// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2017, STMicroelectronics - All Rights Reserved * Author(s): Patrice Chotard, for STMicroelectronics. */ #define LOG_CATEGORY UCLASS_MMC #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct stm32_sdmmc2_plat { struct mmc_config cfg; struct mmc mmc; }; struct stm32_sdmmc2_priv { fdt_addr_t base; struct clk clk; struct reset_ctl reset_ctl; struct gpio_desc cd_gpio; u32 clk_reg_msk; u32 pwr_reg_msk; }; struct stm32_sdmmc2_ctx { u32 cache_start; u32 cache_end; u32 data_length; bool dpsm_abort; }; /* SDMMC REGISTERS OFFSET */ #define SDMMC_POWER 0x00 /* SDMMC power control */ #define SDMMC_CLKCR 0x04 /* SDMMC clock control */ #define SDMMC_ARG 0x08 /* SDMMC argument */ #define SDMMC_CMD 0x0C /* SDMMC command */ #define SDMMC_RESP1 0x14 /* SDMMC response 1 */ #define SDMMC_RESP2 0x18 /* SDMMC response 2 */ #define SDMMC_RESP3 0x1C /* SDMMC response 3 */ #define SDMMC_RESP4 0x20 /* SDMMC response 4 */ #define SDMMC_DTIMER 0x24 /* SDMMC data timer */ #define SDMMC_DLEN 0x28 /* SDMMC data length */ #define SDMMC_DCTRL 0x2C /* SDMMC data control */ #define SDMMC_DCOUNT 0x30 /* SDMMC data counter */ #define SDMMC_STA 0x34 /* SDMMC status */ #define SDMMC_ICR 0x38 /* SDMMC interrupt clear */ #define SDMMC_MASK 0x3C /* SDMMC mask */ #define SDMMC_IDMACTRL 0x50 /* SDMMC DMA control */ #define SDMMC_IDMABASE0 0x58 /* SDMMC DMA buffer 0 base address */ /* SDMMC_POWER register */ #define SDMMC_POWER_PWRCTRL_MASK GENMASK(1, 0) #define SDMMC_POWER_PWRCTRL_OFF 0 #define SDMMC_POWER_PWRCTRL_CYCLE 2 #define SDMMC_POWER_PWRCTRL_ON 3 #define SDMMC_POWER_VSWITCH BIT(2) #define SDMMC_POWER_VSWITCHEN BIT(3) #define SDMMC_POWER_DIRPOL BIT(4) /* SDMMC_CLKCR register */ #define SDMMC_CLKCR_CLKDIV GENMASK(9, 0) #define SDMMC_CLKCR_CLKDIV_MAX SDMMC_CLKCR_CLKDIV #define SDMMC_CLKCR_PWRSAV BIT(12) #define SDMMC_CLKCR_WIDBUS_4 BIT(14) #define SDMMC_CLKCR_WIDBUS_8 BIT(15) #define SDMMC_CLKCR_NEGEDGE BIT(16) #define SDMMC_CLKCR_HWFC_EN BIT(17) #define SDMMC_CLKCR_DDR BIT(18) #define SDMMC_CLKCR_BUSSPEED BIT(19) #define SDMMC_CLKCR_SELCLKRX_MASK GENMASK(21, 20) #define SDMMC_CLKCR_SELCLKRX_CK 0 #define SDMMC_CLKCR_SELCLKRX_CKIN BIT(20) #define SDMMC_CLKCR_SELCLKRX_FBCK BIT(21) /* SDMMC_CMD register */ #define SDMMC_CMD_CMDINDEX GENMASK(5, 0) #define SDMMC_CMD_CMDTRANS BIT(6) #define SDMMC_CMD_CMDSTOP BIT(7) #define SDMMC_CMD_WAITRESP GENMASK(9, 8) #define SDMMC_CMD_WAITRESP_0 BIT(8) #define SDMMC_CMD_WAITRESP_1 BIT(9) #define SDMMC_CMD_WAITINT BIT(10) #define SDMMC_CMD_WAITPEND BIT(11) #define SDMMC_CMD_CPSMEN BIT(12) #define SDMMC_CMD_DTHOLD BIT(13) #define SDMMC_CMD_BOOTMODE BIT(14) #define SDMMC_CMD_BOOTEN BIT(15) #define SDMMC_CMD_CMDSUSPEND BIT(16) /* SDMMC_DCTRL register */ #define SDMMC_DCTRL_DTEN BIT(0) #define SDMMC_DCTRL_DTDIR BIT(1) #define SDMMC_DCTRL_DTMODE GENMASK(3, 2) #define SDMMC_DCTRL_DBLOCKSIZE