/* SPDX-License-Identifier: GPL-2.0+ */ /* * Function to read values from the device tree node attached to a udevice. * * Copyright (c) 2017 Google, Inc * Written by Simon Glass */ #ifndef _DM_READ_H #define _DM_READ_H #include #include #include #include #include struct resource; #if CONFIG_IS_ENABLED(OF_LIVE) static inline const struct device_node *dev_np(const struct udevice *dev) { return ofnode_to_np(dev_ofnode(dev)); } #else static inline const struct device_node *dev_np(const struct udevice *dev) { return NULL; } #endif #if !defined(CONFIG_DM_DEV_READ_INLINE) || CONFIG_IS_ENABLED(OF_PLATDATA) /** * dev_read_u8() - read a 8-bit integer from a device's DT property * * @dev: device to read DT property from * @propname: name of the property to read from * @outp: place to put value (if found) * Return: 0 if OK, -ve on error */ int dev_read_u8(const struct udevice *dev, const char *propname, u8 *outp); /** * dev_read_u8_default() - read a 8-bit integer from a device's DT property * * @dev: device to read DT property from * @propname: name of the property to read from * @def: default value to return if the property has no value * Return: property value, or @def if not found */ u8 dev_read_u8_default(const struct udevice *dev, const char *propname, u8 def); /** * dev_read_u16() - read a 16-bit integer from a device's DT property * * @dev: device to read DT property from * @propname: name of the property to read from * @outp: place to put value (if found) * Return: 0 if OK, -ve on error */ int dev_read_u16(const struct udevice *dev, const char *propname, u16 *outp); /** * dev_read_u16_default() - read a 16-bit integer from a device's DT property * * @dev: device to read DT property from * @propname: name of the property to read from * @def: default value to return if the property has no value * Return: property value, or @def if not found */ u16 dev_read_u16_default(const struct udevice *dev, const char *propname, u16 def); /** * dev_read_u32() - read a 32-bit integer from a device's DT property * * @dev: device to read DT property from * @propname: name of the property to read from * @outp: place to put value (if found) * Return: 0 if OK, -ve on error */ int dev_read_u32(const struct udevice *dev, const char *propname, u32 *outp); /** * dev_read_u32_default() - read a 32-bit integer from a device's DT property * * @dev: device to read DT property from * @propname: name of the property to read from * @def: default value to return if the property has no value * Return: property value, or @def if not found */ int dev_read_u32_default(const struct udevice *dev, const char *propname, int def); /** * dev_read_u32_index() - read an indexed 32-bit integer from a device's DT * property * * @dev: device to read DT property from * @propname: name of the property to read from * @index: index of the integer to return * @outp: place to put value (if found) * Return: 0 if OK, -ve on error */ int dev_read_u32_index(struct udevice *dev, const char *propname, int index, u32 *outp); /** * dev_read_u32_index_default() - read an indexed 32-bit integer from a device's * DT property * * @dev: device to read DT property from * @propname: name of the property to read from * @index: index of the integer to return * @def: default value to return if the property has no value * Return: property value, or @def if not found */ u32 dev_read_u32_index_default(struct udevice *dev, const char *propname, int index, u32 def); /** * dev_read_s32() - read a signed 32-bit integer from a device's DT property * * @dev: device to read DT property from * @propname: name of the property to read from * @outp: place to put value (if found) * Return: 0 if OK, -ve on error */ int dev_read_s32(const struct udevice *dev, const char *propname, s32 *outp); /** * dev_read_s32_default() - read a signed 32-bit int from a device's DT property * * @dev: device to read DT property from * @propname: name of the property to read from * @def: default value to return if the property has no value * Return: property value, or @def if not found */ int dev_read_s32_default(const struct udevice *dev, const char *propname, int def); /** * dev_read_u32u() - read a 32-bit integer from a device's DT property * * This version uses a standard uint type. * * @dev: device to read DT property from * @propname: name of the property to read from * @outp: place to put value (if found) * Return: 0 if OK, -ve on error */ int dev_read_u32u(const struct udevice *dev, const char *propname, uint *outp); /** * dev_read_u64() - read a 64-bit integer from a device's DT property * * @dev: device to read DT property from * @propname: name of the property