// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2018 Simon Goldschmidt */ #include #include #include #include #include #include #include #include static inline bool lmb_is_nomap(struct lmb_property *m) { return m->flags & LMB_NOMAP; } static int check_lmb(struct unit_test_state *uts, struct lmb *lmb, phys_addr_t ram_base, phys_size_t ram_size, unsigned long num_reserved, phys_addr_t base1, phys_size_t size1, phys_addr_t base2, phys_size_t size2, phys_addr_t base3, phys_size_t size3) { if (ram_size) { ut_asserteq(lmb->memory.cnt, 1); ut_asserteq(lmb->memory.region[0].base, ram_base); ut_asserteq(lmb->memory.region[0].size, ram_size); } ut_asserteq(lmb->reserved.cnt, num_reserved); if (num_reserved > 0) { ut_asserteq(lmb->reserved.region[0].base, base1); ut_asserteq(lmb->reserved.region[0].size, size1); } if (num_reserved > 1) { ut_asserteq(lmb->reserved.region[1].base, base2); ut_asserteq(lmb->reserved.region[1].size, size2); } if (num_reserved > 2) { ut_asserteq(lmb->reserved.region[2].base, base3); ut_asserteq(lmb->reserved.region[2].size, size3); } return 0; } #define ASSERT_LMB(lmb, ram_base, ram_size, num_reserved, base1, size1, \ base2, size2, base3, size3) \ ut_assert(!check_lmb(uts, lmb, ram_base, ram_size, \ num_reserved, base1, size1, base2, size2, base3, \ size3)) /* * Test helper function that reserves 64 KiB somewhere in the simulated RAM and * then does some alloc + free tests. */ static int test_multi_alloc(struct unit_test_state *uts, const phys_addr_t ram, const phys_size_t ram_size, const phys_addr_t ram0, const phys_size_t ram0_size, const phys_addr_t alloc_64k_addr) { const phys_addr_t ram_end = ram + ram_size; const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000; struct lmb lmb; long ret; phys_addr_t a, a2, b, b2, c, d; /* check for overflow */ ut_assert(ram_end == 0 || ram_end > ram); ut_assert(alloc_64k_end > alloc_64k_addr); /* check input addresses + size */ ut_assert(alloc_64k_addr >= ram + 8); ut_assert(alloc_64k_end <= ram_end - 8); lmb_init(&lmb); if (ram0_size) { ret = lmb_add(&lmb, ram0, ram0_size); ut_asserteq(ret, 0); } ret = lmb_add(&lmb, ram, ram_size); ut_asserteq(ret, 0); if (ram0_size) { ut_asserteq(lmb.memory.cnt, 2); ut_asserteq(lmb.memory.region[0].base, ram0); ut_asserteq(lmb.memory.region[0].size, ram0_size); ut_asserteq(lmb.memory.region[1].base, ram); ut_asserteq(lmb.memory.region[1].size, ram_size); } else { ut_asserteq(lmb.memory.cnt, 1); ut_asserteq(lmb.memory.region[0].base, ram); ut_asserteq(lmb.memory.region[0].size, ram_size); } /* reserve 64KiB somewhere */ ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000, 0, 0, 0, 0); /* allocate somewhere, should be at the end of RAM */ a = lmb_alloc(&lmb, 4, 1); ut_asserteq(a, ram_end - 4); ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr, 0x10000, ram_end - 4, 4, 0, 0); /* alloc below end of reserved region -> below reserved region */ b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); ut_asserteq(b, alloc_64k_addr - 4); ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0); /* 2nd time */ c = lmb_alloc(&lmb, 4, 1); ut_asserteq(c, ram_end - 8); ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0); d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); ut_asserteq(d, alloc_64k_addr - 8); ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); ret = lmb_free(&lmb, a, 4); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); /* allocate again to ensure we get the same address */ a2 = lmb_alloc(&lmb, 4, 1); ut_asserteq(a, a2); ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0); ret = lmb_free(&lmb, a2, 4); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); ret = lmb_free(&lmb, b, 4); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, 0, 0, 3, alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, ram_end - 8, 4); /* allocate again to ensure we get the same address */ b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end); ut_asserteq(b, b2); ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0); ret = lmb_free(&lmb, b2, 4); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, 0, 0, 3, alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, ram_end - 8, 4); ret = lmb_free(&lmb, c, 4); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, 0, 0, 2, alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0); ret = lmb_free(&lmb, d, 4); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, 0, 0, 1, alloc_64k_addr, 0x10000, 0, 0, 0, 0); if (ram0_size) { ut_asserteq(lmb.memory.cnt, 2); ut_asserteq(lmb.memory.region[0].base, ram0); ut_asserteq(lmb.memory.region[0].size, ram0_size); ut_asserteq(lmb.memory.region[1].base, ram); ut_asserteq(lmb.memory.region[1].size, ram_size); } else { ut_asserteq(lmb.memory.cnt, 1); ut_asserteq(lmb.memory.region[0].base, ram); ut_asserteq(lmb.memory.region[0].size, ram_size); } return 0; } static int test_multi_alloc_512mb(struct unit_test_state *uts, const phys_addr_t ram) { return test_multi_alloc(uts, ram, 0x20000000, 0, 0, ram + 0x10000000); } static int test_multi_alloc_512mb_x2(struct unit_test_state *uts, const phys_addr_t ram, const phys_addr_t ram0) { return test_multi_alloc(uts, ram, 0x20000000, ram0, 0x20000000, ram + 0x10000000); } /* Create a memory region with one reserved region and allocate */ static int lib_test_lmb_simple(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_multi_alloc_512mb(uts, 0x40000000); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_multi_alloc_512mb(uts, 0xE0000000); } DM_TEST(lib_test_lmb_simple, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Create two memory regions with one reserved region and allocate */ static int lib_test_lmb_simple_x2(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 2GiB and 1 GiB */ ret = test_multi_alloc_512mb_x2(uts, 0x80000000, 0x40000000); if (ret) return ret; /* simulate 512 MiB RAM beginning at 3.5GiB and 1 GiB */ return test_multi_alloc_512mb_x2(uts, 0xE0000000, 0x40000000); } DM_TEST(lib_test_lmb_simple_x2, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */ static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram) { const phys_size_t ram_size = 0x20000000; const phys_size_t big_block_size = 0x10000000; const phys_addr_t ram_end = ram + ram_size; const phys_addr_t alloc_64k_addr = ram + 0x10000000; struct lmb lmb; long ret; phys_addr_t a, b; /* check for overflow */ ut_assert(ram_end == 0 || ram_end > ram); lmb_init(&lmb); ret = lmb_add(&lmb, ram, ram_size); ut_asserteq(ret, 0); /* reserve 64KiB in the middle of RAM */ ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, 0, 0, 0, 0); /* allocate a big block, should be below reserved */ a = lmb_alloc(&lmb, big_block_size, 1); ut_asserteq(a, ram); ASSERT_LMB(&lmb, ram, ram_size, 1, a, big_block_size + 0x10000, 0, 0, 0, 0); /* allocate 2nd big block */ /* This should fail, printing an error */ b = lmb_alloc(&lmb, big_block_size, 1); ut_asserteq(b, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, a, big_block_size + 0x10000, 0, 0, 0, 0); ret = lmb_free(&lmb, a, big_block_size); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, 0, 0, 0, 0); /* allocate too big block */ /* This should fail, printing an error */ a = lmb_alloc(&lmb, ram_size, 1); ut_asserteq(a, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000, 0, 0, 0, 0); return 0; } static int lib_test_lmb_big(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_bigblock(uts, 0x40000000); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_bigblock(uts, 0xE0000000); } DM_TEST(lib_test_lmb_big, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Simulate 512 MiB RAM, allocate a