GENMASK(7, 4) #define SDMMC_DCTRL_DBLOCKSIZE_SHIFT 4 #define SDMMC_DCTRL_RWSTART BIT(8) #define SDMMC_DCTRL_RWSTOP BIT(9) #define SDMMC_DCTRL_RWMOD BIT(10) #define SDMMC_DCTRL_SDMMCEN BIT(11) #define SDMMC_DCTRL_BOOTACKEN BIT(12) #define SDMMC_DCTRL_FIFORST BIT(13) /* SDMMC_STA register */ #define SDMMC_STA_CCRCFAIL BIT(0) #define SDMMC_STA_DCRCFAIL BIT(1) #define SDMMC_STA_CTIMEOUT BIT(2) #define SDMMC_STA_DTIMEOUT BIT(3) #define SDMMC_STA_TXUNDERR BIT(4) #define SDMMC_STA_RXOVERR BIT(5) #define SDMMC_STA_CMDREND BIT(6) #define SDMMC_STA_CMDSENT BIT(7) #define SDMMC_STA_DATAEND BIT(8) #define SDMMC_STA_DHOLD BIT(9) #define SDMMC_STA_DBCKEND BIT(10) #define SDMMC_STA_DABORT BIT(11) #define SDMMC_STA_DPSMACT BIT(12) #define SDMMC_STA_CPSMACT BIT(13) #define SDMMC_STA_TXFIFOHE BIT(14) #define SDMMC_STA_RXFIFOHF BIT(15) #define SDMMC_STA_TXFIFOF BIT(16) #define SDMMC_STA_RXFIFOF BIT(17) #define SDMMC_STA_TXFIFOE BIT(18) #define SDMMC_STA_RXFIFOE BIT(19) #define SDMMC_STA_BUSYD0 BIT(20) #define SDMMC_STA_BUSYD0END BIT(21) #define SDMMC_STA_SDMMCIT BIT(22) #define SDMMC_STA_ACKFAIL BIT(23) #define SDMMC_STA_ACKTIMEOUT BIT(24) #define SDMMC_STA_VSWEND BIT(25) #define SDMMC_STA_CKSTOP BIT(26) #define SDMMC_STA_IDMATE BIT(27) #define SDMMC_STA_IDMABTC BIT(28) /* SDMMC_ICR register */ #define SDMMC_ICR_CCRCFAILC BIT(0) #define SDMMC_ICR_DCRCFAILC BIT(1) #define SDMMC_ICR_CTIMEOUTC BIT(2) #define SDMMC_ICR_DTIMEOUTC BIT(3) #define SDMMC_ICR_TXUNDERRC BIT(4) #define SDMMC_ICR_RXOVERRC BIT(5) #define SDMMC_ICR_CMDRENDC BIT(6) #define SDMMC_ICR_CMDSENTC BIT(7) #define SDMMC_ICR_DATAENDC BIT(8) #define SDMMC_ICR_DHOLDC BIT(9) #define SDMMC_ICR_DBCKENDC BIT(10) #define SDMMC_ICR_DABORTC BIT(11) #define SDMMC_ICR_BUSYD0ENDC BIT(21) #define SDMMC_ICR_SDMMCITC BIT(22) #define SDMMC_ICR_ACKFAILC BIT(23) #define SDMMC_ICR_ACKTIMEOUTC BIT(24) #define SDMMC_ICR_VSWENDC BIT(25) #define SDMMC_ICR_CKSTOPC BIT(26) #define SDMMC_ICR_IDMATEC BIT(27) #define SDMMC_ICR_IDMABTCC BIT(28) #define SDMMC_ICR_STATIC_FLAGS ((GENMASK(28, 21)) | (GENMASK(11, 0))) /* SDMMC_MASK register */ #define SDMMC_MASK_CCRCFAILIE BIT(0) #define SDMMC_MASK_DCRCFAILIE BIT(1) #define SDMMC_MASK_CTIMEOUTIE BIT(2) #define SDMMC_MASK_DTIMEOUTIE BIT(3) #define SDMMC_MASK_TXUNDERRIE BIT(4) #define SDMMC_MASK_RXOVERRIE BIT(5) #define SDMMC_MASK_CMDRENDIE BIT(6) #define SDMMC_MASK_CMDSENTIE BIT(7) #define SDMMC_MASK_DATAENDIE BIT(8) #define SDMMC_MASK_DHOLDIE BIT(9) #define SDMMC_MASK_DBCKENDIE BIT(10) #define SDMMC_MASK_DABORTIE BIT(11) #define SDMMC_MASK_TXFIFOHEIE BIT(14) #define SDMMC_MASK_RXFIFOHFIE BIT(15) #define SDMMC_MASK_RXFIFOFIE BIT(17) #define SDMMC_MASK_TXFIFOEIE BIT(18) #define SDMMC_MASK_BUSYD0ENDIE BIT(21) #define SDMMC_MASK_SDMMCITIE BIT(22) #define SDMMC_MASK_ACKFAILIE BIT(23) #define SDMMC_MASK_ACKTIMEOUTIE BIT(24) #define SDMMC_MASK_VSWENDIE BIT(25) #define