// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2014-2016 Stefan Roese */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define DDR_BASE_CS_OFF(n) (0x0000 + ((n) << 3)) #define DDR_SIZE_CS_OFF(n) (0x0004 + ((n) << 3)) static struct mbus_win windows[] = { /* SPI */ { MBUS_SPI_BASE, MBUS_SPI_SIZE, CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH }, /* NOR */ { MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE, CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM }, #ifdef CONFIG_ARMADA_MSYS /* DFX */ { MBUS_DFX_BASE, MBUS_DFX_SIZE, CPU_TARGET_DFX, 0 }, #endif }; void lowlevel_init(void) { /* * Dummy implementation, we only need LOWLEVEL_INIT * on Armada to configure CP15 in start.S / cpu_init_cp15() */ } void reset_cpu(void) { struct mvebu_system_registers *reg = (struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE; writel(readl(®->rstoutn_mask) | 1, ®->rstoutn_mask); writel(readl(®->sys_soft_rst) | 1, ®->sys_soft_rst); while (1) ; } int mvebu_soc_family(void) { u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff; switch (devid) { case SOC_MV78230_ID: case SOC_MV78260_ID: case SOC_MV78460_ID: return MVEBU_SOC_AXP; case SOC_88F6720_ID: return MVEBU_SOC_A375; case SOC_88F6810_ID: case SOC_88F6820_ID: case SOC_88F6828_ID: return MVEBU_SOC_A38X; case SOC_98DX3236_ID: case SOC_98DX3336_ID: case SOC_98DX4251_ID: return MVEBU_SOC_MSYS; } return MVEBU_SOC_UNKNOWN; } u32 get_boot_device(void) { u32 val; u32 boot_device; /* * First check, if UART boot-mode is active. This can only * be done, via the bootrom error register. Here the * MSB marks if the UART mode is active. */ val = readl(BOOTROM_ERR_REG); boot_device = (val & BOOTROM_ERR_MODE_MASK) >> BOOTROM_ERR_MODE_OFFS; debug("BOOTROM_REG=0x%08x boot_device=0x%x\n", val, boot_device); if (boot_device == BOOTROM_ERR_MODE_UART) return BOOT_DEVICE_UART; #ifdef CONFIG_ARMADA_38X /* * If the bootrom error code contains any other than zeros it's an * error condition and the bootROM has fallen back to UART boot */ boot_device = (val & BOOTROM_ERR_CODE_MASK) >> BOOTROM_ERR_CODE_OFFS; if (boot_device) return BOOT_DEVICE_UART; #endif /* * Now check the SAR register for the strapped boot-device */ val = readl(CONFIG_SAR_REG); /* SAR - Sample At Reset */ boot_device = (val & BOOT_DEV_SEL_MASK) >> BOOT_DEV_SEL_OFFS; debug("SAR_REG=0x%08x boot_device=0x%x\n", val, boot_device); switch (boot_device) { #ifdef BOOT_FROM_NAND case BOOT_FROM_NAND: return BOOT_DEVICE_NAND; #endif #ifdef BOOT_FROM_MMC case BOOT_FROM_MMC: case BOOT_FROM_MMC_ALT: return BOOT_DEVICE_MMC1; #endif case BOOT_FROM_UART: #ifdef BOOT_FROM_UART_ALT case BOOT_FROM_UART_ALT: #endif return BOOT_DEVICE_UART; #ifdef BOOT_FROM_SATA case BOOT_FROM_SATA: case BOOT_FROM_SATA_ALT: return BOOT_DEVICE_SATA; #endif case BOOT_FROM_SPI: return BOOT_DEVICE_SPI; default: return BOOT_DEVICE_BOOTROM; }; } #if defined(CONFIG_DISPLAY_CPUINFO) #if defined(CONFIG_ARMADA_375) /* SAR frequency values for Armada 375 */ static const struct sar_freq_modes sar_freq_tab[] = { { 0, 0x0, 266, 133, 266 }, { 1, 0x0, 333, 167, 167 }, { 2, 0x0, 333, 167, 222 }, { 3, 0x0, 333, 167, 333 }, { 4, 0x0, 400, 200, 200 }, { 5, 0x0, 400, 200, 267 }, { 6, 0x0, 400, 200, 400 }, { 7, 0x0, 500, 250, 250 }, { 8, 0x0, 500, 250, 334 }, { 9, 0x0, 500, 250, 500 }, { 10, 0x0, 533, 267, 267 }, { 11, 0x0, 533, 267, 356 }, { 12, 0x0, 533, 267, 533 }, { 13, 0x0, 600, 300, 300 }, { 14, 0x0, 600, 300, 400 }, { 15, 0x0, 600, 300, 600 }, { 16, 0x0, 666, 333, 333 }, { 17, 0x0, 666, 333, 444 }, { 18, 0x0, 666, 333, 666 }, { 19, 0x0, 800, 400, 267 }, { 20, 0x0, 800, 400, 400 }, { 21, 0x0, 800, 400, 534 }, { 22, 0x0, 900, 450, 300 }, { 23, 0x0, 900, 450, 450 }, { 24, 0x0, 900, 450, 600 }, { 25, 0x0, 1000, 500, 500 }, { 26, 0x0, 1000, 500, 667 }, { 27, 0x0, 1000, 333, 500 }, { 28, 0x0, 400, 400, 400 }, { 29, 0x0, 1100, 550, 550 }, { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */ }; #elif defined(CONFIG_ARMADA_38X) /* SAR frequency values for Armada 38x */ static const struct sar_freq_modes