// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2020 * Tim Harvey, Gateworks Corporation */ #include #include #include #include #include #include #include #include #include #include /* Global registers */ /* Chip ID */ #define REG_CHIP_ID0__1 0x0000 /* Operation control */ #define REG_SW_OPERATION 0x0300 #define SW_RESET BIT(1) #define SW_START BIT(0) /* Port Specific Registers */ #define PORT_CTRL_ADDR(port, addr) ((addr) | (((port) + 1) << 12)) /* Port Control */ #define REG_PORT_XMII_CTRL_1 0x0301 #define PORT_MII_NOT_1GBIT BIT(6) #define PORT_MII_SEL_EDGE BIT(5) #define PORT_RGMII_ID_IG_ENABLE BIT(4) #define PORT_RGMII_ID_EG_ENABLE BIT(3) #define PORT_MII_MAC_MODE BIT(2) #define PORT_MII_SEL_M 0x3 #define PORT_RGMII_SEL 0x0 #define PORT_RMII_SEL 0x1 #define PORT_GMII_SEL 0x2 #define PORT_MII_SEL 0x3 /* Port MSTP State Register */ #define REG_PORT_MSTP_STATE 0x0b04 #define PORT_TX_ENABLE BIT(2) #define PORT_RX_ENABLE BIT(1) #define PORT_LEARN_DISABLE BIT(0) /* MMD */ #define REG_PORT_PHY_MMD_SETUP 0x011A #define PORT_MMD_OP_MODE_M 0x3 #define PORT_MMD_OP_MODE_S 14 #define PORT_MMD_OP_INDEX 0 #define PORT_MMD_OP_DATA_NO_INCR 1 #define PORT_MMD_OP_DATA_INCR_RW 2 #define PORT_MMD_OP_DATA_INCR_W 3 #define PORT_MMD_DEVICE_ID_M 0x1F #define MMD_SETUP(mode, dev) (((u16)(mode) << PORT_MMD_OP_MODE_S) | (dev)) #define REG_PORT_PHY_MMD_INDEX_DATA 0x011C struct ksz_dsa_priv { struct udevice *dev; }; static inline int ksz_read8(struct udevice *dev, u32 reg, u8 *val) { int ret = dm_i2c_read(dev, reg, val, 1); dev_dbg(dev, "%s 0x%04x<<0x%02x\n", __func__, reg, *val); return ret; } static inline int ksz_pread8(struct udevice *dev, int port, int reg, u8 *val) { return ksz_read8(dev, PORT_CTRL_ADDR(port, reg), val); } static inline int ksz_write8(struct udevice *dev, u32 reg, u8 val) { dev_dbg(dev, "%s 0x%04x>>0x%02x\n", __func__, reg, val); return dm_i2c_write(dev, reg, &val, 1); } static inline int ksz_pwrite8(struct udevice *dev, int port, int reg, u8 val) { return ksz_write8(dev, PORT_CTRL_ADDR(port, reg), val); } static inline int ksz_write16(struct udevice *dev, u32 reg, u16 val) { u8 buf[2]; buf[1] = val & 0xff; buf[0] = val >> 8; dev_dbg(dev, "%s 0x%04x>>0x%04x\n", __func__, reg, val); return dm_i2c_write(dev, reg, buf, 2); } static inline int ksz_pwrite16(struct udevice *dev, int port, int reg, u16 val) { return ksz_write16(dev, PORT_CTRL_ADDR(port, reg), val); } static inline int ksz_read16(struct udevice *dev, u32 reg, u16 *val) { u8 buf[2]; int ret; ret = dm_i2c_read(dev, reg, buf, 2); *val = (buf[0] << 8) | buf[1]; dev_dbg(dev, "%s 0x%04x<<0x%04x\n", __func__, reg, *val); return ret; } static inline int ksz_pread16(struct udevice *dev, int port, int reg, u16 *val) { return ksz_read16(dev, PORT_CTRL_ADDR(port, reg), val); } static inline int ksz_read32(struct udevice *dev, u32 reg, u32 *val) { return dm_i2c_read(dev, reg, (u8 *)val, 4); } static inline int ksz_pread32(struct udevice *dev, int port, int reg, u32 *val) { return ksz_read32(dev, PORT_CTRL_ADDR(port, reg), val); } static inline int ksz_write32(struct udevice *dev, u32 reg, u32 val) { u8 buf[4]; buf[3] = val & 0xff; buf[2] = (val >> 24) & 0xff; buf[1] = (val >> 16) & 0xff; buf[0] = (val >> 8) & 0xff; dev_dbg(dev, "%s 0x%04x>>0x%04x\n", __func__, reg, val); return dm_i2c_write(dev, reg, buf, 4); } static inline int ksz_pwrite32(struct udevice *dev, int port, int reg, u32 val) { return