// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2011 The Chromium OS Authors. * (C) Copyright 2002-2006 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * (C) Copyright 2002 * Sysgo Real-Time Solutions, GmbH * Marius Groeger */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /* * TODO(sjg@chromium.org): IMO this code should be * refactored to a single function, something like: * * void led_set_state(enum led_colour_t colour, int on); */ /************************************************************************ * Coloured LED functionality ************************************************************************ * May be supplied by boards if desired */ __weak void coloured_LED_init(void) {} __weak void red_led_on(void) {} __weak void red_led_off(void) {} __weak void green_led_on(void) {} __weak void green_led_off(void) {} __weak void yellow_led_on(void) {} __weak void yellow_led_off(void) {} __weak void blue_led_on(void) {} __weak void blue_led_off(void) {} /* * Why is gd allocated a register? Prior to reloc it might be better to * just pass it around to each function in this file? * * After reloc one could argue that it is hardly used and doesn't need * to be in a register. Or if it is it should perhaps hold pointers to all * global data for all modules, so that post-reloc we can avoid the massive * literal pool we get on ARM. Or perhaps just encourage each module to use * a structure... */ #if defined(CONFIG_WATCHDOG) || defined(CONFIG_HW_WATCHDOG) static int init_func_watchdog_init(void) { # if defined(CONFIG_HW_WATCHDOG) && \ (defined(CONFIG_M68K) || defined(CONFIG_MICROBLAZE) || \ defined(CONFIG_SH) || \ defined(CONFIG_DESIGNWARE_WATCHDOG) || \ defined(CONFIG_IMX_WATCHDOG)) hw_watchdog_init(); puts(" Watchdog enabled\n"); # endif schedule(); return 0; } int init_func_watchdog_reset(void) { schedule(); return 0; } #endif /* CONFIG_WATCHDOG */ __weak void board_add_ram_info(int use_default) { /* please define platform specific board_add_ram_info() */ } static int init_baud_rate(void) { gd->baudrate = env_get_ulong("baudrate", 10, CONFIG_BAUDRATE); return 0; } static int display_text_info(void) { #if !defined(CONFIG_SANDBOX) && !defined(CONFIG_EFI_APP) ulong bss_start, bss_end, text_base; bss_start = (ulong)__bss_start; bss_end = (ulong)__bss_end; #ifdef CONFIG_TEXT_BASE text_base = CONFIG_TEXT_BASE; #else text_base = CONFIG_SYS_MONITOR_BASE; #endif debug("U-Boot code: %08lX -> %08lX BSS: -> %08lX\n", text_base, bss_start, bss_end); #endif return 0; } #ifdef CONFIG_SYSRESET static int print_resetinfo(void) { struct udevice *dev; char status[256]; bool status_printed = false; int ret; /* * Not all boards have sysreset drivers available during early * boot, so don't fail if one can't be found. */ for (ret = uclass_first_device_check(UCLASS_SYSRESET, &dev); dev; ret = uclass_next_device_check(&dev)) { if (ret) { debug("%s: %s sysreset device (error: %d)\n", __func__, dev->name, ret); continue; } if (!sysreset_get_status(dev, status, sizeof(status))) { printf("%s%s", status_printed ? " " : "", status); status_printed = true; } } if (status_printed) printf("\n"); return 0; } #endif #if defined(CONFIG_DISPLAY_CPUINFO) && CONFIG_IS_ENABLED(CPU) static int print_cpuinfo(void) { struct udevice *dev; char desc[512]; int ret; dev = cpu_get_current_dev(); if (!dev) { debug("%s: Could not get CPU device\n", __func__); return -ENODEV; } ret = cpu_get_desc(dev, desc, sizeof(desc)); if (ret) { debug("%s: Could not get CPU description (err = %d)\n", dev->name, ret); return ret; } printf("CPU: %s\n", desc); return 0; } #endif static int announce_dram_init(void) { puts("DRAM: "); return 0; } /* * From input size calculate its nearest rounded unit scale (multiply of 2^10) * and value in calculated unit scale multiplied by 10 (as fractional fixed * point number with one decimal digit), which is human natural format, * same what uses print_size() function for displaying. Mathematically it is: * round_nearest(val * 2^scale) = size * 10; where: 10 <= val < 10240. * * For example for size=87654321 we calculate scale=20 and val=836 which means * that input has natural human format 83.6 M (mega = 2^20). */ #define compute_size_scale_val(size, scale, val) do { \ scale = ilog2(size) / 10 * 10; \ val = (10 * size + ((1ULL << scale) >> 1)) >> scale; \ if (val == 10240) { val = 10; scale += 10; } \ } while (0) /* * Check if the sizes in their natural units written in decimal format with * one fraction number are same. */ static int sizes_near(unsigned long long size1, unsigned long long size2) { unsigned int size1_scale, size1_val, size2_scale, size2_val; compute_size_scale_val(size1, size1_scale, size1_val); compute_size_scale_val(size2, size2_scale, size2_val); return size1_scale == size2_scale && size1_val == size2_val; } static int show_dram_config(void) { unsigned long long size; int i; debug("\nRAM Configuration:\n"); for (i = size = 0; i < CONFIG_NR_DRAM_BANKS; i++) { size += gd->bd->bi_dram[i].size; debug("Bank #%d: %llx ", i, (unsigned long long)(gd->bd->bi_dram[i].start)); #ifdef DEBUG print_size(gd->bd->bi_dram[i].size, "\n"); #endif } debug("\nDRAM: "); print_size(gd->ram_size, ""); if (!sizes_near(gd->ram_size, size)) { printf(" (effective "); print_size(size, ")"); } board_add_ram_info(0); putc('\n'); return 0; } __weak int dram_init_banksize(void) { gd->bd->bi_dram[0].start = gd->ram_base; gd->bd->bi_dram[0].size = get_effective_memsize(); return 0; } #if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) static int init_func_i2c(void) { puts("I2C: "); i2c_init_all(); puts("ready\n"); return 0; } #endif static int setup_mon_len(void) { #if defined(__ARM__) || defined(__MICROBLAZE__) gd->mon_len = (ulong)__bss_end - (ulong)_start; #elif defined(CONFIG_SANDBOX) && !defined(__riscv) gd->mon_len = (ulong)_end - (ulong)_init; #elif defined(CONFIG_SANDBOX) /* gcc does not provide _init in crti.o on RISC-V */ gd->mon_len = 0; #elif defined(CONFIG_EFI_APP) gd->mon_len = (ulong)_end - (ulong)_init; #elif defined(CONFIG_NIOS2) || defined(CONFIG_XTENSA) gd->mon_len = CONFIG_SYS_MONITOR_LEN; #elif defined(CONFIG_SH) || defined(CONFIG_RISCV) gd->mon_len = (ulong)(__bss_end) - (ulong)(_start); #elif defined(CONFIG_SYS_MONITOR_BASE) /* TODO: use (ulong)__bss_end - (ulong)__text_start; ? */ gd->mon_len = (ulong)__bss_end - CONFIG_SYS_MONITOR_BASE; #endif return 0; } static int setup_spl_handoff(void) { #if CONFIG_IS_ENABLED(HANDOFF) gd->spl_handoff = bloblist_find(BLOBLISTT_U_BOOT_SPL_HANDOFF, sizeof(struct spl_handoff)); debug("Found SPL hand-off info %p\n", gd->spl_handoff); #endif return 0; } __weak int arch_cpu_init(void) { return 0; } __weak int mach_cpu_init(void) { return 0; } /* Get the top of usable RAM */ __weak phys_addr_t board_get_usable_ram_top(phys_size_t total_size) { #if defined(CFG_SYS_SDRAM_BASE) && CFG_SYS_SDRAM_BASE > 0 /* * Detect whether we have so much RAM that it goes past the end of our * 32-bit