sar_freq_tab[] = { { 0x0, 0x0, 666, 333, 333 }, { 0x2, 0x0, 800, 400, 400 }, { 0x4, 0x0, 1066, 533, 533 }, { 0x6, 0x0, 1200, 600, 600 }, { 0x8, 0x0, 1332, 666, 666 }, { 0xc, 0x0, 1600, 800, 800 }, { 0x10, 0x0, 1866, 933, 933 }, { 0x13, 0x0, 2000, 1000, 933 }, { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */ }; #elif defined(CONFIG_ARMADA_MSYS) static const struct sar_freq_modes sar_freq_tab[] = { { 0x0, 0x0, 400, 400, 400 }, { 0x2, 0x0, 667, 333, 667 }, { 0x3, 0x0, 800, 400, 800 }, { 0x5, 0x0, 800, 400, 800 }, { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */ }; #else /* SAR frequency values for Armada XP */ static const struct sar_freq_modes sar_freq_tab[] = { { 0xa, 0x5, 800, 400, 400 }, { 0x1, 0x5, 1066, 533, 533 }, { 0x2, 0x5, 1200, 600, 600 }, { 0x2, 0x9, 1200, 600, 400 }, { 0x3, 0x5, 1333, 667, 667 }, { 0x4, 0x5, 1500, 750, 750 }, { 0x4, 0x9, 1500, 750, 500 }, { 0xb, 0x9, 1600, 800, 533 }, { 0xb, 0xa, 1600, 800, 640 }, { 0xb, 0x5, 1600, 800, 800 }, { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */ }; #endif void get_sar_freq(struct sar_freq_modes *sar_freq) { u32 val; u32 freq; int i; #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_MSYS) val = readl(CONFIG_SAR2_REG); /* SAR - Sample At Reset */ #else val = readl(CONFIG_SAR_REG); /* SAR - Sample At Reset */ #endif freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS; #if defined(SAR2_CPU_FREQ_MASK) /* * Shift CPU0 clock frequency select bit from SAR2 register * into correct position */ freq |= ((readl(CONFIG_SAR2_REG) & SAR2_CPU_FREQ_MASK) >> SAR2_CPU_FREQ_OFFS) << 3; #endif for (i = 0; sar_freq_tab[i].val != 0xff; i++) { if (sar_freq_tab[i].val == freq) { #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_MSYS) *sar_freq = sar_freq_tab[i]; return; #else int k; u8 ffc; ffc = (val & SAR_FFC_FREQ_MASK) >> SAR_FFC_FREQ_OFFS; for (k = i; sar_freq_tab[k].ffc != 0xff; k++) { if (sar_freq_tab[k].ffc == ffc) { *sar_freq = sar_freq_tab[k]; return; } } i = k; #endif } } /* SAR value not found, return 0 for frequencies */ *sar_freq = sar_freq_tab[i - 1]; } int print_cpuinfo(void) { u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff; u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff; struct sar_freq_modes sar_freq; puts("SoC: "); switch (devid) { case SOC_MV78230_ID: puts("MV78230-"); break; case SOC_MV78260_ID: puts("MV78260-"); break; case SOC_MV78460_ID: puts("MV78460-"); break; case SOC_88F6720_ID: puts("MV88F6720-"); break; case SOC_88F6810_ID: puts("MV88F6810-"); break; case SOC_88F6820_ID: puts("MV88F6820-"); break; case SOC_88F6828_ID: puts("MV88F6828-"); break; case SOC_98DX3236_ID: puts("98DX3236-"); break; case SOC_98DX3336_ID: puts("98DX3336-"); break; case SOC_98DX4251_ID: puts("98DX4251-"); break; default: puts("Unknown-"); break; } if (mvebu_soc_family() == MVEBU_SOC_AXP) { switch (revid) { case 1: puts("A0"); break; case 2: puts("B0"); break; default: printf("?? (%x)", revid); break; } } if (mvebu_soc_family() == MVEBU_SOC_A375) { switch (revid) { case MV_88F67XX_A0_ID: puts("A0"); break; default: printf("?? (%x)", revid); break; } } if (mvebu_soc_family() == MVEBU_SOC_A38X) { switch (revid) { case MV_88F68XX_Z1_ID: puts("Z1"); break; case MV_88F68XX_A0_ID: puts("A0"); break; case MV_88F68XX_B0_ID: puts("B0"); break; default: printf("?? (%x)", revid); break; } } if (mvebu_soc_family() == MVEBU_SOC_MSYS) { switch (revid) { case 3: puts("A0"); break; case 4: puts("A1"); break; default: printf("?? (%x)", revid); break; } } get_sar_freq(&sar_freq); printf(" at %d MHz\n", sar_freq.p_clk); return 0; } #endif /* CONFIG_DISPLAY_CPUINFO */ /* * This function initialize Controller DRAM Fastpath windows. * It takes the CS size information from the 0x1500 scratch registers * and sets the correct windows sizes and base addresses accordingly. * * These values are set in the scratch registers by the Marvell * DDR3 training code, which is executed by the SPL before the * main payload (U-Boot) is executed. */ static void update_sdram_window_sizes(void) { u64 base = 0; u32 size, temp; int