ksz_write32(dev, PORT_CTRL_ADDR(port, reg), val); } static __maybe_unused void ksz_port_mmd_read(struct udevice *dev, int port, u8 addr, u16 reg, u16 *val) { ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP, MMD_SETUP(PORT_MMD_OP_INDEX, addr)); ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg); ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP, MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, addr)); ksz_pread16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val); dev_dbg(dev, "%s P%d 0x%02x:0x%04x<<0x%04x\n", __func__, port + 1, addr, reg, *val); } static void ksz_port_mmd_write(struct udevice *dev, int port, u8 addr, u16 reg, u16 val) { dev_dbg(dev, "%s P%d 0x%02x:0x%04x>>0x%04x\n", __func__, port + 1, addr, addr, val); ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP, MMD_SETUP(PORT_MMD_OP_INDEX, addr)); ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, addr); ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP, MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, addr)); ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val); } /* Apply PHY settings to address errata listed in KSZ9477, KSZ9897, KSZ9896, KSZ9567 * Silicon Errata and Data Sheet Clarification documents */ static void ksz_phy_errata_setup(struct udevice *dev, int port) { dev_dbg(dev, "%s P%d\n", __func__, port + 1); /* Register settings are needed to improve PHY receive performance */ ksz_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b); ksz_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032); ksz_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c); ksz_port_mmd_write(dev, port, 0x01, 0x75, 0x0060); ksz_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777); ksz_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008); ksz_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001); /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ ksz_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0); /* Energy Efficient Ethernet (EEE) feature select must be manually disabled */ ksz_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000); /* Register settings are required to meet data sheet supply current specifications */ ksz_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff); ksz_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff); ksz_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff); ksz_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff); ksz_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff); ksz_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff); ksz_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff); ksz_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff); ksz_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff); ksz_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff); ksz_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff); ksz_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff); ksz_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee); } /* * mii bus driver */ #define KSZ_MDIO_CHILD_DRV_NAME "ksz_mdio" struct ksz_mdio_priv { struct ksz_dsa_priv *ksz; }; static int dm_ksz_mdio_read(struct udevice *dev, int addr, int devad, int reg) { struct ksz_mdio_priv *priv = dev_get_priv(dev); struct ksz_dsa_priv *ksz = priv->ksz; u16 val = 0xffff; ksz_pread16(ksz->dev, addr, 0x100 + (reg << 1), &val); dev_dbg(ksz->dev, "%s P%d