address space. If so, clip the usable RAM so it doesn't. */ if (gd->ram_top < CFG_SYS_SDRAM_BASE) /* * Will wrap back to top of 32-bit space when reservations * are made. */ return 0; #endif return gd->ram_top; } __weak int arch_setup_dest_addr(void) { return 0; } static int setup_dest_addr(void) { debug("Monitor len: %08lX\n", gd->mon_len); /* * Ram is setup, size stored in gd !! */ debug("Ram size: %08llX\n", (unsigned long long)gd->ram_size); #if CONFIG_VAL(SYS_MEM_TOP_HIDE) /* * Subtract specified amount of memory to hide so that it won't * get "touched" at all by U-Boot. By fixing up gd->ram_size * the Linux kernel should now get passed the now "corrected" * memory size and won't touch it either. This should work * for arch/ppc and arch/powerpc. Only Linux board ports in * arch/powerpc with bootwrapper support, that recalculate the * memory size from the SDRAM controller setup will have to * get fixed. */ gd->ram_size -= CONFIG_SYS_MEM_TOP_HIDE; #endif #ifdef CFG_SYS_SDRAM_BASE gd->ram_base = CFG_SYS_SDRAM_BASE; #endif gd->ram_top = gd->ram_base + get_effective_memsize(); gd->ram_top = board_get_usable_ram_top(gd->mon_len); gd->relocaddr = gd->ram_top; debug("Ram top: %08llX\n", (unsigned long long)gd->ram_top); return arch_setup_dest_addr(); } #ifdef CFG_PRAM /* reserve protected RAM */ static int reserve_pram(void) { ulong reg; reg = env_get_ulong("pram", 10, CFG_PRAM); gd->relocaddr -= (reg << 10); /* size is in kB */ debug("Reserving %ldk for protected RAM at %08lx\n", reg, gd->relocaddr); return 0; } #endif /* CFG_PRAM */ /* Round memory pointer down to next 4 kB limit */ static int reserve_round_4k(void) { gd->relocaddr &= ~(4096 - 1); return 0; } __weak int arch_reserve_mmu(void) { return 0; } static int reserve_video_from_videoblob(void) { if (IS_ENABLED(CONFIG_SPL_VIDEO_HANDOFF) && spl_phase() > PHASE_SPL) { struct video_handoff *ho; int ret = 0; ho = bloblist_find(BLOBLISTT_U_BOOT_VIDEO, sizeof(*ho)); if (!ho) return log_msg_ret("Missing video bloblist", -ENOENT); ret = video_reserve_from_bloblist(ho); if (ret) return log_msg_ret("Invalid Video handoff info", ret); /* Sanity check fb from blob is before current relocaddr */ if (likely(gd->relocaddr > (unsigned long)ho->fb)) gd->relocaddr = ho->fb; } return 0; } /* * Check if any bloblist received specifying reserved areas from previous stage and adjust * gd->relocaddr accordingly, so that we start reserving after pre-reserved areas * from previous stage. * * NOTE: * IT is recommended that all bloblists from previous stage are reserved from ram_top * as next stage will simply start reserving further regions after them. */ static int setup_relocaddr_from_bloblist(void) { reserve_video_from_videoblob(); return 0; } static int reserve_video(void) { if (CONFIG_IS_ENABLED(VIDEO)) { ulong addr; int ret; addr = gd->relocaddr; ret = video_reserve(&addr); if (ret) return ret; debug("Reserving %luk for video at: %08lx\n", ((unsigned long)gd->relocaddr - addr) >> 10, addr); gd->relocaddr = addr; } return 0; } static int reserve_trace(void) { #ifdef CONFIG_TRACE gd->relocaddr -= CONFIG_TRACE_BUFFER_SIZE; gd->trace_buff = map_sysmem(gd->relocaddr, CONFIG_TRACE_BUFFER_SIZE); debug("Reserving %luk for trace data at: %08lx\n", (unsigned long)CONFIG_TRACE_BUFFER_SIZE >> 10, gd->relocaddr); #endif return 0; } static int reserve_uboot(void) { if (!