i; for (i = 0; i < SDRAM_MAX_CS; i++) { size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK; if (size != 0) { size |= ~(SDRAM_ADDR_MASK); /* Set Base Address */ temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF); writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i)); /* * Check if out of max window size and resize * the window */ temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) & ~(SDRAM_ADDR_MASK)) | 1; temp |= (size & SDRAM_ADDR_MASK); writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)); base += ((u64)size + 1); } else { /* * Disable window if not used, otherwise this * leads to overlapping enabled windows with * pretty strange results */ clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1); } } } #ifdef CONFIG_ARCH_CPU_INIT #define MV_USB_PHY_BASE (MVEBU_AXP_USB_BASE + 0x800) #define MV_USB_PHY_PLL_REG(reg) (MV_USB_PHY_BASE | (((reg) & 0xF) << 2)) #define MV_USB_X3_BASE(addr) (MVEBU_AXP_USB_BASE | BIT(11) | \ (((addr) & 0xF) << 6)) #define MV_USB_X3_PHY_CHANNEL(dev, reg) (MV_USB_X3_BASE((dev) + 1) | \ (((reg) & 0xF) << 2)) static void setup_usb_phys(void) { int dev; /* * USB PLL init */ /* Setup PLL frequency */ /* USB REF frequency = 25 MHz */ clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605); /* Power up PLL and PHY channel */ setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9)); /* Assert VCOCAL_START */ setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21)); mdelay(1); /* * USB PHY init (change from defaults) specific for 40nm (78X30 78X60) */ for (dev = 0; dev < 3; dev++) { setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15)); /* Assert REG_RCAL_START in channel REG 1 */ setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12)); udelay(40); clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12)); } } /* * This function is not called from the SPL U-Boot version */ int arch_cpu_init(void) { struct pl310_regs *const pl310 = (struct pl310_regs *)CONFIG_SYS_PL310_BASE; if (mvebu_soc_family() == MVEBU_SOC_A38X) { /* * To fully release / unlock this area from cache, we need * to flush all caches and disable the L2 cache. */ icache_disable(); dcache_disable(); clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN); } /* * We need to call mvebu_mbus_probe() before calling * update_sdram_window_sizes() as it disables all previously * configured mbus windows and then configures them as * required for U-Boot. Calling update_sdram_window_sizes() * without this configuration will not work, as the internal * registers can't be accessed reliably because of potenial * double mapping. * After updating the SDRAM access windows we need to call * mvebu_mbus_probe() again, as this now correctly configures * the SDRAM areas that are later used by the MVEBU drivers * (e.g. USB, NETA). */ /* * First disable all windows */ mvebu_mbus_probe(NULL, 0); if (mvebu_soc_family() == MVEBU_SOC_AXP) { /* * Now the SDRAM access windows can be reconfigured using * the information in the SDRAM scratch pad registers */ update_sdram_window_sizes(); } /* * Finally the mbus windows can be configured with the * updated SDRAM sizes */ mvebu_mbus_probe(windows, ARRAY_SIZE(windows)); if (mvebu_soc_family() == MVEBU_SOC_AXP) { /* Enable GBE0, GBE1, LCD and NFC PUP */ clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0, GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN | NAND_PUP_EN | SPI_PUP_EN); /* Configure USB PLL and PHYs on AXP */ setup_usb_phys(); } /* Enable NAND and NAND arbiter */ clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN); /* Disable MBUS error propagation */ clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0); return 0; } #endif /* CONFIG_ARCH_CPU_INIT */ u32 mvebu_get_nand_clock(void) { u32 reg; if (mvebu_soc_family() == MVEBU_SOC_A38X) reg = MVEBU_DFX_DIV_CLK_CTRL(1); else if (mvebu_soc_family() == MVEBU_SOC_MSYS) reg = MVEBU_DFX_DIV_CLK_CTRL(8); else reg = MVEBU_CORE_DIV_CLK_CTRL(1); return CONFIG_SYS_MVEBU_PLL_CLOCK / ((readl(reg) & NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS); } /* * SOC