// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2019 Google LLC * Written by Simon Glass */ #include #include #include #include #include #include #include #include /* * ODT settings: * If ODT PIN to LP4 DRAM is pulled HIGH for ODT_A and HIGH for ODT_B, * choose ODT_A_B_HIGH_HIGH. If ODT PIN to LP4 DRAM is pulled HIGH for ODT_A * and LOW for ODT_B, choose ODT_A_B_HIGH_LOW. * * Note that the enum values correspond to the interpreted UPD fields * within Ch[3:0]_OdtConfig parameters. */ enum { ODT_A_B_HIGH_LOW = 0 << 1, ODT_A_B_HIGH_HIGH = 1 << 1, N_WR_24 = 1 << 5, }; /* * LPDDR4 helper routines for configuring the memory UPD for LPDDR4 operation. * There are four physical LPDDR4 channels, each 32-bits wide. There are two * logical channels using two physical channels together to form a 64-bit * interface to memory for each logical channel. */ enum { LP4_PHYS_CH0A, LP4_PHYS_CH0B, LP4_PHYS_CH1A, LP4_PHYS_CH1B, LP4_NUM_PHYS_CHANNELS, }; /* * The DQs within a physical channel can be bit-swizzled within each byte. * Within a channel the bytes can be swapped, but the DQs need to be routed * with the corresponding DQS (strobe). */ enum { LP4_DQS0, LP4_DQS1, LP4_DQS2, LP4_DQS3, LP4_NUM_BYTE_LANES, DQ_BITS_PER_DQS = 8, }; /* Provide bit swizzling per DQS and byte swapping within a channel */ struct lpddr4_chan_swizzle_cfg { u8 dqs[LP4_NUM_BYTE_LANES][DQ_BITS_PER_DQS]; }; struct lpddr4_swizzle_cfg { struct lpddr4_chan_swizzle_cfg phys[LP4_NUM_PHYS_CHANNELS]; }; static void setup_sdram(struct fsp_m_config *cfg, const struct lpddr4_swizzle_cfg *swizzle_cfg) { const struct lpddr4_chan_swizzle_cfg *sch; /* Number of bytes to copy per DQS */ const size_t sz = DQ_BITS_PER_DQS; int chan; cfg->memory_down = 1; cfg->scrambler_support = 1; cfg->channel_hash_mask = 0x36; cfg->slice_hash_mask = 9; cfg->interleaved_mode = 2; cfg->channels_slices_enable = 0; cfg->min_ref_rate2x_enable = 0; cfg->dual_rank_support_enable = 1; /* LPDDR4 is memory down so no SPD addresses */ cfg->dimm0_spd_address = 0; cfg->dimm1_spd_address = 0; for (chan = 0; chan < 4; chan++) { struct fsp_ram_channel *ch = &cfg->chan[chan]; ch->rank_enable = 1; ch->device_width = 1; ch->dram_density = 2; ch->option = 3; ch->odt_config = ODT_A_B_HIGH_HIGH; } /* * CH0_DQB byte lanes in the bit swizzle configuration field are * not 1:1. The mapping within the swizzling field is: * indices [0:7] - byte lane 1 (DQS1) DQ[8:15] * indices [8:15] - byte lane 0 (DQS0) DQ[0:7] * indices [16:23] - byte lane 3 (DQS3) DQ[24:31] * indices [24:31] - byte lane 2 (DQS2) DQ[16:23] */ sch = &swizzle_cfg->phys[LP4_PHYS_CH0B]; memcpy(&cfg->ch_bit_swizzling[0][0], &sch->dqs[LP4_DQS1], sz); memcpy(&cfg->ch_bit_swizzling[0][8], &sch->dqs[LP4_DQS0], sz); memcpy(&cfg->ch_bit_swizzling[0][16], &sch->dqs[LP4_DQS3], sz); memcpy(&cfg->ch_bit_swizzling[0][24], &sch->dqs[LP4_DQS2], sz); /* * CH0_DQA