SDMMC_MASK_CKSTOPIE BIT(26) #define SDMMC_MASK_IDMABTCIE BIT(28) /* SDMMC_IDMACTRL register */ #define SDMMC_IDMACTRL_IDMAEN BIT(0) #define SDMMC_CMD_TIMEOUT 0xFFFFFFFF #define SDMMC_BUSYD0END_TIMEOUT_US 2000000 static void stm32_sdmmc2_start_data(struct udevice *dev, struct mmc_data *data, struct stm32_sdmmc2_ctx *ctx) { struct stm32_sdmmc2_priv *priv = dev_get_priv(dev); u32 data_ctrl, idmabase0; /* Configure the SDMMC DPSM (Data Path State Machine) */ data_ctrl = (__ilog2(data->blocksize) << SDMMC_DCTRL_DBLOCKSIZE_SHIFT) & SDMMC_DCTRL_DBLOCKSIZE; if (data->flags & MMC_DATA_READ) { data_ctrl |= SDMMC_DCTRL_DTDIR; idmabase0 = (u32)data->dest; } else { idmabase0 = (u32)data->src; } /* Set the SDMMC DataLength value */ writel(ctx->data_length, priv->base + SDMMC_DLEN); /* Write to SDMMC DCTRL */ writel(data_ctrl, priv->base + SDMMC_DCTRL); /* Cache align */ ctx->cache_start = rounddown(idmabase0, ARCH_DMA_MINALIGN); ctx->cache_end = roundup(idmabase0 + ctx->data_length, ARCH_DMA_MINALIGN); /* * Flush data cache before DMA start (clean and invalidate) * Clean also needed for read * Avoid issue on buffer not cached-aligned */ flush_dcache_range(ctx->cache_start, ctx->cache_end); /* Enable internal DMA */ writel(idmabase0, priv->base + SDMMC_IDMABASE0); writel(SDMMC_IDMACTRL_IDMAEN, priv->base + SDMMC_IDMACTRL); } static void stm32_sdmmc2_start_cmd(struct udevice *dev, struct mmc_cmd *cmd, u32 cmd_param, struct stm32_sdmmc2_ctx *ctx) { struct stm32_sdmmc2_priv *priv = dev_get_priv(dev); u32 timeout = 0; if (readl(priv->base + SDMMC_CMD) & SDMMC_CMD_CPSMEN) writel(0, priv->base + SDMMC_CMD); cmd_param |= cmd->cmdidx | SDMMC_CMD_CPSMEN; if (cmd->resp_type & MMC_RSP_PRESENT) { if (cmd->resp_type & MMC_RSP_136) cmd_param |= SDMMC_CMD_WAITRESP; else if (cmd->resp_type & MMC_RSP_CRC) cmd_param |= SDMMC_CMD_WAITRESP_0; else cmd_param |= SDMMC_CMD_WAITRESP_1; } /* * SDMMC_DTIME must be set in two case: * - on data transfert. * - on busy request. * If not done or too short, the dtimeout flag occurs and DPSM stays * enabled/busy and waits for abort (stop transmission cmd). * Next data command is not possible whereas DPSM is activated. */ if (ctx->data_length) { timeout = SDMMC_CMD_TIMEOUT; } else { writel(0, priv->base + SDMMC_DCTRL); if (cmd->resp_type & MMC_RSP_BUSY) timeout = SDMMC_CMD_TIMEOUT; } /* Set the SDMMC Data TimeOut value */ writel(timeout, priv->base + SDMMC_DTIMER); /* Clear flags */ writel(SDMMC_ICR_STATIC_FLAGS, priv->base + SDMMC_ICR); /* Set SDMMC argument value */ writel(cmd->cmdarg, priv->base + SDMMC_ARG); /* Set SDMMC command parameters */ writel(cmd_param, priv->base + SDMMC_CMD); } static int stm32_sdmmc2_end_cmd(struct udevice *dev, struct mmc_cmd *cmd, struct stm32_sdmmc2_ctx *ctx) { struct stm32_sdmmc2_priv *priv = dev_get_priv(dev); u32 mask = SDMMC_STA_CTIMEOUT; u32 status; int ret; if (cmd->resp_type & MMC_RSP_PRESENT) { mask |= SDMMC_STA_CMDREND; if (cmd->resp_type & MMC_RSP_CRC) mask |= SDMMC_STA_CCRCFAIL; } else { mask |= SDMMC_STA_CMDSENT; } /* Polling status register */ ret = readl_poll_timeout(priv->base + SDMMC_STA, status, status & mask, 10000); if (ret < 0) { dev_dbg(dev, "timeout reading SDMMC_STA register\n"); ctx->dpsm_abort = true; return ret; } /* Check status */ if (status & SDMMC_STA_CTIMEOUT) { dev_dbg(dev, "error SDMMC_STA_CTIMEOUT (0x%x) for cmd %d\n", status, cmd->cmdidx); ctx->dpsm_abort = true; return -ETIMEDOUT; } if (status & SDMMC_STA_CCRCFAIL && cmd->resp_type & MMC_RSP_CRC) { dev_dbg(dev, "error SDMMC_STA_CCRCFAIL (0x%x) for cmd %d\n", status, cmd->cmdidx); ctx->dpsm_abort = true; return -EILSEQ; } if (status & SDMMC_STA_CMDREND && cmd->resp_type & MMC_RSP_PRESENT) { cmd->response[0] = readl(priv->base + SDMMC_RESP1); if (cmd->resp_type & MMC_RSP_136) { cmd->response[1] = readl(priv->base + SDMMC_RESP2); cmd->response[2] = readl(priv->base + SDMMC_RESP3); cmd->response[3] = readl(priv->base + SDMMC_RESP4); } /* Wait for BUSYD0END flag if busy status is detected */ if (cmd->resp_type & MMC_RSP_BUSY && status & SDMMC_STA_BUSYD0) { mask = SDMMC_STA_DTIMEOUT | SDMMC_STA_BUSYD0END; /* Polling status register */ ret = readl_poll_timeout(priv->base + SDMMC_STA, status, status & mask, SDMMC_BUSYD0END_TIMEOUT_US); if (ret < 0) { dev_dbg(dev, "timeout reading SDMMC_STA\n"); ctx->dpsm_abort = true; return ret; } if (status & SDMMC_STA_DTIMEOUT) { dev_dbg(dev, "error SDMMC_STA_DTIMEOUT (0x%x)\n", status); ctx->dpsm_abort = true; return -ETIMEDOUT; } } } return 0; } static int stm32_sdmmc2_end_data(struct udevice *dev, struct mmc_cmd *cmd, struct mmc_data *data, struct stm32_sdmmc2_ctx *ctx) { struct stm32_sdmmc2_priv *priv = dev_get_priv(dev); u32 mask = SDMMC_STA_DCRCFAIL | SDMMC_STA_DTIMEOUT | SDMMC_STA_IDMATE | SDMMC_STA_DATAEND; u32 status; if (data->flags & MMC_DATA_READ) mask |= SDMMC_STA_RXOVERR; else mask |= SDMMC_STA_TXUNDERR; status = readl(priv->base + SDMMC_STA); while (!(status & mask)) status = readl(priv->base + SDMMC_STA); /* * Need invalidate the dcache again to avoid any * cache-refill during the DMA operations (pre-fetching) */ if (data->flags & MMC_DATA_READ) invalidate_dcache_range(ctx->cache_start, ctx->cache_end); if (status & SDMMC_STA_DCRCFAIL) { dev_dbg(dev, "error SDMMC_STA_DCRCFAIL (0x%x) for cmd %d\n", status, cmd->cmdidx); if (readl(priv->base + SDMMC_DCOUNT)) ctx->dpsm_abort = true; return -EILSEQ; } if (status & SDMMC_STA_DTIMEOUT) { dev_dbg(dev, "error SDMMC_STA_DTIMEOUT (0x%x) for cmd %d\n", status, cmd->cmdidx); ctx->dpsm_abort = true; return -ETIMEDOUT; } if (status & SDMMC_STA_TXUNDERR) { dev_dbg(dev, "error SDMMC_STA_TXUNDERR (0x%x) for cmd %d\n", status, cmd->cmdidx); ctx->dpsm_abort = true; return -EIO; } if (status & SDMMC_STA_RXOVERR) { dev_dbg(dev, "error SDMMC_STA_RXOVERR (0x%x) for cmd %d\n", status, cmd->cmdidx); ctx->dpsm_abort = true; return -EIO; } if (status & SDMMC_STA_IDMATE) { dev_dbg(dev, "error SDMMC_STA_IDMATE (0x%x) for cmd %d\n", status, cmd->cmdidx); ctx->dpsm_abort = true; return -EIO; } return 0; } static int stm32_sdmmc2_send_cmd(struct udevice *dev, struct mmc_cmd *cmd, struct mmc_data *data) { struct stm32_sdmmc2_priv *priv = dev_get_priv(dev); struct stm32_sdmmc2_ctx ctx; u32 cmdat = data ? SDMMC_CMD_CMDTRANS : 0; int ret, retry = 3; WATCHDOG_RESET(); retry_cmd: ctx.data_length = 0; ctx.dpsm_abort = false; if (data) { ctx.data_length = data->blocks * data->blocksize; stm32_sdmmc2_start_data(dev, data, &ctx); } stm32_sdmmc2_start_cmd(dev, cmd, cmdat, &ctx); dev_dbg(dev, "send cmd %d data: 0x%x @ 0x%x\n", cmd->cmdidx, data ? ctx.data_length : 0, (unsigned int)data); ret = stm32_sdmmc2_end_cmd(dev, cmd, &ctx); if (data && !ret) ret = stm32_sdmmc2_end_data(dev, cmd, data, &ctx); /* Clear flags */ writel(SDMMC_ICR_STATIC_FLAGS, priv->base + SDMMC_ICR); if (data) writel(0x0, priv->base + SDMMC_IDMACTRL); /* * To stop Data Path State Machine, a stop_transmission command * shall be send on cmd or data errors. */ if (ctx.dpsm_abort && (cmd->cmdidx != MMC_CMD_STOP_TRANSMISSION)) { struct mmc_cmd stop_cmd; stop_cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; stop_cmd.cmdarg = 0; stop_cmd.resp_type = MMC_RSP_R1b; dev_dbg(dev, "send STOP command to abort dpsm treatments\n"); ctx.data_length = 0; stm32_sdmmc2_start_cmd(dev, &stop_cmd, SDMMC_CMD_CMDSTOP, &ctx); stm32_sdmmc2_end_cmd(dev, &stop_cmd, &ctx); writel(SDMMC_ICR_STATIC_FLAGS, priv->base + SDMMC_ICR); } if ((ret != -ETIMEDOUT) && (ret != 0) && retry) { dev_err(dev, "cmd %d failed, retrying ...\n", cmd->cmdidx); retry--; goto retry_cmd; } dev_dbg(dev, "end for CMD %d, ret = %d\n", cmd->cmdidx, ret); return ret; } /* * Reset the SDMMC with the RCC.SDMMCxRST register bit. * This will reset the SDMMC to the reset state and the CPSM and DPSM * to the Idle state. SDMMC is disabled, Signals Hiz. */ static void stm32_sdmmc2_reset(struct stm32_sdmmc2_priv *priv) { if (reset_valid(&priv->reset_ctl)) { /* Reset */ reset_assert(&priv->reset_ctl); udelay(2); reset_deassert(&priv->reset_ctl); } /* init the needed SDMMC register after reset */ writel(priv->pwr_reg_msk, priv->base + SDMMC_POWER); } /* * Set the SDMMC in power-cycle state. * This will make that the SDMMC_D[7:0], * SDMMC_CMD and SDMMC_CK are driven low, to prevent the card from being * supplied through the signal lines. */ static void stm32_sdmmc2_pwrcycle(struct stm32_sdmmc2_priv *priv) { if ((readl(priv->base + SDMMC_POWER) & SDMMC_POWER_PWRCTRL_MASK) == SDMMC_POWER_PWRCTRL_CYCLE) return; stm32_sdmmc2_reset(priv); } /* * set the SDMMC state Power-on: the card is clocked * manage the SDMMC state control: * Reset => Power-Cycle => Power-Off => Power * PWRCTRL=10 PWCTRL=00 PWCTRL=11 */ static void