(gd->flags & GD_FLG_SKIP_RELOC)) { /* * reserve memory for U-Boot code, data & bss * round down to next 4 kB limit */ gd->relocaddr -= gd->mon_len; gd->relocaddr &= ~(4096 - 1); #if defined(CONFIG_E500) || defined(CONFIG_MIPS) /* round down to next 64 kB limit so that IVPR stays aligned */ gd->relocaddr &= ~(65536 - 1); #endif debug("Reserving %ldk for U-Boot at: %08lx\n", gd->mon_len >> 10, gd->relocaddr); } gd->start_addr_sp = gd->relocaddr; return 0; } /* * reserve after start_addr_sp the requested size and make the stack pointer * 16-byte aligned, this alignment is needed for cast on the reserved memory * ref = x86_64 ABI: https://reviews.llvm.org/D30049: 16 bytes * = ARMv8 Instruction Set Overview: quad word, 16 bytes */ static unsigned long reserve_stack_aligned(size_t size) { return ALIGN_DOWN(gd->start_addr_sp - size, 16); } #ifdef CONFIG_SYS_NONCACHED_MEMORY static int reserve_noncached(void) { /* * The value of gd->start_addr_sp must match the value of malloc_start * calculated in board_r.c:initr_malloc(), which is passed to * dlmalloc.c:mem_malloc_init() and then used by * cache.c:noncached_init() * * These calculations must match the code in cache.c:noncached_init() */ gd->start_addr_sp = ALIGN(gd->start_addr_sp, MMU_SECTION_SIZE) - MMU_SECTION_SIZE; gd->start_addr_sp -= ALIGN(CONFIG_SYS_NONCACHED_MEMORY, MMU_SECTION_SIZE); debug("Reserving %dM for noncached_alloc() at: %08lx\n", CONFIG_SYS_NONCACHED_MEMORY >> 20, gd->start_addr_sp); return 0; } #endif /* reserve memory for malloc() area */ static int reserve_malloc(void) { gd->start_addr_sp = reserve_stack_aligned(TOTAL_MALLOC_LEN); debug("Reserving %dk for malloc() at: %08lx\n", TOTAL_MALLOC_LEN >> 10, gd->start_addr_sp); #ifdef CONFIG_SYS_NONCACHED_MEMORY reserve_noncached(); #endif return 0; } /* (permanently) allocate a Board Info struct */ static int reserve_board(void) { if (!gd->bd) { gd->start_addr_sp = reserve_stack_aligned(sizeof(struct bd_info)); gd->bd = (struct bd_info *)map_sysmem(gd->start_addr_sp, sizeof(struct bd_info)); memset(gd->bd, '\0', sizeof(struct bd_info)); debug("Reserving %zu Bytes for Board Info at: %08lx\n", sizeof(struct bd_info), gd->start_addr_sp); } return 0; } static int reserve_global_data(void) { gd->start_addr_sp = reserve_stack_aligned(sizeof(gd_t)); gd->new_gd = (gd_t *)map_sysmem(gd->start_addr_sp, sizeof(gd_t)); debug("Reserving %zu Bytes for Global Data at: %08lx\n", sizeof(gd_t), gd->start_addr_sp); return 0; } static int reserve_fdt(void) { if (!IS_ENABLED(CONFIG_OF_EMBED)) { /* * If the device tree is sitting immediately above our image * then we must relocate it. If it is embedded in the data * section, then it will be relocated with other data. */ if (gd->fdt_blob) { gd->fdt_size = ALIGN(fdt_totalsize(gd->fdt_blob), 32); gd->start_addr_sp = reserve_stack_aligned(gd->fdt_size); gd->new_fdt = map_sysmem(gd->start_addr_sp, gd->fdt_size); debug("Reserving %lu Bytes for FDT at: %08lx\n", gd->fdt_size, gd->start_addr_sp); } } return 0; } static int reserve_bootstage(void) { #ifdef CONFIG_BOOTSTAGE int size = bootstage_get_size(); gd->start_addr_sp = reserve_stack_aligned(size); gd->new_bootstage = map_sysmem(gd->start_addr_sp, size); debug("Reserving %#x Bytes for bootstage at: %08lx\n", size, gd->start_addr_sp); #endif return 0; } __weak int arch_reserve_stacks(void) { return 0; } static int reserve_stacks(void) { /* make stack pointer 16-byte aligned */ gd->start_addr_sp = reserve_stack_aligned(16); /* * let the architecture-specific code tailor gd->start_addr_sp and * gd->irq_sp */ return arch_reserve_stacks(); } static