to read from * @outp: place to put value (if found) * Return: 0 if OK, -ve on error */ int dev_read_u64(const struct udevice *dev, const char *propname, u64 *outp); /** * dev_read_u64_default() - read a 64-bit integer from a device's DT property * * @dev: device to read DT property from * @propname: name of the property to read from * @def: default value to return if the property has no value * Return: property value, or @def if not found */ u64 dev_read_u64_default(const struct udevice *dev, const char *propname, u64 def); /** * dev_read_string() - Read a string from a device's DT property * * @dev: device to read DT property from * @propname: name of the property to read * Return: string from property value, or NULL if there is no such property */ const char *dev_read_string(const struct udevice *dev, const char *propname); /** * dev_read_bool() - read a boolean value from a device's DT property * * @dev: device to read DT property from * @propname: name of property to read * Return: true if property is present (meaning true), false if not present */ bool dev_read_bool(const struct udevice *dev, const char *propname); /** * dev_read_subnode() - find a named subnode of a device * * @dev: device whose DT node contains the subnode * @subnode_name: name of subnode to find * Return: reference to subnode (which can be invalid if there is no such * subnode) */ ofnode dev_read_subnode(const struct udevice *dev, const char *subnode_name); /** * dev_read_size() - read the size of a property * * @dev: device to check * @propname: property to check * Return: size of property if present, or -EINVAL if not */ int dev_read_size(const struct udevice *dev, const char *propname); /** * dev_read_addr_index() - Get the indexed reg property of a device * * @dev: Device to read from * @index: the 'reg' property can hold a list of pairs * and @index is used to select which one is required * * Return: address or FDT_ADDR_T_NONE if not found */ fdt_addr_t dev_read_addr_index(const struct udevice *dev, int index); /** * dev_read_addr_index_ptr() - Get the indexed reg property of a device * as a pointer * * @dev: Device to read from * @index: the 'reg' property can hold a list of pairs * and @index is used to select which one is required * * Return: pointer or NULL if not found */ void *dev_read_addr_index_ptr(const struct udevice *dev, int index); /** * dev_read_addr_size_index() - Get the indexed reg property of a device * * @dev: Device to read from * @index: the 'reg' property can hold a list of pairs * and @index is used to select which one is required * @size: place to put size value (on success) * * Return: address or FDT_ADDR_T_NONE if not found */ fdt_addr_t dev_read_addr_size_index(const struct udevice *dev, int index, fdt_size_t *size); /** * dev_read_addr_size_index_ptr() - Get the indexed reg property of a device * as a pointer * * @dev: Device to read from * @index: the 'reg' property can hold a list of pairs * and @index is used to select which one is required * @size: place to put size value (on success) * * Return: pointer or NULL if not found */ void *dev_read_addr_size_index_ptr(const struct udevice *dev, int index, fdt_size_t *size); /** * dev_remap_addr_index() - Get the indexed reg property of a device * as a memory-mapped I/O pointer * * @dev: Device to read from * @index: the 'reg' property can hold a list of pairs * and @index is used to select which one is required * * Return: pointer or NULL if not found */ void *dev_remap_addr_index(const struct udevice *dev, int index); /** * dev_read_addr_name() - Get the reg property of a device, indexed by name * * @dev: Device to read from * @name: the 'reg' property can hold a list of pairs, with the * 'reg-names' property providing named-based identification. @name * indicates the value to search for in 'reg-names'. * * Return: address or FDT_ADDR_T_NONE if not found */ fdt_addr_t dev_read_addr_name(const struct udevice *dev, const char *name); /** * dev_read_addr_size_name() - Get the reg property of a device, indexed by name * * @dev: Device to read from * @name: the 'reg' property can hold a list of pairs, with the * 'reg-names' property providing named-based identification. @name * indicates the value to search for in 'reg-names'. * @size: place to put size value (on success) * * Return: address or FDT_ADDR_T_NONE if not found */ fdt_addr_t dev_read_addr_size_name(const struct udevice *dev, const char *name, fdt_size_t *size); /** * dev_remap_addr_name() - Get the reg property of a device, indexed by name, * as a memory-mapped I/O pointer * * @dev: Device to read from * @name: the 'reg' property can hold a list of