byte lanes in the bit swizzle configuration field are 1:1. */ sch = &swizzle_cfg->phys[LP4_PHYS_CH0A]; memcpy(&cfg->ch_bit_swizzling[1][0], &sch->dqs[LP4_DQS0], sz); memcpy(&cfg->ch_bit_swizzling[1][8], &sch->dqs[LP4_DQS1], sz); memcpy(&cfg->ch_bit_swizzling[1][16], &sch->dqs[LP4_DQS2], sz); memcpy(&cfg->ch_bit_swizzling[1][24], &sch->dqs[LP4_DQS3], sz); sch = &swizzle_cfg->phys[LP4_PHYS_CH1B]; memcpy(&cfg->ch_bit_swizzling[2][0], &sch->dqs[LP4_DQS1], sz); memcpy(&cfg->ch_bit_swizzling[2][8], &sch->dqs[LP4_DQS0], sz); memcpy(&cfg->ch_bit_swizzling[2][16], &sch->dqs[LP4_DQS3], sz); memcpy(&cfg->ch_bit_swizzling[2][24], &sch->dqs[LP4_DQS2], sz); /* * CH0_DQA byte lanes in the bit swizzle configuration field are 1:1. */ sch = &swizzle_cfg->phys[LP4_PHYS_CH1A]; memcpy(&cfg->ch_bit_swizzling[3][0], &sch->dqs[LP4_DQS0], sz); memcpy(&cfg->ch_bit_swizzling[3][8], &sch->dqs[LP4_DQS1], sz); memcpy(&cfg->ch_bit_swizzling[3][16], &sch->dqs[LP4_DQS2], sz); memcpy(&cfg->ch_bit_swizzling[3][24], &sch->dqs[LP4_DQS3], sz); } int fspm_update_config(struct udevice *dev, struct fspm_upd *upd) { struct fsp_m_config *cfg = &upd->config; struct fspm_arch_upd *arch = &upd->arch; arch->nvs_buffer_ptr = NULL; prepare_mrc_cache(upd); arch->stack_base = (void *)0xfef96000; arch->boot_loader_tolum_size = 0; arch->boot_mode = FSP_BOOT_WITH_FULL_CONFIGURATION; cfg->serial_debug_port_type = 2; cfg->serial_debug_port_device = 2; cfg->serial_debug_port_stride_size = 2; cfg->serial_debug_port_address = 0; cfg->package = 1; /* Don't enforce a memory size limit */ cfg->memory_size_limit = 0; cfg->low_memory_max_value = 2048; /* 2 GB */ /* No restrictions on memory above 4GiB */ cfg->high_memory_max_value = 0; /* Always default to attempt to use saved training data */ cfg->disable_fast_boot = 0; const u8 *swizzle_data; swizzle_data = dev_read_u8_array_ptr(dev, "lpddr4-swizzle", LP4_NUM_BYTE_LANES * DQ_BITS_PER_DQS * LP4_NUM_PHYS_CHANNELS); if (!swizzle_data) return log_msg_ret("Cannot read swizzel data", -EINVAL); setup_sdram(cfg, (struct lpddr4_swizzle_cfg *)swizzle_data); cfg->pre_mem_gpio_table_ptr = 0; cfg->profile = 0xb; cfg->msg_level_mask = 0; /* other */ cfg->skip_cse_rbp = 1; cfg->periodic_retraining_disable = 0; cfg->enable_s3_heci2 = 0; return 0; } /* * The FSP-M binary appears to break the SPI controller. It can be fixed by * writing the BAR again, so do that here */ int fspm_done(struct udevice *dev) { struct udevice *spi; int ret; /* Don't probe the device, since that reads the BAR */ ret = uclass_find_first_device(UCLASS_SPI, &spi); if (ret) return log_msg_ret("SPI", ret); if (!spi) return log_msg_ret("no SPI", -ENODEV); dm_pci_write_config32(spi, PCI_BASE_ADDRESS_0, IOMAP_SPI_BASE | PCI_BASE_ADDRESS_SPACE_MEMORY); return 0; }