// SPDX-License-Identifier: GPL-2.0+
/*
 * EMIF programming
 *
 * (C) Copyright 2010
 * Texas Instruments, <www.ti.com>
 *
 * Aneesh V <aneesh@ti.com>
 */

#include <common.h>
#include <hang.h>
#include <init.h>
#include <log.h>
#include <net.h>
#include <asm/emif.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/omap_common.h>
#include <asm/omap_sec_common.h>
#include <asm/utils.h>
#include <linux/compiler.h>
#include <asm/ti-common/ti-edma3.h>
#include <linux/delay.h>

static int emif1_enabled = -1, emif2_enabled = -1;

void set_lpmode_selfrefresh(u32 base)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
	u32 reg;

	reg = readl(&emif->emif_pwr_mgmt_ctrl);
	reg &= ~EMIF_REG_LP_MODE_MASK;
	reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
	reg &= ~EMIF_REG_SR_TIM_MASK;
	writel(reg, &emif->emif_pwr_mgmt_ctrl);

	/* dummy read for the new SR_TIM to be loaded */
	readl(&emif->emif_pwr_mgmt_ctrl);
}

void force_emif_self_refresh(void)
{
	set_lpmode_selfrefresh(EMIF1_BASE);
	if (!is_dra72x())
		set_lpmode_selfrefresh(EMIF2_BASE);
}

inline u32 emif_num(u32 base)
{
	if (base == EMIF1_BASE)
		return 1;
	else if (base == EMIF2_BASE)
		return 2;
	else
		return 0;
}

static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
{
	u32 mr;
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	mr_addr |= cs << EMIF_REG_CS_SHIFT;
	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
	if (omap_revision() == OMAP4430_ES2_0)
		mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
	else
		mr = readl(&emif->emif_lpddr2_mode_reg_data);
	debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
	      cs, mr_addr, mr);
	if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
	    ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
	    ((mr & 0xff000000) >> 24) == (mr & 0xff))
		return mr & 0xff;
	else
		return mr;
}

static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	mr_addr |= cs << EMIF_REG_CS_SHIFT;
	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
	writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
}

void emif_reset_phy(u32 base)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
	u32 iodft;

	iodft = readl(&emif->emif_iodft_tlgc);
	iodft |= EMIF_REG_RESET_PHY_MASK;
	writel(iodft, &emif->emif_iodft_tlgc);
}

static void do_lpddr2_init(u32 base, u32 cs)
{
	u32 mr_addr;
	const struct lpddr2_mr_regs *mr_regs;

	get_lpddr2_mr_regs(&mr_regs);
	/* Wait till device auto initialization is complete */
	while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
		;
	set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
	/*
	 * tZQINIT = 1 us
	 * Enough loops assuming a maximum of 2GHz
	 */

	sdelay(2000);

	set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
	set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);

	/*
	 * Enable refresh along with writing MR2
	 * Encoding of RL in MR2 is (RL - 2)
	 */
	mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
	set_mr(base, cs, mr_addr, mr_regs->mr2);

	if (mr_regs->mr3 > 0)
		set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
}

static void lpddr2_init(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	/* Not NVM */
	clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);

	/*
	 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
	 * when EMIF_SDRAM_CONFIG register is written
	 */
	setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);

	/*
	 * Set the SDRAM_CONFIG and PHY_CTRL for the
	 * un-locked frequency & default RL
	 */
	writel(regs->sdram_config_init, &emif->emif_sdram_config);
	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);

	do_ext_phy_settings(base, regs);

	do_lpddr2_init(base, CS0);
	if (regs->sdram_config & EMIF_REG_EBANK_MASK)
		do_lpddr2_init(base, CS1);

	writel(regs->sdram_config, &emif->emif_sdram_config);
	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);

	/* Enable refresh now */
	clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);

	}

__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
{
}

void emif_update_timings(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	if (!is_dra7xx())
		writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
	else
		writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);

	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
	if (omap_revision() == OMAP4430_ES1_0) {
		/* ES1 bug EMIF should be in force idle during freq_update */
		writel(0, &emif->emif_pwr_mgmt_ctrl);
	} else {
		writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
		writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
	}
	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
	writel(regs->zq_config, &emif->emif_zq_config);
	writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);

	if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
			&emif->emif_l3_config);
	} else if (omap_revision() >= OMAP4460_ES1_0) {
		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
			&emif->emif_l3_config);
	} else {
		writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
			&emif->emif_l3_config);
	}
}

#ifndef CONFIG_OMAP44XX
static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	/* keep sdram in self-refresh */
	writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
		& EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
	__udelay(130);