pairs, with the * 'reg-names' property providing named-based identification. @name * indicates the value to search for in 'reg-names'. * * Return: pointer or NULL if not found */ void *dev_remap_addr_name(const struct udevice *dev, const char *name); /** * dev_read_addr() - Get the reg property of a device * * @dev: Device to read from * * Return: address or FDT_ADDR_T_NONE if not found */ fdt_addr_t dev_read_addr(const struct udevice *dev); /** * dev_read_addr_ptr() - Get the reg property of a device * as a pointer * * @dev: Device to read from * * Return: pointer or NULL if not found */ void *dev_read_addr_ptr(const struct udevice *dev); /** * dev_read_addr_pci() - Read an address and handle PCI address translation * * At present U-Boot does not have address translation logic for PCI in the * livetree implementation (of_addr.c). This special function supports this for * the flat tree implementation. * * This function should be removed (and code should use dev_read() instead) * once: * * 1. PCI address translation is added; and either * 2. everything uses livetree where PCI translation is used (which is feasible * in SPL and U-Boot proper) or PCI address translation is added to * fdtdec_get_addr() and friends. * * @dev: Device to read from * @sizep: If non-NULL, returns size of address space found * Return: address or FDT_ADDR_T_NONE if not found */ fdt_addr_t dev_read_addr_pci(const struct udevice *dev, fdt_size_t *sizep); /** * dev_remap_addr() - Get the reg property of a device as a * memory-mapped I/O pointer * * @dev: Device to read from * * Return: pointer or NULL if not found */ void *dev_remap_addr(const struct udevice *dev); /** * dev_read_addr_size() - Get the reg property of a device * * @dev: Device to read from * @sizep: place to put size value (on success) * Return: address value, or FDT_ADDR_T_NONE on error */ fdt_addr_t dev_read_addr_size(const struct udevice *dev, fdt_size_t *sizep); /** * dev_read_name() - get the name of a device's node * * @dev: Device to read from * Return: name of node */ const char *dev_read_name(const struct udevice *dev); /** * dev_read_stringlist_search() - find string in a string list and return index * * Note that it is possible for this function to succeed on property values * that are not NUL-terminated. That's because the function will stop after * finding the first occurrence of @string. This can for example happen with * small-valued cell properties, such as #address-cells, when searching for * the empty string. * * @dev: device to check * @propname: name of the property containing the string list * @string: string to look up in the string list * * Return: * the index of the string in the list of strings * -ENODATA if the property is not found * -EINVAL on some other error */ int dev_read_stringlist_search(const struct udevice *dev, const char *propname, const char *string); /** * dev_read_string_index() - obtain an indexed string from a string list * * @dev: device to examine * @propname: name of the property containing the string list * @index: index of the string to return * @outp: return location for the string * * Return: * length of string, if found or -ve error value if not found */ int dev_read_string_index(const struct udevice *dev, const char *propname, int index, const char **outp); /** * dev_read_string_count() - find the number of strings in a string list * * @dev: device to examine * @propname: name of the property containing the string list * Return: * number of strings in the list, or -ve error value if not found */ int dev_read_string_count(const struct udevice *dev, const char *propname); /** * dev_read_string_list() - read a list of strings * * This produces a list of string pointers with each one pointing to a string * in the string list. If the property does not exist, it returns {NULL}. * * The data is allocated and the caller is reponsible for freeing the return * value (the list of string pointers). The strings themselves may not be * changed as they point directly into the devicetree property. * * @dev: device to examine * @propname: name of the property containing the string list * @listp: returns an allocated, NULL-terminated list of strings if the return * value is > 0, else is set to NULL * Return: * number of strings in list, 0 if none, -ENOMEM if out of memory, * -ENOENT if no such property */ int dev_read_string_list(const struct udevice *dev, const char *propname, const char ***listp); /** * dev_read_phandle_with_args() - Find a node pointed by phandle in a list * * This function is useful to parse lists of phandles and their arguments. * Returns 0 on success and fills out_args, on error