int reserve_bloblist(void) { #ifdef CONFIG_BLOBLIST /* Align to a 4KB boundary for easier reading of addresses */ gd->start_addr_sp = ALIGN_DOWN(gd->start_addr_sp - CONFIG_BLOBLIST_SIZE_RELOC, 0x1000); gd->new_bloblist = map_sysmem(gd->start_addr_sp, CONFIG_BLOBLIST_SIZE_RELOC); #endif return 0; } static int display_new_sp(void) { debug("New Stack Pointer is: %08lx\n", gd->start_addr_sp); return 0; } __weak int arch_setup_bdinfo(void) { return 0; } int setup_bdinfo(void) { struct bd_info *bd = gd->bd; if (IS_ENABLED(CONFIG_SYS_HAS_SRAM)) { bd->bi_sramstart = CONFIG_SYS_SRAM_BASE; /* start of SRAM */ bd->bi_sramsize = CONFIG_SYS_SRAM_SIZE; /* size of SRAM */ } return arch_setup_bdinfo(); } #ifdef CONFIG_POST static int init_post(void) { post_bootmode_init(); post_run(NULL, POST_ROM | post_bootmode_get(0)); return 0; } #endif static int reloc_fdt(void) { if (!IS_ENABLED(CONFIG_OF_EMBED)) { if (gd->new_fdt) { memcpy(gd->new_fdt, gd->fdt_blob, fdt_totalsize(gd->fdt_blob)); gd->fdt_blob = gd->new_fdt; } } return 0; } static int reloc_bootstage(void) { #ifdef CONFIG_BOOTSTAGE if (gd->flags & GD_FLG_SKIP_RELOC) return 0; if (gd->new_bootstage) { int size = bootstage_get_size(); debug("Copying bootstage from %p to %p, size %x\n", gd->bootstage, gd->new_bootstage, size); memcpy(gd->new_bootstage, gd->bootstage, size); gd->bootstage = gd->new_bootstage; bootstage_relocate(); } #endif return 0; } static int reloc_bloblist(void) { #ifdef CONFIG_BLOBLIST /* * Relocate only if we are supposed to send it */ if ((gd->flags & GD_FLG_SKIP_RELOC) && CONFIG_BLOBLIST_SIZE == CONFIG_BLOBLIST_SIZE_RELOC) { debug("Not relocating bloblist\n"); return 0; } if (gd->new_bloblist) { int size = CONFIG_BLOBLIST_SIZE; debug("Copying bloblist from %p to %p, size %x\n", gd->bloblist, gd->new_bloblist, size); bloblist_reloc(gd->new_bloblist, CONFIG_BLOBLIST_SIZE_RELOC, gd->bloblist, size); gd->bloblist = gd->new_bloblist; } #endif return 0; } static int setup_reloc(void) { if (!(gd->flags & GD_FLG_SKIP_RELOC)) { #ifdef CONFIG_TEXT_BASE #ifdef ARM gd->reloc_off = gd->relocaddr - (unsigned long)__image_copy_start; #elif defined(CONFIG_MICROBLAZE) gd->reloc_off = gd->relocaddr - (u32)_start; #elif defined(CONFIG_M68K) /* * On all ColdFire arch cpu, monitor code starts always * just after the default vector table location, so at 0x400 */ gd->reloc_off = gd->relocaddr - (CONFIG_TEXT_BASE + 0x400); #elif !defined(CONFIG_SANDBOX) gd->reloc_off = gd->relocaddr - CONFIG_TEXT_BASE; #endif #endif } memcpy(gd->new_gd, (char *)gd, sizeof(gd_t)); if (gd->flags & GD_FLG_SKIP_RELOC) { debug("Skipping relocation due to flag\n"); } else { debug("Relocation Offset is: %08lx\n", gd->reloc_off); debug("Relocating to %08lx, new gd at %08lx, sp at %08lx\n", gd->relocaddr, (ulong)map_to_sysmem(gd->new_gd), gd->start_addr_sp); } return 0; } #ifdef CONFIG_OF_BOARD_FIXUP static int fix_fdt(void) { return board_fix_fdt((void *)gd->fdt_blob); } #endif /* ARM calls relocate_code from its crt0.S */ #if !defined(CONFIG_ARM) && !defined(CONFIG_SANDBOX) static int jump_to_copy(void) { if (gd->flags & GD_FLG_SKIP_RELOC) return 0; /* * x86 is special, but in a nice way. It uses a trampoline which * enables the dcache if possible. * * For now, other archs use relocate_code(), which is implemented * similarly for all archs. When we do generic relocation, hopefully * we can make all archs enable the dcache prior to relocation. */ #if defined(CONFIG_X86) || defined(CONFIG_ARC) /* * SDRAM