	/*
	 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
	 * Invert clock adds an additional half cycle delay on the
	 * command interface.  The additional half cycle, is usually
	 * meant to enable leveling in the situation that DQS is later
	 * than CK on the board.It also helps provide some additional
	 * margin for leveling.
	 */
	writel(regs->emif_ddr_phy_ctlr_1,
	       &emif->emif_ddr_phy_ctrl_1);

	writel(regs->emif_ddr_phy_ctlr_1,
	       &emif->emif_ddr_phy_ctrl_1_shdw);
	__udelay(130);

	writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
	       & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);

	/* Launch Full leveling */
	writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);

	/* Wait till full leveling is complete */
	readl(&emif->emif_rd_wr_lvl_ctl);
	      __udelay(130);

	/* Read data eye leveling no of samples */
	config_data_eye_leveling_samples(base);

	/*
	 * Launch 8 incremental WR_LVL- to compensate for
	 * PHY limitation.
	 */
	writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
	       &emif->emif_rd_wr_lvl_ctl);

	__udelay(130);

	/* Launch Incremental leveling */
	writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
	       __udelay(130);
}

static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
	u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
	u32 reg, i, phy;

	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
	phy = readl(&emif->emif_ddr_phy_ctrl_1);

	/* Update PHY_REG_RDDQS_RATIO */
	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
	if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
		for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
			reg = readl(emif_phy_status++);
			writel(reg, emif_ext_phy_ctrl_reg++);
			writel(reg, emif_ext_phy_ctrl_reg++);
		}

	/* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
	if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
		for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
			reg = readl(emif_phy_status++);
			writel(reg, emif_ext_phy_ctrl_reg++);
			writel(reg, emif_ext_phy_ctrl_reg++);
		}

	/* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
	if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
		for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
			reg = readl(emif_phy_status++);
			writel(reg, emif_ext_phy_ctrl_reg++);
			writel(reg, emif_ext_phy_ctrl_reg++);
		}

	/* Disable Leveling */
	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
	writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
}

static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	/* Clear Error Status */
	clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);

	clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);

	/* Disable refreshed before leveling */
	clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
			EMIF_REG_INITREF_DIS_MASK);

	/* Start Full leveling */
	writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);

	__udelay(300);

	/* Check for leveling timeout */
	if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
		printf("Leveling timeout on EMIF%d\n", emif_num(base));
		return;
	}

	/* Enable refreshes after leveling */
	clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);

	debug("HW leveling success\n");
	/*
	 * Update slave ratios in EXT_PHY_CTRLx registers
	 * as per HW leveling output
	 */
	update_hwleveling_output(base, regs);
}

static void dra7_reset_ddr_data(u32 base, u32 size)
{
#if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
	enable_edma3_clocks();

	edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);

	disable_edma3_clocks();
#else
	memset((void *)base, 0, size);
#endif
}

static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
	u32 rgn, rgn_start, size, ctrl_reg;

	/* ECC available only on dra76x EMIF1 */
	if ((base != EMIF1_BASE) || !is_dra76x())
		return;

	if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
		/* Disable high-order interleaving */
		clrbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);

#ifdef CONFIG_DRA7XX
		/* Clear the status flags and other history */
		writel(readl(&emif->emif_1b_ecc_err_cnt),
		       &emif->emif_1b_ecc_err_cnt);
		writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
		writel(0x2, &emif->emif_1b_ecc_err_addr_log);
		writel(0x1, &emif->emif_2b_ecc_err_addr_log);
		writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
		       EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
		       EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
		       &emif->emif_irqstatus_sys);
#endif
		writel(regs->emif_ecc_address_range_1,
		       &emif->emif_ecc_address_range_1);
		writel(regs->emif_ecc_address_range_2,
		       &emif->emif_ecc_address_range_2);

		/* Disable RMW and ECC verification for read accesses */
		ctrl_reg = (regs->emif_ecc_ctrl_reg &
			    ~EMIF_ECC_REG_RMW_EN_MASK) |
			   EMIF_ECC_CTRL_REG_ECC_VERIFY_DIS_MASK;
		writel(ctrl_reg, &emif->emif_ecc_ctrl_reg);

		/* Set region1 memory with 0 */
		rgn_start = (regs->emif_ecc_address_range_1 &
			     EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
		rgn = rgn_start + CFG_SYS_SDRAM_BASE;
		size = (regs->emif_ecc_address_range_1 &
			EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;

		if (regs->emif_ecc_ctrl_reg &
		    EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
			dra7_reset_ddr_data(rgn, size);