block without previous reservation */ static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram, const phys_addr_t alloc_size, const ulong align) { const phys_size_t ram_size = 0x20000000; const phys_addr_t ram_end = ram + ram_size; struct lmb lmb; long ret; phys_addr_t a, b; const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) & ~(align - 1); /* check for overflow */ ut_assert(ram_end == 0 || ram_end > ram); lmb_init(&lmb); ret = lmb_add(&lmb, ram, ram_size); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); /* allocate a block */ a = lmb_alloc(&lmb, alloc_size, align); ut_assert(a != 0); ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, alloc_size, 0, 0, 0, 0); /* allocate another block */ b = lmb_alloc(&lmb, alloc_size, align); ut_assert(b != 0); if (alloc_size == alloc_size_aligned) { ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - (alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0, 0); } else { ASSERT_LMB(&lmb, ram, ram_size, 2, ram + ram_size - (alloc_size_aligned * 2), alloc_size, ram + ram_size - alloc_size_aligned, alloc_size, 0, 0); } /* and free them */ ret = lmb_free(&lmb, b, alloc_size); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, alloc_size, 0, 0, 0, 0); ret = lmb_free(&lmb, a, alloc_size); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); /* allocate a block with base*/ b = lmb_alloc_base(&lmb, alloc_size, align, ram_end); ut_assert(a == b); ASSERT_LMB(&lmb, ram, ram_size, 1, ram + ram_size - alloc_size_aligned, alloc_size, 0, 0, 0, 0); /* and free it */ ret = lmb_free(&lmb, b, alloc_size); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); return 0; } static int lib_test_lmb_noreserved(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_noreserved(uts, 0x40000000, 4, 1); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_noreserved(uts, 0xE0000000, 4, 1); } DM_TEST(lib_test_lmb_noreserved, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int lib_test_lmb_unaligned_size(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_noreserved(uts, 0x40000000, 5, 8); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_noreserved(uts, 0xE0000000, 5, 8); } DM_TEST(lib_test_lmb_unaligned_size, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* * Simulate a RAM that starts at 0 and allocate down to address 0, which must * fail as '0' means failure for the lmb_alloc functions. */ static int lib_test_lmb_at_0(struct unit_test_state *uts) { const phys_addr_t ram = 0; const phys_size_t ram_size = 0x20000000; struct lmb lmb; long ret; phys_addr_t a, b; lmb_init(&lmb); ret = lmb_add(&lmb, ram, ram_size); ut_asserteq(ret, 0); /* allocate nearly everything */ a = lmb_alloc(&lmb, ram_size - 4, 1); ut_asserteq(a, ram + 4); ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, 0, 0, 0, 0); /* allocate the rest */ /* This should fail as the allocated address would be 0 */ b = lmb_alloc(&lmb, 4, 1); ut_asserteq(b, 0); /* check that this was an error by checking lmb */ ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, 0, 0, 0, 0); /* check that this was an error by freeing b */ ret = lmb_free(&lmb, b, 4); ut_asserteq(ret, -1); ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4, 0, 0, 0, 0); ret = lmb_free(&lmb, a, ram_size - 4); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0); return 0; } DM_TEST(lib_test_lmb_at_0, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Check that calling lmb_reserve with overlapping regions fails. */ static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts) { const phys_addr_t ram = 0x40000000; const phys_size_t ram_size = 0x20000000; struct lmb lmb; long ret; lmb_init(&lmb); ret = lmb_add(&lmb, ram, ram_size); ut_asserteq(ret, 0); ret = lmb_reserve(&lmb, 0x40010000, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, 0, 0, 0, 