and console are now initialised. The final stack can now * be setup in SDRAM. Code execution will continue in Flash, but * with the stack in SDRAM and Global Data in temporary memory * (CPU cache) */ arch_setup_gd(gd->new_gd); # if CONFIG_IS_ENABLED(X86_64) board_init_f_r_trampoline64(gd->new_gd, gd->start_addr_sp); # else board_init_f_r_trampoline(gd->start_addr_sp); # endif #else relocate_code(gd->start_addr_sp, gd->new_gd, gd->relocaddr); #endif return 0; } #endif /* Record the board_init_f() bootstage (after arch_cpu_init()) */ static int initf_bootstage(void) { bool from_spl = IS_ENABLED(CONFIG_SPL_BOOTSTAGE) && IS_ENABLED(CONFIG_BOOTSTAGE_STASH); int ret; ret = bootstage_init(!from_spl); if (ret) return ret; if (from_spl) { const void *stash = map_sysmem(CONFIG_BOOTSTAGE_STASH_ADDR, CONFIG_BOOTSTAGE_STASH_SIZE); ret = bootstage_unstash(stash, CONFIG_BOOTSTAGE_STASH_SIZE); if (ret && ret != -ENOENT) { debug("Failed to unstash bootstage: err=%d\n", ret); return ret; } } bootstage_mark_name(BOOTSTAGE_ID_START_UBOOT_F, "board_init_f"); return 0; } static int initf_dm(void) { #if defined(CONFIG_DM) && CONFIG_IS_ENABLED(SYS_MALLOC_F) int ret; bootstage_start(BOOTSTAGE_ID_ACCUM_DM_F, "dm_f"); ret = dm_init_and_scan(true); bootstage_accum(BOOTSTAGE_ID_ACCUM_DM_F); if (ret) return ret; if (IS_ENABLED(CONFIG_TIMER_EARLY)) { ret = dm_timer_init(); if (ret) return ret; } #endif return 0; } /* Architecture-specific memory reservation */ __weak int reserve_arch(void) { return 0; } __weak int checkcpu(void) { return 0; } __weak int clear_bss(void) { return 0; } static const init_fnc_t init_sequence_f[] = { setup_mon_len, #ifdef CONFIG_OF_CONTROL fdtdec_setup, #endif #ifdef CONFIG_TRACE_EARLY trace_early_init, #endif initf_malloc, log_init, initf_bootstage, /* uses its own timer, so does not need DM */ event_init, bloblist_maybe_init, setup_spl_handoff, #if defined(CONFIG_CONSOLE_RECORD_INIT_F) console_record_init, #endif INITCALL_EVENT(EVT_FSP_INIT_F), arch_cpu_init, /* basic arch cpu dependent setup */ mach_cpu_init, /* SoC/machine dependent CPU setup */ initf_dm, #if defined(CONFIG_BOARD_EARLY_INIT_F) board_early_init_f, #endif #if defined(CONFIG_PPC) || defined(CONFIG_SYS_FSL_CLK) || defined(CONFIG_M68K) /* get CPU and bus clocks according to the environment variable */ get_clocks, /* get CPU and bus clocks (etc.) */ #endif #if !defined(CONFIG_M68K) || (defined(CONFIG_M68K) && !defined(CONFIG_MCFTMR)) timer_init, /* initialize timer */ #endif #if defined(CONFIG_BOARD_POSTCLK_INIT) board_postclk_init, #endif env_init, /* initialize environment */ init_baud_rate, /* initialze baudrate settings */ serial_init, /* serial communications setup */ console_init_f, /* stage 1 init of console */ display_options, /* say that we are here */ display_text_info, /* show debugging info if required */ checkcpu, #if defined(CONFIG_SYSRESET) print_resetinfo, #endif #if defined(CONFIG_DISPLAY_CPUINFO) print_cpuinfo, /* display cpu info (and speed) */ #endif #if defined(CONFIG_DTB_RESELECT) embedded_dtb_select, #endif #if defined(CONFIG_DISPLAY_BOARDINFO) show_board_info, #endif INIT_FUNC_WATCHDOG_INIT INITCALL_EVENT(EVT_MISC_INIT_F), INIT_FUNC_WATCHDOG_RESET #if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) init_func_i2c, #endif announce_dram_init, dram_init, /* configure available RAM banks */ #ifdef CONFIG_POST post_init_f, #endif INIT_FUNC_WATCHDOG_RESET #if defined(CFG_SYS_DRAM_TEST) testdram, #endif /* CFG_SYS_DRAM_TEST */ INIT_FUNC_WATCHDOG_RESET #ifdef CONFIG_POST init_post, #endif INIT_FUNC_WATCHDOG_RESET /* * Now that we have DRAM mapped and working, we can * relocate the code and continue running from DRAM. * * Reserve memory at end of RAM for (top down in that order): * - area that won't get touched by U-Boot and Linux (optional) * - kernel log buffer * - protected RAM * - LCD framebuffer * - monitor code * - board info struct */ setup_dest_addr, #ifdef CONFIG_OF_BOARD_FIXUP fix_fdt, #endif #ifdef CFG_PRAM reserve_pram, #endif reserve_round_4k, setup_relocaddr_from_bloblist, arch_reserve_mmu, reserve_video, reserve_trace, reserve_uboot, reserve_malloc, reserve_board, reserve_global_data, reserve_fdt, reserve_bootstage, reserve_bloblist, reserve_arch, reserve_stacks, dram_init_banksize, show_dram_config, INIT_FUNC_WATCHDOG_RESET setup_bdinfo, display_new_sp, INIT_FUNC_WATCHDOG_RESET reloc_fdt, reloc_bootstage, reloc_bloblist, setup_reloc, #if defined(CONFIG_X86) || defined(CONFIG_ARC) copy_uboot_to_ram, do_elf_reloc_fixups, #endif clear_bss, /* * Deregister all cyclic functions before relocation, so that * gd->cyclic_list does not contain any references to pre-relocation * devices. Drivers will register their cyclic functions anew when the * devices are probed again. * * This should happen as late as possible so that the window where a * watchdog device is not serviced is as small as possible. */ cyclic_unregister_all, #if !defined(CONFIG_ARM) && !defined(CONFIG_SANDBOX) jump_to_copy, #endif NULL, }; void board_init_f(ulong boot_flags) { gd->flags = boot_flags; gd->have_console = 0; if (initcall_run_list(init_sequence_f)) hang(); #if !defined(CONFIG_ARM) && !defined(CONFIG_SANDBOX) && \ !defined(CONFIG_EFI_APP) && !CONFIG_IS_ENABLED(X86_64) && \ !defined(CONFIG_ARC) /* NOTREACHED - jump_to_copy() does not return */ hang(); #endif } #if defined(CONFIG_X86) || defined(CONFIG_ARC) /* * For now this code is only used on x86. * * init_sequence_f_r is the list of init functions which are run when * U-Boot is executing from Flash with a semi-limited 'C' environment. * The following limitations must be considered when implementing an * '_f_r' function: * - 'static' variables are read-only * - Global Data (gd->xxx) is read/write * * The '_f_r' sequence must, as a minimum, copy U-Boot to RAM (if * supported). It _should_, if possible, copy global data to RAM and * initialise the CPU caches (to speed up the relocation process) * * NOTE: At present only x86 uses this route, but it is intended that * all archs will move to this when generic relocation is implemented. */ static const init_fnc_t init_sequence_f_r[] = { #if !CONFIG_IS_ENABLED(X86_64) init_cache_f_r, #endif NULL, }; void board_init_f_r(void) { if (initcall_run_list(init_sequence_f_r)) hang(); /* * The pre-relocation drivers may be using memory that has now gone * away. Mark serial as unavailable - this will fall back to the debug * UART if available. * * Do the same with log drivers since the memory may not be available. */ gd->flags &= ~(GD_FLG_SERIAL_READY | GD_FLG_LOG_READY); #ifdef CONFIG_TIMER gd->timer = NULL; #endif /* * U-Boot has been copied into SDRAM, the BSS has been cleared etc. * Transfer execution from Flash to RAM by calculating the address * of the in-RAM copy of board_init_r() and calling it */ (board_init_r + gd->reloc_off)((gd_t *)gd, gd->relocaddr); /* NOTREACHED - board_init_r() does not return */ hang(); } #endif /* CONFIG_X86 */