stm32_sdmmc2_pwron(struct stm32_sdmmc2_priv *priv) { u32 pwrctrl = readl(priv->base + SDMMC_POWER) & SDMMC_POWER_PWRCTRL_MASK; if (pwrctrl == SDMMC_POWER_PWRCTRL_ON) return; /* warning: same PWRCTRL value after reset and for power-off state * it is the reset state here = the only managed by the driver */ if (pwrctrl == SDMMC_POWER_PWRCTRL_OFF) { writel(SDMMC_POWER_PWRCTRL_CYCLE | priv->pwr_reg_msk, priv->base + SDMMC_POWER); } /* * the remaining case is SDMMC_POWER_PWRCTRL_CYCLE * switch to Power-Off state: SDMCC disable, signals drive 1 */ writel(SDMMC_POWER_PWRCTRL_OFF | priv->pwr_reg_msk, priv->base + SDMMC_POWER); /* After the 1ms delay set the SDMMC to power-on */ mdelay(1); writel(SDMMC_POWER_PWRCTRL_ON | priv->pwr_reg_msk, priv->base + SDMMC_POWER); /* during the first 74 SDMMC_CK cycles the SDMMC is still disabled. */ } #define IS_RISING_EDGE(reg) (reg & SDMMC_CLKCR_NEGEDGE ? 0 : 1) static int stm32_sdmmc2_set_ios(struct udevice *dev) { struct mmc *mmc = mmc_get_mmc_dev(dev); struct stm32_sdmmc2_priv *priv = dev_get_priv(dev); u32 desired = mmc->clock; u32 sys_clock = clk_get_rate(&priv->clk); u32 clk = 0; dev_dbg(dev, "bus_with = %d, clock = %d\n", mmc->bus_width, mmc->clock); if (mmc->clk_disable) stm32_sdmmc2_pwrcycle(priv); else stm32_sdmmc2_pwron(priv); /* * clk_div = 0 => command and data generated on SDMMCCLK falling edge * clk_div > 0 and NEGEDGE = 0 => command and data generated on * SDMMCCLK rising edge * clk_div > 0 and NEGEDGE = 1 => command and data generated on * SDMMCCLK falling edge */ if (desired && ((sys_clock > desired) || IS_RISING_EDGE(priv->clk_reg_msk))) { clk = DIV_ROUND_UP(sys_clock, 2 * desired); if (clk > SDMMC_CLKCR_CLKDIV_MAX) clk = SDMMC_CLKCR_CLKDIV_MAX; } if (mmc->bus_width == 4) clk |= SDMMC_CLKCR_WIDBUS_4; if (mmc->bus_width == 8) clk |= SDMMC_CLKCR_WIDBUS_8; writel(clk | priv->clk_reg_msk | SDMMC_CLKCR_HWFC_EN, priv->base + SDMMC_CLKCR); return 0; } static int stm32_sdmmc2_getcd(struct udevice *dev) { struct stm32_sdmmc2_priv *priv = dev_get_priv(dev); dev_dbg(dev, "%s called\n", __func__); if (dm_gpio_is_valid(&priv->cd_gpio)) return dm_gpio_get_value(&priv->cd_gpio); return 1; } static int stm32_sdmmc2_host_power_cycle(struct udevice *dev) { struct stm32_sdmmc2_priv *priv = dev_get_priv(dev); writel(SDMMC_POWER_PWRCTRL_CYCLE | priv->pwr_reg_msk, priv->base + SDMMC_POWER); return 0; } static const struct dm_mmc_ops stm32_sdmmc2_ops = { .send_cmd = stm32_sdmmc2_send_cmd, .set_ios = stm32_sdmmc2_set_ios, .get_cd = stm32_sdmmc2_getcd, .host_power_cycle = stm32_sdmmc2_host_power_cycle, }; static int stm32_sdmmc2_probe_level_translator(struct udevice *dev) { struct stm32_sdmmc2_priv *priv = dev_get_priv(dev); struct gpio_desc cmd_gpio; struct gpio_desc ck_gpio; struct gpio_desc ckin_gpio; int clk_hi, clk_lo, ret; /* * Assume the level translator is present if st,use-ckin is set. * This is to