returns appropriate * errno value. * * Caller is responsible to call of_node_put() on the returned out_args->np * pointer. * * Example: * * .. code-block:: * * phandle1: node1 { * #list-cells = <2>; * }; * phandle2: node2 { * #list-cells = <1>; * }; * node3 { * list = <&phandle1 1 2 &phandle2 3>; * }; * * To get a device_node of the `node2' node you may call this: * dev_read_phandle_with_args(dev, "list", "#list-cells", 0, 1, &args); * * @dev: device whose node containing a list * @list_name: property name that contains a list * @cells_name: property name that specifies phandles' arguments count * @cell_count: Cell count to use if @cells_name is NULL * @index: index of a phandle to parse out * @out_args: optional pointer to output arguments structure (will be filled) * Return: 0 on success (with @out_args filled out if not NULL), -ENOENT if * @list_name does not exist, -EINVAL if a phandle was not found, * @cells_name could not be found, the arguments were truncated or there * were too many arguments. */ int dev_read_phandle_with_args(const struct udevice *dev, const char *list_name, const char *cells_name, int cell_count, int index, struct ofnode_phandle_args *out_args); /** * dev_count_phandle_with_args() - Return phandle number in a list * * This function is usefull to get phandle number contained in a property list. * For example, this allows to allocate the right amount of memory to keep * clock's reference contained into the "clocks" property. * * @dev: device whose node containing a list * @list_name: property name that contains a list * @cells_name: property name that specifies phandles' arguments count * @cell_count: Cell count to use if @cells_name is NULL * Return: number of phandle found on success, on error returns appropriate * errno value. */ int dev_count_phandle_with_args(const struct udevice *dev, const char *list_name, const char *cells_name, int cell_count); /** * dev_read_addr_cells() - Get the number of address cells for a device's node * * This walks back up the tree to find the closest #address-cells property * which controls the given node. * * @dev: device to check * Return: number of address cells this node uses */ int dev_read_addr_cells(const struct udevice *dev); /** * dev_read_size_cells() - Get the number of size cells for a device's node * * This walks back up the tree to find the closest #size-cells property * which controls the given node. * * @dev: device to check * Return: number of size cells this node uses */ int dev_read_size_cells(const struct udevice *dev); /** * dev_read_addr_cells() - Get the address cells property in a node * * This function matches fdt_address_cells(). * * @dev: device to check * Return: number of address cells this node uses */ int dev_read_simple_addr_cells(const struct udevice *dev); /** * dev_read_size_cells() - Get the size cells property in a node * * This function matches fdt_size_cells(). * * @dev: device to check * Return: number of size cells this node uses */ int dev_read_simple_size_cells(const struct udevice *dev); /** * dev_read_phandle() - Get the phandle from a device * * @dev: device to check * Return: phandle (1 or greater), or 0 if no phandle or other error */ int dev_read_phandle(const struct udevice *dev); /** * dev_read_prop()- - read a property from a device's node * * @dev: device to check * @propname: property to read * @lenp: place to put length on success * Return: pointer to property, or NULL if not found */ const void *dev_read_prop(const struct udevice *dev, const char *propname, int *lenp); /** * dev_read_first_prop()- get the reference of the first property * * Get reference to the first property of the node, it is used to iterate * and read all the property with dev_read_prop_by_prop(). * * @dev: device to check * @prop: place to put argument reference * Return: 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found */ int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop); /** * ofnode_next_property() - get the reference of the next property * * Get reference to the next property of the node, it is used to iterate * and read all the property with dev_read_prop_by_prop(). * * @prop: reference of current argument and place to put reference of next one * Return: 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found */ int dev_read_next_prop(struct ofprop *prop); /** * dev_read_prop_by_prop() - get a pointer to the value of a property * * Get value for the property identified by the provided reference. * * @prop: reference on property * @propname: If non-NULL, place to property name on success, * @lenp: If non-NULL, place to put length on success * Return: 