0); /* allocate overlapping region should fail */ ret = lmb_reserve(&lmb, 0x40011000, 0x10000); ut_asserteq(ret, -1); ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, 0, 0, 0, 0); /* allocate 3nd region */ ret = lmb_reserve(&lmb, 0x40030000, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40010000, 0x10000, 0x40030000, 0x10000, 0, 0); /* allocate 2nd region , This should coalesced all region into one */ ret = lmb_reserve(&lmb, 0x40020000, 0x10000); ut_assert(ret >= 0); ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x30000, 0, 0, 0, 0); /* allocate 2nd region, which should be added as first region */ ret = lmb_reserve(&lmb, 0x40000000, 0x8000); ut_assert(ret >= 0); ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40000000, 0x8000, 0x40010000, 0x30000, 0, 0); /* allocate 3rd region, coalesce with first and overlap with second */ ret = lmb_reserve(&lmb, 0x40008000, 0x10000); ut_assert(ret >= 0); ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40000000, 0x40000, 0, 0, 0, 0); return 0; } DM_TEST(lib_test_lmb_overlapping_reserve, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* * Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between. * Expect addresses outside the memory range to fail. */ static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram) { const phys_size_t ram_size = 0x20000000; const phys_addr_t ram_end = ram + ram_size; const phys_size_t alloc_addr_a = ram + 0x8000000; const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; struct lmb lmb; long ret; phys_addr_t a, b, c, d, e; /* check for overflow */ ut_assert(ram_end == 0 || ram_end > ram); lmb_init(&lmb); ret = lmb_add(&lmb, ram, ram_size); ut_asserteq(ret, 0); /* reserve 3 blocks */ ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000); ut_asserteq(ret, 0); ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000); ut_asserteq(ret, 0); ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000, alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); /* allocate blocks */ a = lmb_alloc_addr(&lmb, ram, alloc_addr_a - ram); ut_asserteq(a, ram); ASSERT_LMB(&lmb, ram, ram_size, 3, ram, 0x8010000, alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); b = lmb_alloc_addr(&lmb, alloc_addr_a + 0x10000, alloc_addr_b - alloc_addr_a - 0x10000); ut_asserteq(b, alloc_addr_a + 0x10000); ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x10010000, alloc_addr_c, 0x10000, 0, 0); c = lmb_alloc_addr(&lmb, alloc_addr_b + 0x10000, alloc_addr_c - alloc_addr_b - 0x10000); ut_asserteq(c, alloc_addr_b + 0x10000); ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, 0, 0, 0, 0); d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, ram_end - alloc_addr_c - 0x10000); ut_asserteq(d, alloc_addr_c + 0x10000); ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size, 0, 0, 0, 0); /* allocating anything else should fail */ e = lmb_alloc(&lmb, 1, 1); ut_asserteq(e, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, ram, ram_size, 0, 0, 0, 0); ret = lmb_free(&lmb, d, ram_end - alloc_addr_c - 0x10000); ut_asserteq(ret, 0); /* allocate at 3 points in free range */ d = lmb_alloc_addr(&lmb, ram_end - 4, 4); ut_asserteq(d, ram_end - 4); ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000, d, 4, 0, 0); ret = lmb_free(&lmb, d, 4); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, 0, 0, 0, 0); d = lmb_alloc_addr(&lmb, ram_end - 128, 4); ut_asserteq(d, ram_end - 128); ASSERT_LMB(&lmb, ram, ram_size, 2, ram, 0x18010000, d, 4, 0, 0); ret = lmb_free(&lmb, d, 4); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, 0, 0, 0, 0); d = lmb_alloc_addr(&lmb, alloc_addr_c + 0x10000, 4); ut_asserteq(d, alloc_addr_c + 0x10000); ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010004, 0, 0, 0, 0); ret = lmb_free(&lmb, d, 4); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, ram, 