reg=0x%04x:0x%04x<<0x%04x\n", __func__, addr + 1, reg, 0x100 + (reg << 1), val); return val; }; static int dm_ksz_mdio_write(struct udevice *dev, int addr, int devad, int reg, u16 val) { struct ksz_mdio_priv *priv = dev_get_priv(dev); struct ksz_dsa_priv *ksz = priv->ksz; dev_dbg(ksz->dev, "%s P%d reg=0x%04x:%04x>>0x%04x\n", __func__, addr + 1, reg, 0x100 + (reg << 1), val); ksz_pwrite16(ksz->dev, addr, 0x100 + (reg << 1), val); return 0; } static const struct mdio_ops ksz_mdio_ops = { .read = dm_ksz_mdio_read, .write = dm_ksz_mdio_write, }; static int ksz_mdio_bind(struct udevice *dev) { char name[16]; static int num_devices; dev_dbg(dev, "%s\n", __func__); sprintf(name, "ksz-mdio-%d", num_devices++); device_set_name(dev, name); return 0; } static int ksz_mdio_probe(struct udevice *dev) { struct ksz_mdio_priv *priv = dev_get_priv(dev); dev_dbg(dev, "%s\n", __func__); priv->ksz = dev_get_parent_priv(dev->parent); return 0; } static const struct udevice_id ksz_mdio_ids[] = { { .compatible = "microchip,ksz-mdio" }, { } }; U_BOOT_DRIVER(ksz_mdio) = { .name = KSZ_MDIO_CHILD_DRV_NAME, .id = UCLASS_MDIO, .of_match = ksz_mdio_ids, .bind = ksz_mdio_bind, .probe = ksz_mdio_probe, .ops = &ksz_mdio_ops, .priv_auto = sizeof(struct ksz_mdio_priv), .plat_auto = sizeof(struct mdio_perdev_priv), }; static int ksz_port_setup(struct udevice *dev, int port, phy_interface_t interface) { struct dsa_pdata *pdata = dev_get_uclass_plat(dev); u8 data8; dev_dbg(dev, "%s P%d %s\n", __func__, port + 1, (port == pdata->cpu_port) ? "cpu" : ""); if (port != pdata->cpu_port) { /* phy port: config errata and leds */ ksz_phy_errata_setup(dev, port); } else { /* cpu port: configure MAC interface mode */ ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8); dev_dbg(dev, "%s P%d cpu interface %s\n", __func__, port + 1, phy_string_for_interface(interface)); switch (interface) { case PHY_INTERFACE_MODE_MII: data8 &= ~PORT_MII_SEL_M; data8 |= PORT_MII_SEL; data8 |= PORT_MII_NOT_1GBIT; break; case PHY_INTERFACE_MODE_RMII: data8 &= ~PORT_MII_SEL_M; data8 |= PORT_RMII_SEL; data8 |= PORT_MII_NOT_1GBIT; break; case PHY_INTERFACE_MODE_GMII: data8 &= ~PORT_MII_SEL_M; data8 |= PORT_GMII_SEL; data8 &= ~PORT_MII_NOT_1GBIT; break; default: data8 &= ~PORT_MII_SEL_M; data8 |= PORT_RGMII_SEL; data8 &= ~PORT_MII_NOT_1GBIT; data8 &= ~PORT_RGMII_ID_IG_ENABLE; data8 &= ~PORT_RGMII_ID_EG_ENABLE; if (interface == PHY_INTERFACE_MODE_RGMII_ID || interface == PHY_INTERFACE_MODE_RGMII_RXID) data8 |= PORT_RGMII_ID_IG_ENABLE; if (interface == PHY_INTERFACE_MODE_RGMII_ID || interface == PHY_INTERFACE_MODE_RGMII_TXID) data8 |= PORT_RGMII_ID_EG_ENABLE; break; } ksz_write8(dev, PORT_CTRL_ADDR(port, REG_PORT_XMII_CTRL_1), data8); } return 0; } static int ksz_port_probe(struct udevice *dev, int port, struct phy_device *phy) { int supported = PHY_GBIT_FEATURES; /* configure phy */ phy->supported &= supported; phy->advertising &= supported; return phy_config(phy); } static int ksz_port_enable(struct udevice *dev, int port, struct phy_device *phy) { struct dsa_pdata *pdata = dev_get_uclass_plat(dev); struct ksz_dsa_priv *priv = dev_get_priv(dev); u8 data8; int ret; dev_dbg(dev, "%s P%d 0x%x %s\n", __func__, port + 1, phy->phy_id, phy_string_for_interface(phy->interface)); /* setup this port */ ret = ksz_port_setup(dev, port, phy->interface); if (ret) { dev_err(dev, "port setup failed: %d\n", ret); return ret; } /* enable port