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found */ const void *dev_read_prop_by_prop(struct ofprop *prop, const char **propname, int *lenp); /** * dev_read_alias_seq() - Get the alias sequence number of a node * * This works out whether a node is pointed to by an alias, and if so, the * sequence number of that alias. Aliases are of the form where * is the sequence number. For example spi2 would be sequence number 2. * * @dev: device to look up * @devnump: set to the sequence number if one is found * Return: 0 if a sequence was found, -ve if not */ int dev_read_alias_seq(const struct udevice *dev, int *devnump); /** * dev_read_u32_array() - Find and read an array of 32 bit integers * * Search for a property in a device node and read 32-bit value(s) from * it. * * The out_values is modified only if a valid u32 value can be decoded. * * @dev: device to look up * @propname: name of the property to read * @out_values: pointer to return value, modified only if return value is 0 * @sz: number of array elements to read * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if * property does not have a value, and -EOVERFLOW if the property data isn't * large enough. */ int dev_read_u32_array(const struct udevice *dev, const char *propname, u32 *out_values, size_t sz); /** * dev_read_first_subnode() - find the first subnode of a device's node * * @dev: device to look up * Return: reference to the first subnode (which can be invalid if the device's * node has no subnodes) */ ofnode dev_read_first_subnode(const struct udevice *dev); /** * ofnode_next_subnode() - find the next sibling of a subnode * * @node: valid reference to previous node (sibling) * Return: reference to the next subnode (which can be invalid if the node * has no more siblings) */ ofnode dev_read_next_subnode(ofnode node); /** * dev_read_u8_array_ptr() - find an 8-bit array * * Look up a device's node property and return a pointer to its contents as a * byte array of given length. The property must have at least enough data * for the array (count bytes). It may have more, but this will be ignored. * The data is not copied. * * @dev: device to look up * @propname: name of property to find * @sz: number of array elements * Return: * pointer to byte array if found, or NULL if the property is not found or * there is not enough data */ const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev, const char *propname, size_t sz); /** * dev_read_enabled() - check whether a node is enabled * * This looks for a 'status' property. If this exists, then returns 1 if * the status is 'ok' and 0 otherwise. If there is no status property, * it returns 1 on the assumption that anything mentioned should be enabled * by default. * * @dev: device to examine * Return: integer value 0 (not enabled) or 1 (enabled) */ int dev_read_enabled(const struct udevice *dev); /** * dev_read_resource() - obtain an indexed resource from a device. * * @dev: device to examine * @index: index of the resource to retrieve (0 = first) * @res: returns the resource * Return: 0 if ok, negative on error */ int dev_read_resource(const struct udevice *dev, uint index, struct resource *res); /** * dev_read_resource_byname() - obtain a named resource from a device. * * @dev: device to examine * @name: name of the resource to retrieve * @res: returns the resource * Return: 0 if ok, negative on error */ int dev_read_resource_byname(const struct udevice *dev, const char *name, struct resource *res); /** * dev_translate_address() - Translate a device-tree address * * Translate an address from the device-tree into a CPU physical address. This * function walks up the tree and applies the various bus mappings along the * way. * * @dev: device giving the context in which to translate the address * @in_addr: pointer to the address to translate * Return: the translated address; OF_BAD_ADDR on error */ u64 dev_translate_address(const struct udevice *dev, const fdt32_t *in_addr); /** * dev_translate_dma_address() - Translate a device-tree DMA address * * Translate a DMA address from the device-tree into a CPU physical address. * This function walks up the tree and applies the various bus mappings along * the way. * * @dev: device giving the context in which to translate the DMA address * @in_addr: pointer to the DMA address to translate * Return: the translated DMA address; OF_BAD_ADDR on error */ u64 dev_translate_dma_address(const struct udevice *dev, const fdt32_t *in_addr); /** * dev_get_dma_range() - Get a device's DMA constraints * * Provide the address bases and size of the linear mapping between the CPU and * a device's BUS address space. * * @dev: device giving the context in which to translate the DMA address * @cpu: base address for CPU's view of memory * @bus: base address for BUS's view of memory * @size: size of the address space * Return: 0 if ok, negative on error */ int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu, dma_addr_t *bus, u64 *size); /** * dev_read_alias_highest_id - Get highest alias id for the given stem * @stem: Alias stem to be examined * * The function travels the lookup table to get the highest alias id for the * given alias stem. * Return: alias ID, if found, else -1 */ int dev_read_alias_highest_id(const char *stem); /** * dev_get_child_count() - get the child count of a device * * @dev: device to use for interation (`struct udevice *`) * Return: the count of child subnode */ int dev_get_child_count(const struct udevice *dev); /** * dev_read_pci_bus_range - Read PCI bus-range resource * * Look at the bus range property of a device node and return the pci bus * range for this node. * * @dev: device to examine * @res: returns the resource * Return: 0 if ok, negative on error */ int dev_read_pci_bus_range(const struct udevice *dev, struct resource *res); /** * dev_decode_display_timing() - decode display timings * * Decode display timings from the supplied 'display-timings' node. * See doc/device-tree-bindings/video/display-timing.txt for binding * information. * * @dev: device to read DT display timings from. The node linked to the device * contains a child node called 'display-timings' which in turn contains * one or more display timing nodes. * @index: index number to read (0=first timing subnode) * @config: place to put timings * Return: 0 if OK, -FDT_ERR_NOTFOUND if not found */ int dev_decode_display_timing(const struct udevice *dev, int index, struct display_timing *config); /** * dev_decode_panel_timing() - decode panel timings * * Decode display timings from the supplied 'panel-timings' node. * * @dev: device to read DT display timings from. The node linked to the device * contains a child node called 'display-timings' which in turn contains * one or more display timing nodes. * @config: place to put timings * Return: 0 if OK, -FDT_ERR_NOTFOUND if not found */ int dev_decode_panel_timing(const struct udevice *dev, struct display_timing *config); /** * dev_get_phy_node() - Get PHY node for a MAC (if not fixed-link) * * This function parses PHY handle from the Ethernet controller's ofnode * (trying all possible PHY handle property names), and returns the PHY ofnode. * * Before this is used, ofnode_phy_is_fixed_link() should be checked first, and * if the result to that is true, this function should not be called. * * @dev: device representing the MAC * Return: ofnode of the PHY, if it exists, otherwise an invalid ofnode */ ofnode dev_get_phy_node(const struct udevice *dev); /** * dev_read_phy_mode() - Read PHY connection type from a MAC * * This function parses the "phy-mode" / "phy-connection-type" property and * returns the corresponding PHY interface type. * * @dev: device representing the MAC * Return: one of PHY_INTERFACE_MODE_* constants, PHY_INTERFACE_MODE_NA on * error */ phy_interface_t dev_read_phy_mode(const struct udevice *dev); #else /* CONFIG_DM_DEV_READ_INLINE is enabled */ #include static inline int dev_read_u8(const struct udevice *dev, const char *propname, u8 *outp) { return ofnode_read_u8(dev_ofnode(dev), propname, outp); } static inline int dev_read_u8_default(const struct udevice *dev, const char *propname, u8 def) { return ofnode_read_u8_default(dev_ofnode(dev), propname, def); } static inline int dev_read_u16(const struct udevice *dev, const char *propname, u16 *outp) { return ofnode_read_u16(dev_ofnode(dev), propname, outp); } static inline int dev_read_u16_default(const struct udevice *dev, const char *propname, u16 def) { return ofnode_read_u16_default(dev_ofnode(dev), propname, def); } static inline int dev_read_u32(const struct udevice *dev, const char *propname, u32 *outp) { return ofnode_read_u32(dev_ofnode(dev), propname, outp); } static inline int dev_read_u32_default(const struct udevice *dev, const char *propname, int def) { return ofnode_read_u32_default(dev_ofnode(dev), propname, def); } static inline int dev_read_u32_index(struct udevice *dev, const char *propname, int index, u32 *outp) { return ofnode_read_u32_index(dev_ofnode(dev), propname, index, outp); } static inline u32 dev_read_u32_index_default(struct udevice *dev, const char *propname, int index, u32 def) { return ofnode_read_u32_index_default(dev_ofnode(dev), propname, index, def); } static inline int dev_read_s32(const struct udevice *dev, const char *propname, s32 *outp) { return ofnode_read_s32(dev_ofnode(dev), propname, outp); } static inline int dev_read_s32_default(const struct udevice *dev, const char *propname, int def) { return ofnode_read_s32_default(dev_ofnode(dev), propname, def); } static inline int dev_read_u32u(const struct udevice *dev, const char *propname, uint *outp) { u32 val; int ret; ret = ofnode_read_u32(dev_ofnode(dev), propname, &val); if (ret) return ret; *outp = val; return 0; } static inline int dev_read_u64(const struct udevice *dev, const char *propname, u64 *outp) { return ofnode_read_u64(dev_ofnode(dev), propname, outp); } static inline u64 dev_read_u64_default(const struct udevice *dev, const char *propname, u64 def) { return ofnode_read_u64_default(dev_ofnode(dev), propname, def); } static inline const char *dev_read_string(const struct udevice *dev, const char *propname) { return ofnode_read_string(dev_ofnode(dev), propname); } static inline bool dev_read_bool(const struct udevice *dev, const char *propname) { return ofnode_read_bool(dev_ofnode(dev), propname); } static inline ofnode dev_read_subnode(const struct udevice *dev, const char *subbnode_name) { return ofnode_find_subnode(dev_ofnode(dev), subbnode_name); } static inline int dev_read_size(const struct udevice *dev, const char *propname) { return ofnode_read_size(dev_ofnode(dev), propname); } static inline fdt_addr_t dev_read_addr_index(const struct udevice *dev, int index) { return devfdt_get_addr_index(dev, index); } static inline void *dev_read_addr_index_ptr(const struct udevice *dev, int index) { return devfdt_get_addr_index_ptr(dev, index); } static inline fdt_addr_t dev_read_addr_size_index(const struct udevice *dev, int index, fdt_size_t *size) { return devfdt_get_addr_size_index(dev, index, size); } static inline void *dev_read_addr_size_index_ptr(const struct udevice *dev, int index, fdt_size_t *size) { return devfdt_get_addr_size_index_ptr(dev, index, size); } static inline fdt_addr_t dev_read_addr_name(const struct udevice *dev, const char *name) { return devfdt_get_addr_name(dev, name); } static inline fdt_addr_t dev_read_addr_size_name(const struct udevice *dev, const char *name, fdt_size_t *size) { return devfdt_get_addr_size_name(dev, name, size); } static inline fdt_addr_t dev_read_addr(const struct udevice *dev) { return devfdt_get_addr(dev); } static inline void *dev_read_addr_ptr(const struct udevice *dev) { return devfdt_get_addr_ptr(dev); } static inline fdt_addr_t dev_read_addr_pci(const struct udevice *dev, fdt_size_t *sizep) { return devfdt_get_addr_pci(dev, sizep); } static inline void *dev_remap_addr(const struct udevice *dev) { return devfdt_remap_addr(dev); } static inline void *dev_remap_addr_index(const struct udevice *dev, int index) { return devfdt_remap_addr_index(dev, index); } static inline void *dev_remap_addr_name(const struct udevice *dev, const char *name) { return devfdt_remap_addr_name(dev, name); } static inline fdt_addr_t dev_read_addr_size(const struct udevice *dev, fdt_size_t *sizep) { return dev_read_addr_size_index(dev, 0, sizep); } static inline const char *dev_read_name(const struct udevice *dev) { return ofnode_get_name(dev_ofnode(dev)); } static inline int dev_read_stringlist_search(const struct udevice *dev, const char *propname, const char *string) { return ofnode_stringlist_search(dev_ofnode(dev), propname, string); } static inline int dev_read_string_index(const struct udevice *dev, const char *propname, int index, const char **outp) { return ofnode_read_string_index(dev_ofnode(dev), propname, index, outp); } static inline int dev_read_string_count(const struct udevice *dev, const char *propname) { return ofnode_read_string_count(dev_ofnode(dev), propname); } static inline int dev_read_string_list(const struct udevice *dev, const char *propname, const char ***listp) { return ofnode_read_string_list(dev_ofnode(dev), propname, listp); } static inline int dev_read_phandle_with_args(const struct udevice *dev, const char *list_name, const char *cells_name, int cell_count, int index, struct ofnode_phandle_args *out_args) { return ofnode_parse_phandle_with_args(dev_ofnode(dev), list_name, cells_name, cell_count, index, out_args); } static inline int dev_count_phandle_with_args(const struct udevice *dev, const char *list_name, const char *cells_name, int cell_count) { return ofnode_count_phandle_with_args(dev_ofnode(dev), list_name, cells_name, cell_count); } static inline int dev_read_addr_cells(const struct udevice *dev) { int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev)); return fdt_address_cells(gd->fdt_blob, parent); } static inline int dev_read_size_cells(const struct udevice *dev) { int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev)); return fdt_size_cells(gd->fdt_blob, parent); } static inline int dev_read_simple_addr_cells(const struct udevice *dev) { return fdt_address_cells(gd->fdt_blob, dev_of_offset(dev)); } static inline int dev_read_simple_size_cells(const struct udevice *dev) { return fdt_size_cells(gd->fdt_blob, dev_of_offset(dev)); } static inline int dev_read_phandle(const struct udevice *dev) { return fdt_get_phandle(gd->fdt_blob, dev_of_offset(dev)); } static inline const void *dev_read_prop(const struct udevice *dev, const char *propname, int *lenp) { return ofnode_get_property(dev_ofnode(dev), propname, lenp); } static inline int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop) { return ofnode_first_property(dev_ofnode(dev), prop); } static inline int dev_read_next_prop(struct ofprop *prop) { return ofnode_next_property(prop); } static inline const void *dev_read_prop_by_prop(struct ofprop *prop, const char **propname, int *lenp) { return ofprop_get_property(prop, propname, lenp); } static inline int dev_read_alias_seq(const struct udevice *dev, int *devnump) { #if CONFIG_IS_ENABLED(OF_CONTROL) return fdtdec_get_alias_seq(gd->fdt_blob, dev->uclass->uc_drv->name, dev_of_offset(dev), devnump); #else return -ENOTSUPP; #endif } static inline int dev_read_u32_array(const struct udevice *dev, const char *propname, u32 *out_values, size_t sz) { return ofnode_read_u32_array(dev_ofnode(dev), propname, out_values, sz); } static inline ofnode dev_read_first_subnode(const struct udevice *dev) { return ofnode_first_subnode(dev_ofnode(dev)); } static inline ofnode dev_read_next_subnode(ofnode node) { return ofnode_next_subnode(node); } static inline const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev, const char *propname, size_t sz) { return ofnode_read_u8_array_ptr(dev_ofnode(dev), propname, sz); } static inline int dev_read_enabled(const struct udevice *dev) { return fdtdec_get_is_enabled(gd->fdt_blob, dev_of_offset(dev)); } static inline int dev_read_resource(const struct udevice *dev, uint index, struct resource *res) { return ofnode_read_resource(dev_ofnode(dev), index, res); } static inline int dev_read_resource_byname(const struct udevice *dev, const char *name, struct resource *res) { return ofnode_read_resource_byname(dev_ofnode(dev), name, res); } static inline u64 dev_translate_address(const struct udevice *dev, const fdt32_t *in_addr) { return ofnode_translate_address(dev_ofnode(dev), in_addr); } static inline u64 dev_translate_dma_address(const struct udevice *dev, const fdt32_t *in_addr) { return ofnode_translate_dma_address(dev_ofnode(dev), in_addr); } static inline int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu, dma_addr_t *bus, u64 *size) { return ofnode_get_dma_range(dev_ofnode(dev), cpu, bus, size); } static inline int dev_read_alias_highest_id(const char *stem) { if (!CONFIG_IS_ENABLED(OF_LIBFDT) || !gd->fdt_blob) return -1; return fdtdec_get_alias_highest_id(gd->fdt_blob, stem); } static inline int dev_get_child_count(const struct udevice *dev) { return ofnode_get_child_count(dev_ofnode(dev)); } static inline int dev_decode_display_timing(const struct udevice *dev, int index, struct display_timing *config) { return ofnode_decode_display_timing(dev_ofnode(dev), index, config); } static inline int dev_decode_panel_timing(const struct udevice *dev, struct display_timing *config) { return ofnode_decode_panel_timing(dev_ofnode(dev), config); } static inline ofnode dev_get_phy_node(const struct udevice *dev) { return ofnode_get_phy_node(dev_ofnode(dev)); } static inline phy_interface_t dev_read_phy_mode(const struct udevice *dev) { return ofnode_read_phy_mode(dev_ofnode(dev)); } #endif /* CONFIG_DM_DEV_READ_INLINE */ /** * dev_for_each_subnode() - Helper function to iterate through subnodes * * This creates a for() loop which works through the subnodes in a device's * device-tree node. * * @subnode: ofnode holding the current subnode * @dev: device to use for interation (`struct udevice *`) */ #define dev_for_each_subnode(subnode, dev) \ for (subnode = dev_read_first_subnode(dev); \ ofnode_valid(subnode); \ subnode = ofnode_next_subnode(subnode)) /** * dev_for_each_property() - Helper function to iterate through property * * This creates a for() loop which works through the property in a device's * device-tree node. * * @prop: struct ofprop holding the current property * @dev: device to use for interation (`struct udevice *`) */ #define dev_for_each_property(prop, dev) \ for (int ret_prop = dev_read_first_prop(dev, &prop); \ !ret_prop; \ ret_prop = dev_read_next_prop(&prop)) #endif