specific misc init */ #if defined(CONFIG_ARCH_MISC_INIT) int arch_misc_init(void) { /* Nothing yet, perhaps we need something here later */ return 0; } #endif /* CONFIG_ARCH_MISC_INIT */ #if defined(CONFIG_MMC_SDHCI_MV) && !defined(CONFIG_DM_MMC) int board_mmc_init(struct bd_info *bis) { mv_sdh_init(MVEBU_SDIO_BASE, 0, 0, SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD); return 0; } #endif #define AHCI_VENDOR_SPECIFIC_0_ADDR 0xa0 #define AHCI_VENDOR_SPECIFIC_0_DATA 0xa4 #define AHCI_WINDOW_CTRL(win) (0x60 + ((win) << 4)) #define AHCI_WINDOW_BASE(win) (0x64 + ((win) << 4)) #define AHCI_WINDOW_SIZE(win) (0x68 + ((win) << 4)) static void ahci_mvebu_mbus_config(void __iomem *base) { const struct mbus_dram_target_info *dram; int i; /* mbus is not initialized in SPL; keep the ROM settings */ if (IS_ENABLED(CONFIG_SPL_BUILD)) return; dram = mvebu_mbus_dram_info(); for (i = 0; i < 4; i++) { writel(0, base + AHCI_WINDOW_CTRL(i)); writel(0, base + AHCI_WINDOW_BASE(i)); writel(0, base + AHCI_WINDOW_SIZE(i)); } for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; writel((cs->mbus_attr << 8) | (dram->mbus_dram_target_id << 4) | 1, base + AHCI_WINDOW_CTRL(i)); writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i)); writel(((cs->size - 1) & 0xffff0000), base + AHCI_WINDOW_SIZE(i)); } } static void ahci_mvebu_regret_option(void __iomem *base) { /* * Enable the regret bit to allow the SATA unit to regret a * request that didn't receive an acknowlegde and avoid a * deadlock */ writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR); writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA); } int board_ahci_enable(void) { ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE); ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE); return 0; } #ifdef CONFIG_SCSI_AHCI_PLAT void scsi_init(void) { printf("MVEBU SATA INIT\n"); board_ahci_enable(); ahci_init((void __iomem *)MVEBU_SATA0_BASE); } #endif #ifdef CONFIG_USB_XHCI_MVEBU #define USB3_MAX_WINDOWS 4 #define USB3_WIN_CTRL(w) (0x0 + ((w) * 8)) #define USB3_WIN_BASE(w) (0x4 + ((w) * 8)) static void xhci_mvebu_mbus_config(void __iomem *base, const struct mbus_dram_target_info *dram) { int i; for (i = 0; i < USB3_MAX_WINDOWS; i++) { writel(0, base + USB3_WIN_CTRL(i)); writel(0, base + USB3_WIN_BASE(i)); } for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; /* Write size, attributes and target id to control register */ writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) | (dram->mbus_dram_target_id << 4) | 1, base + USB3_WIN_CTRL(i)); /* Write base address to base register */ writel((cs->base & 0xffff0000), base + USB3_WIN_BASE(i)); } } int board_xhci_enable(fdt_addr_t base) { const struct mbus_dram_target_info *dram; printf("MVEBU XHCI INIT controller @ 0x%lx\n", base); dram = mvebu_mbus_dram_info(); xhci_mvebu_mbus_config((void __iomem *)base, dram); return 0; } #endif void enable_caches(void) { /* Avoid problem with e.g. neta ethernet driver */ invalidate_dcache_all(); /* * Armada 375 still has some problems with d-cache enabled in the * ethernet driver (mvpp2). So lets keep the d-cache disabled * until this is solved. */ if (mvebu_soc_family() != MVEBU_SOC_A375) { /* Enable D-cache. I-cache is already enabled in start.S */ dcache_enable(); } } void v7_outer_cache_enable(void) { if (mvebu_soc_family() == MVEBU_SOC_AXP) { struct pl310_regs *const pl310 = (struct pl310_regs *)CONFIG_SYS_PL310_BASE; u32 u; /* The L2 cache is already disabled at this point */ /* * For Aurora cache in no outer mode, enable via the CP15 * coprocessor broadcasting of cache commands to L2. */ asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u)); u |= BIT(8); /* Set the FW bit */ asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u)); isb(); /* Enable the L2 cache */ setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN); } } void v7_outer_cache_disable(void) { struct pl310_regs *const pl310 = (struct pl310_regs *)CONFIG_SYS_PL310_BASE; clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN); }