forwarding for this port */ ksz_pread8(priv->dev, port, REG_PORT_MSTP_STATE, &data8); data8 &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); data8 |= (PORT_TX_ENABLE | PORT_RX_ENABLE); ksz_pwrite8(priv->dev, port, REG_PORT_MSTP_STATE, data8); /* if cpu master we are done */ if (port == pdata->cpu_port) return 0; /* start switch */ ksz_read8(priv->dev, REG_SW_OPERATION, &data8); data8 |= SW_START; ksz_write8(priv->dev, REG_SW_OPERATION, data8); return phy_startup(phy); } static void ksz_port_disable(struct udevice *dev, int port, struct phy_device *phy) { struct dsa_pdata *pdata = dev_get_uclass_plat(dev); struct ksz_dsa_priv *priv = dev_get_priv(dev); u8 data8; dev_dbg(dev, "%s P%d 0x%x\n", __func__, port + 1, phy->phy_id); /* can't disable CPU port without re-configuring/re-starting switch */ if (port == pdata->cpu_port) return; /* disable port */ ksz_pread8(priv->dev, port, REG_PORT_MSTP_STATE, &data8); data8 &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); data8 |= PORT_LEARN_DISABLE; ksz_pwrite8(priv->dev, port, REG_PORT_MSTP_STATE, data8); /* * we don't call phy_shutdown here to avoid waiting next time we use * the port, but the downside is that remote side will think we're * actively processing traffic although we are not. */ } static const struct dsa_ops ksz_dsa_ops = { .port_probe = ksz_port_probe, .port_enable = ksz_port_enable, .port_disable = ksz_port_disable, }; static int ksz_probe_mdio(struct udevice *dev) { ofnode node, mdios; int ret; mdios = dev_read_subnode(dev, "mdios"); if (ofnode_valid(mdios)) { ofnode_for_each_subnode(node, mdios) { const char *name = ofnode_get_name(node); struct udevice *pdev; ret = device_bind_driver_to_node(dev, KSZ_MDIO_CHILD_DRV_NAME, name, node, &pdev); if (ret) dev_err(dev, "failed to probe %s: %d\n", name, ret); } } return 0; } /* * I2C driver */ static int ksz_i2c_probe(struct udevice *dev) { struct dsa_pdata *pdata = dev_get_uclass_plat(dev); struct ksz_dsa_priv *priv = dev_get_priv(dev); int i, ret; u8 data8; u32 id; dev_set_parent_priv(dev, priv); ret = i2c_set_chip_offset_len(dev, 2); if (ret) { printf("i2c_set_chip_offset_len failed: %d\n", ret); return ret; } /* default config */ priv->dev = dev; /* chip level reset */ ksz_read8(priv->dev, REG_SW_OPERATION, &data8); data8 |= SW_RESET; ksz_write8(priv->dev, REG_SW_OPERATION, data8); /* read chip id */ ret = ksz_read32(dev, REG_CHIP_ID0__1, &id); if (ret) return ret; id = __swab32(id); dev_dbg(dev, "%s id=0x%08x\n", __func__, id); switch (id & 0xffffff00) { case 0x00947700: puts("KSZ9477S: "); break; case 0x00956700: puts("KSZ9567R: "); break; case 0x00989700: puts("KSZ9897S: "); break; default: dev_err(dev, "invalid chip id: 0x%08x\n", id); return -EINVAL; } /* probe mdio bus */ ret = ksz_probe_mdio(dev); if (ret) return ret; /* disable ports by default */ for (i = 0; i < pdata->num_ports; i++) { ksz_pread8(priv->dev, i, REG_PORT_MSTP_STATE, &data8); data8 &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); ksz_pwrite8(priv->dev, i, REG_PORT_MSTP_STATE, data8); } return 0; }; static const struct udevice_id ksz_i2c_ids[] = { { .compatible = "microchip,ksz9897" }, { .compatible = "microchip,ksz9477" }, { .compatible = "microchip,ksz9567" }, { } }; U_BOOT_DRIVER(ksz) = { .name = "ksz-switch", .id = UCLASS_DSA, .of_match = ksz_i2c_ids, .probe = ksz_i2c_probe, .ops = &ksz_dsa_ops, .priv_auto = sizeof(struct ksz_dsa_priv), };