cater for DTs which do not implement this test. */ priv->clk_reg_msk |= SDMMC_CLKCR_SELCLKRX_CKIN; ret = gpio_request_by_name(dev, "st,cmd-gpios", 0, &cmd_gpio, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE); if (ret) goto exit_cmd; ret = gpio_request_by_name(dev, "st,ck-gpios", 0, &ck_gpio, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE); if (ret) goto exit_ck; ret = gpio_request_by_name(dev, "st,ckin-gpios", 0, &ckin_gpio, GPIOD_IS_IN); if (ret) goto exit_ckin; /* All GPIOs are valid, test whether level translator works */ /* Sample CKIN */ clk_hi = !!dm_gpio_get_value(&ckin_gpio); /* Set CK low */ dm_gpio_set_value(&ck_gpio, 0); /* Sample CKIN */ clk_lo = !!dm_gpio_get_value(&ckin_gpio); /* Tristate all */ dm_gpio_set_dir_flags(&cmd_gpio, GPIOD_IS_IN); dm_gpio_set_dir_flags(&ck_gpio, GPIOD_IS_IN); /* Level translator is present if CK signal is propagated to CKIN */ if (!clk_hi || clk_lo) priv->clk_reg_msk &= ~SDMMC_CLKCR_SELCLKRX_CKIN; dm_gpio_free(dev, &ckin_gpio); exit_ckin: dm_gpio_free(dev, &ck_gpio); exit_ck: dm_gpio_free(dev, &cmd_gpio); exit_cmd: pinctrl_select_state(dev, "default"); return 0; } static int stm32_sdmmc2_probe(struct udevice *dev) { struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); struct stm32_sdmmc2_plat *plat = dev_get_plat(dev); struct stm32_sdmmc2_priv *priv = dev_get_priv(dev); struct mmc_config *cfg = &plat->cfg; int ret; priv->base = dev_read_addr(dev); if (priv->base == FDT_ADDR_T_NONE) return -EINVAL; if (dev_read_bool(dev, "st,neg-edge")) priv->clk_reg_msk |= SDMMC_CLKCR_NEGEDGE; if (dev_read_bool(dev, "st,sig-dir")) priv->pwr_reg_msk |= SDMMC_POWER_DIRPOL; if (dev_read_bool(dev, "st,use-ckin")) stm32_sdmmc2_probe_level_translator(dev); ret = clk_get_by_index(dev, 0, &priv->clk); if (ret) return ret; ret = clk_enable(&priv->clk); if (ret) goto clk_free; ret = reset_get_by_index(dev, 0, &priv->reset_ctl); if (ret) dev_dbg(dev, "No reset provided\n"); gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN); cfg->f_min = 400000; cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195; cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; cfg->name = "STM32 SD/MMC"; cfg->host_caps = 0; cfg->f_max = 52000000; mmc_of_parse(dev, cfg); upriv->mmc = &plat->mmc; /* SDMMC init */ stm32_sdmmc2_reset(priv); return 0; clk_free: clk_free(&priv->clk); return ret; } static int stm32_sdmmc_bind(struct udevice *dev) { struct stm32_sdmmc2_plat *plat = dev_get_plat(dev); return mmc_bind(dev, &plat->mmc, &plat->cfg); } static const struct udevice_id stm32_sdmmc2_ids[] = { { .compatible = "st,stm32-sdmmc2" }, { } }; U_BOOT_DRIVER(stm32_sdmmc2) = { .name = "stm32_sdmmc2", .id = UCLASS_MMC, .of_match = stm32_sdmmc2_ids, .ops = &stm32_sdmmc2_ops, .probe = stm32_sdmmc2_probe, .bind = stm32_sdmmc_bind, .priv_auto = sizeof(struct stm32_sdmmc2_priv), .plat_auto = sizeof(struct stm32_sdmmc2_plat), };