0x18010000, 0, 0, 0, 0); /* allocate at the bottom */ ret = lmb_free(&lmb, a, alloc_addr_a - ram); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, ram + 0x8000000, 0x10010000, 0, 0, 0, 0); d = lmb_alloc_addr(&lmb, ram, 4); ut_asserteq(d, ram); ASSERT_LMB(&lmb, ram, ram_size, 2, d, 4, ram + 0x8000000, 0x10010000, 0, 0); /* check that allocating outside memory fails */ if (ram_end != 0) { ret = lmb_alloc_addr(&lmb, ram_end, 1); ut_asserteq(ret, 0); } if (ram != 0) { ret = lmb_alloc_addr(&lmb, ram - 1, 1); ut_asserteq(ret, 0); } return 0; } static int lib_test_lmb_alloc_addr(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_alloc_addr(uts, 0x40000000); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_alloc_addr(uts, 0xE0000000); } DM_TEST(lib_test_lmb_alloc_addr, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */ static int test_get_unreserved_size(struct unit_test_state *uts, const phys_addr_t ram) { const phys_size_t ram_size = 0x20000000; const phys_addr_t ram_end = ram + ram_size; const phys_size_t alloc_addr_a = ram + 0x8000000; const phys_size_t alloc_addr_b = ram + 0x8000000 * 2; const phys_size_t alloc_addr_c = ram + 0x8000000 * 3; struct lmb lmb; long ret; phys_size_t s; /* check for overflow */ ut_assert(ram_end == 0 || ram_end > ram); lmb_init(&lmb); ret = lmb_add(&lmb, ram, ram_size); ut_asserteq(ret, 0); /* reserve 3 blocks */ ret = lmb_reserve(&lmb, alloc_addr_a, 0x10000); ut_asserteq(ret, 0); ret = lmb_reserve(&lmb, alloc_addr_b, 0x10000); ut_asserteq(ret, 0); ret = lmb_reserve(&lmb, alloc_addr_c, 0x10000); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 3, alloc_addr_a, 0x10000, alloc_addr_b, 0x10000, alloc_addr_c, 0x10000); /* check addresses in between blocks */ s = lmb_get_free_size(&lmb, ram); ut_asserteq(s, alloc_addr_a - ram); s = lmb_get_free_size(&lmb, ram + 0x10000); ut_asserteq(s, alloc_addr_a - ram - 0x10000); s = lmb_get_free_size(&lmb, alloc_addr_a - 4); ut_asserteq(s, 4); s = lmb_get_free_size(&lmb, alloc_addr_a + 0x10000); ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000); s = lmb_get_free_size(&lmb, alloc_addr_a + 0x20000); ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000); s = lmb_get_free_size(&lmb, alloc_addr_b - 4); ut_asserteq(s, 4); s = lmb_get_free_size(&lmb, alloc_addr_c + 0x10000); ut_asserteq(s, ram_end - alloc_addr_c - 0x10000); s = lmb_get_free_size(&lmb, alloc_addr_c + 0x20000); ut_asserteq(s, ram_end - alloc_addr_c - 0x20000); s = lmb_get_free_size(&lmb, ram_end - 4); ut_asserteq(s, 4); return 0; } static int lib_test_lmb_get_free_size(struct unit_test_state *uts) { int ret; /* simulate 512 MiB RAM beginning at 1GiB */ ret = test_get_unreserved_size(uts, 0x40000000); if (ret) return ret; /* simulate 512 MiB RAM beginning at 1.5GiB */ return test_get_unreserved_size(uts, 0xE0000000); } DM_TEST(lib_test_lmb_get_free_size, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); #ifdef CONFIG_LMB_USE_MAX_REGIONS static int lib_test_lmb_max_regions(struct unit_test_state *uts) { const phys_addr_t ram = 0x00000000; /* * All of 32bit memory space will contain regions for this test, so * we need to scale ram_size (which in this case is the size of the lmb * region) to match. */ const phys_size_t ram_size = ((0xFFFFFFFF >> CONFIG_LMB_MAX_REGIONS) + 1) * CONFIG_LMB_MAX_REGIONS; const phys_size_t blk_size = 0x10000; phys_addr_t offset; struct lmb lmb; int ret, i; lmb_init(&lmb); ut_asserteq(lmb.memory.cnt, 0); ut_asserteq(lmb.memory.max, CONFIG_LMB_MAX_REGIONS); ut_asserteq(lmb.reserved.cnt, 0); ut_asserteq(lmb.reserved.max, CONFIG_LMB_MAX_REGIONS); /* Add CONFIG_LMB_MAX_REGIONS memory regions */ for (i = 0; i < CONFIG_LMB_MAX_REGIONS; i++) { offset = ram + 2 * i * ram_size; ret = lmb_add(&lmb, offset, ram_size); ut_asserteq(ret, 