		/* Set region2 memory with 0 */
		rgn_start = (regs->emif_ecc_address_range_2 &
			     EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
		rgn = rgn_start + CFG_SYS_SDRAM_BASE;
		size = (regs->emif_ecc_address_range_2 &
			EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;

		if (regs->emif_ecc_ctrl_reg &
		    EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
			dra7_reset_ddr_data(rgn, size);

		/* Default value enables RMW and ECC verification */
		writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
	}
}

static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	if (warm_reset()) {
		emif_reset_phy(base);
		writel(0x0, &emif->emif_pwr_mgmt_ctrl);
	}
	do_ext_phy_settings(base, regs);

	writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
	       &emif->emif_sdram_ref_ctrl);
	/* Update timing registers */
	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);

	writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
	writel(regs->zq_config, &emif->emif_zq_config);
	writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
	writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
	writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);

	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
	writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);

	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);

	writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
	writel(regs->sdram_config_init, &emif->emif_sdram_config);

	__udelay(1000);

	writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);

	if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
		/*
		 * Perform Dummy ECC setup just to allow hardware
		 * leveling of ECC memories
		 */
		if (is_dra76x() && (base == EMIF1_BASE) &&
		    (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
			writel(0, &emif->emif_ecc_address_range_1);
			writel(0, &emif->emif_ecc_address_range_2);
			writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
			       EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
			       &emif->emif_ecc_ctrl_reg);
		}

		dra7_ddr3_leveling(base, regs);

		/* Disable ECC */
		if (is_dra76x())
			writel(0, &emif->emif_ecc_ctrl_reg);
	}

	/* Enable ECC as necessary */
	dra7_enable_ecc(base, regs);
}

static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
	writel(regs->sdram_config_init, &emif->emif_sdram_config);
	/*
	 * Set SDRAM_CONFIG and PHY control registers to locked frequency
	 * and RL =7. As the default values of the Mode Registers are not
	 * defined, contents of mode Registers must be fully initialized.
	 * H/W takes care of this initialization
	 */
	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);

	/* Update timing registers */
	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);

	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);

	writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
	writel(regs->sdram_config_init, &emif->emif_sdram_config);
	do_ext_phy_settings(base, regs);

	writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
	omap5_ddr3_leveling(base, regs);
}

static void ddr3_init(u32 base, const struct emif_regs *regs)
{
	if (is_omap54xx())
		omap5_ddr3_init(base, regs);
	else
		dra7_ddr3_init(base, regs);
}
#endif

#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))

/*
 * Organization and refresh requirements for LPDDR2 devices of different
 * types and densities. Derived from JESD209-2 section 2.4
 */
const struct lpddr2_addressing addressing_table[] = {
	/* Banks tREFIx10     rowx32,rowx16      colx32,colx16	density */
	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
	{BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
	{BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
	{BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
	{BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
};

static const u32 lpddr2_density_2_size_in_mbytes[] = {
	8,			/* 64Mb */
	16,			/* 128Mb */
	32,			/* 256Mb */
	64,			/* 512Mb */
	128,			/* 1Gb   */
	256,			/* 2Gb   */
	512,			/* 4Gb   */
	1024,			/* 8Gb   */
	2048,			/* 16Gb  */
	4096			/* 32Gb  */
};

/*
 * Calculate the period of DDR clock from frequency value and set the
 * denominator and numerator in global variables for easy access later
 */
static void set_ddr_clk_period(u32 freq)
{
	/*
	 * period = 1/freq
	 * period_in_ns = 10^9/freq
	 */
	*T_num = 1000000000;
	*T_den = freq;
	cancel_out(T_num, T_den, 200);

}

/*
 * Convert time in nano seconds to number of cycles of DDR clock
 */
static inline u32 ns_2_cycles(u32 ns)
{
	return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
}

/*
 * ns_2_cycles with the difference that the time passed is 2 times the actual
 * value(to avoid fractions). The cycles returned is for the original value of
 * the timing parameter
 */
static inline u32 ns_x2_2_cycles(u32 ns)
{
	return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
}

/*
 * Find addressing table index based on the device's type(S2 or S4) and
 * density
 */
s8 addressing_table_index(u8 type, u8 density, u8 width)
{
	u8 index;
	if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
		return -1;

