s: DT overlay %s applied\n", __func__, fit_get_name(ctx->fit, node, NULL)); } free(tmpbuffer); if (ret) return ret; } /* Try to make space, so we can inject details on the loadables */ ret = fdt_shrink_to_minimum(spl_image->fdt_addr, 8192); if (ret < 0) return ret; return ret; } static int spl_fit_record_loadable(const struct spl_fit_info *ctx, int index, void *blob, struct spl_image_info *image) { int ret = 0; const char *name; int node; if (CONFIG_IS_ENABLED(FIT_IMAGE_TINY)) return 0; ret = spl_fit_get_image_name(ctx, "loadables", index, &name); if (ret < 0) return ret; node = spl_fit_get_image_node(ctx, "loadables", index); ret = fdt_record_loadable(blob, index, name, image->load_addr, image->size, image->entry_point, fdt_getprop(ctx->fit, node, "type", NULL), fdt_getprop(ctx->fit, node, "os", NULL), fdt_getprop(ctx->fit, node, "arch", NULL)); return ret; } static int spl_fit_image_is_fpga(const void *fit, int node) { const char *type; if (!IS_ENABLED(CONFIG_SPL_FPGA)) return 0; type = fdt_getprop(fit, node, FIT_TYPE_PROP, NULL); if (!type) return 0; return !strcmp(type, "fpga"); } static int spl_fit_image_get_os(const void *fit, int noffset, uint8_t *os) { if (!CONFIG_IS_ENABLED(FIT_IMAGE_TINY) || CONFIG_IS_ENABLED(OS_BOOT)) return fit_image_get_os(fit, noffset, os); const char *name = fdt_getprop(fit, noffset, FIT_OS_PROP, NULL); if (!name) return -ENOENT; /* * We don't care what the type of the image actually is, * only whether or not it is U-Boot. This saves some * space by omitting the large table of OS types. */ if (!strcmp(name, "u-boot")) *os = IH_OS_U_BOOT; else *os = IH_OS_INVALID; return 0; } /* * The purpose of the FIT load buffer is to provide a memory location that is * independent of the load address of any FIT component. */ static void *spl_get_fit_load_buffer(size_t size) { void *buf; buf = malloc(size); if (!buf) { pr_err("Could not get FIT buffer of %lu bytes\n", (ulong)size); pr_err("\tcheck CONFIG_SYS_SPL_MALLOC_SIZE\n"); buf = spl_get_load_buffer(0, size); } return buf; } __weak void *board_spl_fit_buffer_addr(ulong fit_size, int sectors, int bl_len) { return spl_get_fit_load_buffer(sectors * bl_len); } /* * Weak default function to allow customizing SPL fit loading for load-only * use cases by allowing to skip the parsing/processing of the FIT contents * (so that this can be done separately in a more customized fashion) */ __weak bool spl_load_simple_fit_skip_processing(void) { return false; } /* * Weak default function to allow fixes after fit header * is loaded. */ __weak void *spl_load_simple_fit_fix_load(const void *fit) { return (void *)fit; } static void warn_deprecated(const char *msg) { printf("DEPRECATED: %s\n", msg); printf("\tSee doc/uImage.FIT/source_file_format.txt\n"); } static int spl_fit_upload_fpga(struct spl_fit_info *ctx, int node, struct spl_image_info *fpga_image) { const char *compatible; int ret; int devnum = 0; int flags = 0; debug("FPGA bitstream at: %x, size: %x\n", (u32)fpga_image->load_addr, fpga_image->size); compatible = fdt_getprop(ctx->fit, node, "compatible", NULL); if (!compatible) { warn_deprecated("'fpga' image without 'compatible' property"); } else { if (CONFIG_IS_ENABLED(FPGA_LOAD_SECURE)) flags = fpga_compatible2flag(devnum, compatible); if (strcmp(compatible, "u-boot,fpga-legacy")) debug("Ignoring compatible = %s property\n", compatible); } ret = fpga_load(devnum, (void *)fpga_image->load_addr, fpga_image->size, BIT_FULL, flags); if (ret) { printf("%s: Cannot load the image to the FPGA\n", __func__); return ret; } puts("FPGA image loaded from FIT\n"); return 0; } static int spl_fit_load_fpga(struct spl_fit_info *ctx, struct spl_load_info *info, ulong sector) { int node, ret; struct spl_image_info fpga_image = { .load_addr = 0, }; node = spl_fit_get_image_node(ctx, "fpga", 0); if (node < 0) return node; warn_deprecated("'fpga' property in config node. Use 'loadables'"); /* Load the image and set up the fpga_image structure */ ret = spl_load_fit_image(info, sector, ctx, node, &fpga_image); if (ret) { printf("%s: Cannot load the FPGA: %i\n", __func__, ret); return ret; } return spl_fit_upload_fpga(ctx, node, &fpga_image); } static int spl_simple_fit_read(struct spl_fit_info *ctx, struct spl_load_info *info, ulong sector, const void *fit_header) { unsigned long count, size; int sectors; void *buf; /* * For FIT with external data, figure out where the external images * start. This is the base for the data-offset properties in each * image. */ size = ALIGN(fdt_totalsize(fit_header), 4); size = board_spl_fit_size_align(size); ctx->ext_data_offset = ALIGN(size, 4); /* * So far we only have one block of data from the FIT. Read the entire * thing, including that first block. * * For FIT with data embedded, data is loaded as part of FIT image. * For FIT with external data, data is not loaded in this step. */ sectors = get_aligned_image_size(info, size, 0); buf = board_spl_fit_buffer_addr(size, sectors, info->bl_len); count = info->read(info, sector, sectors, buf); ctx->fit = buf; debug("fit read sector %lx, sectors=%d, dst=%p, count=%lu, size=0x%lx\n", sector, sectors, buf, count, size); return (count == 0) ? -EIO : 0; } static int spl_simple_fit_parse(struct spl_fit_info *ctx) { /* Find the correct subnode under "/configurations" */ ctx->conf_node = fit_find_config_node(ctx->fit); if (ctx->conf_node < 0) return -EINVAL; if (IS_ENABLED(CONFIG_SPL_FIT_SIGNATURE)) { printf("## Checking hash(es) for config %s ... ", fit_get_name(ctx->fit, ctx->conf_node, NULL)); if (fit_config_verify(ctx->fit, ctx->conf_node)) return -EPERM; puts("OK\n"); } /* find the node holding the images information */ ctx->images_node = fdt_path_offset(ctx->fit, FIT_IMAGES_PATH); if (ctx->images_node < 0) { debug("%s: Cannot find /images node: %d\n", __func__, ctx->images_node); return -EINVAL; } return 0; } int spl_load_simple_fit(struct spl_image_info *spl_image, struct spl_load_info *info, ulong sector, void *fit) { struct spl_image_info image_info; struct spl_fit_info ctx; int node = -1; int ret; int index = 0; int firmware_node; ret = spl_simple_fit_read(&ctx, info, sector, fit); if (ret < 0) return ret; /* skip further processing if requested to enable load-only use cases */ if (spl_load_simple_fit_skip_processing()) return 0; ctx.fit = spl_load_simple_fit_fix_load(ctx.fit); ret = spl_simple_fit_parse(&ctx); if (ret < 0) return ret; if (IS_ENABLED(CONFIG_SPL_FPGA)) spl_fit_load_fpga(&ctx, info, sector); /* * Find the U-Boot image using the following search order: * - start at 'firmware' (e.g. an ARM Trusted Firmware) * - fall back 'kernel' (e.g. a Falcon-mode OS boot * - fall back to using the first 'loadables' entry */ if (node < 0) node = spl_fit_get_image_node(&ctx, FIT_FIRMWARE_PROP, 0); if (node < 0 && IS_ENABLED(CONFIG_SPL_OS_BOOT)) node = spl_fit_get_image_node(&ctx, FIT_KERNEL_PROP, 0); if (node < 0) { debug("could not find firmware image, trying loadables...\n"); node = spl_fit_get_image_node(&ctx, "loadables", 0); /* * If we pick the U-Boot image from "loadables", start at * the second image when later loading additional images. */ index = 1; } if (node < 0) { debug("%s: Cannot find u-boot image node: %d\n", __func__, node); return -1; } /* Load the image and set up the spl_image structure */ ret = spl_load_fit_image(info, sector, &ctx, node, spl_image); if (ret) return ret; /* * For backward compatibility, we treat the first node that is * as a U-Boot image, if no OS-type has been declared. */ if (!spl_fit_image_get_os(ctx.fit, node, &spl_image->os)) debug("Image OS is %s\n", genimg_get_os_name(spl_image->os)); else if (!IS_ENABLED(CONFIG_SPL_OS_BOOT)) spl_image->os = IH_OS_U_BOOT; /* * Booting a next-stage U-Boot may require us to append the FDT. * We allow this to fail, as the U-Boot image might embed its FDT. */ if (os_takes_devicetree(spl_image->os)) { ret = spl_fit_append_fdt(spl_image, info, sector, &ctx); if (ret < 0 && spl_image->os != IH_OS_U_BOOT) return ret; } firmware_node = node; /* Now check if there are more images for us to load */ for (; ; index++) { uint8_t os_type = IH_OS_INVALID; node = spl_fit_get_image_node(&ctx, "loadables", index); if (node < 0) break; /* * if the firmware is also a loadable, skip it because * it already has been loaded. This is typically the case with * u-boot.img generated by mkimage. */ if (firmware_node == node) continue; image_info.load_addr = 0; ret = spl_load_fit_image(info, sector, &ctx, node, &image_info); if (ret < 0) { printf("%s: can't load image loadables index %d (ret = %d)\n", __func__, index, ret); return ret; } if (spl_fit_image_is_fpga(ctx.fit, node)) spl_fit_upload_fpga(&ctx, node, &image_info); if (!spl_fit_image_get_os(ctx.fit, node, &os_type)) debug("Loadable is %s\n", genimg_get_os_name(os_type)); if (os_takes_devicetree(os_type)) { spl_fit_append_fdt(&image_info, info, sector, &ctx); spl_image->fdt_addr = image_info.fdt_addr; } /* * If the "firmware" image did not provide an entry point, * use the first valid entry point from the loadables. */ if (spl_image->entry_point == FDT_ERROR && image_info.entry_point != FDT_ERROR) spl_image->entry_point = image_info.entry_point; /* Record our loadables into the FDT */ if (spl_image->fdt_addr) spl_fit_record_loadable(&ctx, index, spl_image->fdt_addr, &image_info); } /* * If a platform does not provide CONFIG_SYS_UBOOT_START, U-Boot's * Makefile will set it to 0 and it will end up as the entry point * here. What it actually means is: use the load address. */ if (spl_image->entry_point == FDT_ERROR || spl_image->entry_point == 0) spl_image->entry_point = spl_image->load_addr; spl_image->flags |= SPL_FIT_FOUND; if (IS_ENABLED(CONFIG_IMX_HAB)) board_spl_fit_post_load(ctx.fit); return 0; }