0); } ut_asserteq(lmb.memory.cnt, CONFIG_LMB_MAX_REGIONS); ut_asserteq(lmb.reserved.cnt, 0); /* error for the (CONFIG_LMB_MAX_REGIONS + 1) memory regions */ offset = ram + 2 * (CONFIG_LMB_MAX_REGIONS + 1) * ram_size; ret = lmb_add(&lmb, offset, ram_size); ut_asserteq(ret, -1); ut_asserteq(lmb.memory.cnt, CONFIG_LMB_MAX_REGIONS); ut_asserteq(lmb.reserved.cnt, 0); /* reserve CONFIG_LMB_MAX_REGIONS regions */ for (i = 0; i < CONFIG_LMB_MAX_REGIONS; i++) { offset = ram + 2 * i * blk_size; ret = lmb_reserve(&lmb, offset, blk_size); ut_asserteq(ret, 0); } ut_asserteq(lmb.memory.cnt, CONFIG_LMB_MAX_REGIONS); ut_asserteq(lmb.reserved.cnt, CONFIG_LMB_MAX_REGIONS); /* error for the 9th reserved blocks */ offset = ram + 2 * (CONFIG_LMB_MAX_REGIONS + 1) * blk_size; ret = lmb_reserve(&lmb, offset, blk_size); ut_asserteq(ret, -1); ut_asserteq(lmb.memory.cnt, CONFIG_LMB_MAX_REGIONS); ut_asserteq(lmb.reserved.cnt, CONFIG_LMB_MAX_REGIONS); /* check each regions */ for (i = 0; i < CONFIG_LMB_MAX_REGIONS; i++) ut_asserteq(lmb.memory.region[i].base, ram + 2 * i * ram_size); for (i = 0; i < CONFIG_LMB_MAX_REGIONS; i++) ut_asserteq(lmb.reserved.region[i].base, ram + 2 * i * blk_size); return 0; } #endif DM_TEST(lib_test_lmb_max_regions, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int lib_test_lmb_flags(struct unit_test_state *uts) { const phys_addr_t ram = 0x40000000; const phys_size_t ram_size = 0x20000000; struct lmb lmb; long ret; lmb_init(&lmb); ret = lmb_add(&lmb, ram, ram_size); ut_asserteq(ret, 0); /* reserve, same flag */ ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, 0, 0, 0, 0); /* reserve again, same flag */ ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, 0, 0, 0, 0); /* reserve again, new flag */ ret = lmb_reserve_flags(&lmb, 0x40010000, 0x10000, LMB_NONE); ut_asserteq(ret, -1); ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x10000, 0, 0, 0, 0); ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1); /* merge after */ ret = lmb_reserve_flags(&lmb, 0x40020000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 1); ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40010000, 0x20000, 0, 0, 0, 0); /* merge before */ ret = lmb_reserve_flags(&lmb, 0x40000000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 1); ASSERT_LMB(&lmb, ram, ram_size, 1, 0x40000000, 0x30000, 0, 0, 0, 0); ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1); ret = lmb_reserve_flags(&lmb, 0x40030000, 0x10000, LMB_NONE); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40000000, 0x30000, 0x40030000, 0x10000, 0, 0); ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1); ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0); /* test that old API use LMB_NONE */ ret = lmb_reserve(&lmb, 0x40040000, 0x10000); ut_asserteq(ret, 1); ASSERT_LMB(&lmb, ram, ram_size, 2, 0x40000000, 0x30000, 0x40030000, 0x20000, 0, 0); ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1); ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0); ret = lmb_reserve_flags(&lmb, 0x40070000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 3, 0x40000000, 0x30000, 0x40030000, 0x20000, 0x40070000, 0x10000); ret = lmb_reserve_flags(&lmb, 0x40050000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 0); ASSERT_LMB(&lmb, ram, ram_size, 4, 0x40000000, 0x30000, 0x40030000, 0x20000, 0x40050000, 0x10000); /* merge with 2 adjacent regions */ ret = lmb_reserve_flags(&lmb, 0x40060000, 0x10000, LMB_NOMAP); ut_asserteq(ret, 2); ASSERT_LMB(&lmb, ram, ram_size, 3, 0x40000000, 0x30000, 0x40030000, 0x20000, 0x40050000, 0x30000); ut_asserteq(lmb_is_nomap(&lmb.reserved.region[0]), 1); ut_asserteq(lmb_is_nomap(&lmb.reserved.region[1]), 0); ut_asserteq(lmb_is_nomap(&lmb.reserved.region[2]), 1); return 0; } DM_TEST(lib_test_lmb_flags, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);