	/*
	 * Look at the way ADDR_TABLE_INDEX* values have been defined
	 * in emif.h compared to LPDDR2_DENSITY_* values
	 * The table is layed out in the increasing order of density
	 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
	 * at the end
	 */
	if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
		index = ADDR_TABLE_INDEX1GS2;
	else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
		index = ADDR_TABLE_INDEX2GS2;
	else
		index = density;

	debug("emif: addressing table index %d\n", index);

	return index;
}

/*
 * Find the the right timing table from the array of timing
 * tables of the device using DDR clock frequency
 */
static const struct lpddr2_ac_timings *get_timings_table(const struct
			lpddr2_ac_timings *const *device_timings,
			u32 freq)
{
	u32 i, temp, freq_nearest;
	const struct lpddr2_ac_timings *timings = 0;

	emif_assert(freq <= MAX_LPDDR2_FREQ);
	emif_assert(device_timings);

	/*
	 * Start with the maximum allowed frequency - that is always safe
	 */
	freq_nearest = MAX_LPDDR2_FREQ;
	/*
	 * Find the timings table that has the max frequency value:
	 *   i.  Above or equal to the DDR frequency - safe
	 *   ii. The lowest that satisfies condition (i) - optimal
	 */
	for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
		temp = device_timings[i]->max_freq;
		if ((temp >= freq) && (temp <= freq_nearest)) {
			freq_nearest = temp;
			timings = device_timings[i];
		}
	}
	debug("emif: timings table: %d\n", freq_nearest);
	return timings;
}

/*
 * Finds the value of emif_sdram_config_reg
 * All parameters are programmed based on the device on CS0.
 * If there is a device on CS1, it will be same as that on CS0 or
 * it will be NVM. We don't support NVM yet.
 * If cs1_device pointer is NULL it is assumed that there is no device
 * on CS1
 */
static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
				const struct lpddr2_device_details *cs1_device,
				const struct lpddr2_addressing *addressing,
				u8 RL)
{
	u32 config_reg = 0;

	config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
	config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
			EMIF_REG_IBANK_POS_SHIFT;

	config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;

	config_reg |= RL << EMIF_REG_CL_SHIFT;

	config_reg |= addressing->row_sz[cs0_device->io_width] <<
			EMIF_REG_ROWSIZE_SHIFT;

	config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;

	config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
			EMIF_REG_EBANK_SHIFT;

	config_reg |= addressing->col_sz[cs0_device->io_width] <<
			EMIF_REG_PAGESIZE_SHIFT;

	return config_reg;
}

static u32 get_sdram_ref_ctrl(u32 freq,
			      const struct lpddr2_addressing *addressing)
{
	u32 ref_ctrl = 0, val = 0, freq_khz;
	freq_khz = freq / 1000;
	/*
	 * refresh rate to be set is 'tREFI * freq in MHz
	 * division by 10000 to account for khz and x10 in t_REFI_us_x10
	 */
	val = addressing->t_REFI_us_x10 * freq_khz / 10000;
	ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;

	return ref_ctrl;
}

static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
			       const struct lpddr2_min_tck *min_tck,
			       const struct lpddr2_addressing *addressing)
{
	u32 tim1 = 0, val = 0;
	val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
	tim1 |= val << EMIF_REG_T_WTR_SHIFT;

	if (addressing->num_banks == BANKS8)
		val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
							(4 * (*T_num)) - 1;
	else
		val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;

	tim1 |= val << EMIF_REG_T_RRD_SHIFT;

	val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
	tim1 |= val << EMIF_REG_T_RC_SHIFT;

	val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
	tim1 |= val << EMIF_REG_T_RAS_SHIFT;

	val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
	tim1 |= val << EMIF_REG_T_WR_SHIFT;

	val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
	tim1 |= val << EMIF_REG_T_RCD_SHIFT;

	val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
	tim1 |= val << EMIF_REG_T_RP_SHIFT;

	return tim1;
}

static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
			       const struct lpddr2_min_tck *min_tck)
{
	u32 tim2 = 0, val = 0;
	val = max(min_tck->tCKE, timings->tCKE) - 1;
	tim2 |= val << EMIF_REG_T_CKE_SHIFT;

	val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
	tim2 |= val << EMIF_REG_T_RTP_SHIFT;

	/*
	 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
	 * same value
	 */
	val = ns_2_cycles(timings->tXSR) - 1;
	tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
	tim2 |= val << EMIF_REG_T_XSNR_SHIFT;

	val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
	tim2 |= val << EMIF_REG_T_XP_SHIFT;

	return tim2;
}

static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
			       const struct lpddr2_min_tck *min_tck,
			       const struct lpddr2_addressing *addressing)
{
	u32 tim3 = 0, val = 0;
	val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
	tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;

	val = ns_2_cycles(timings->tRFCab) - 1;
	tim3 |= val << EMIF_REG_T_RFC_SHIFT;

	val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
	tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;

	val = ns_2_cycles(timings->tZQCS) - 1;
	tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;

	val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
	tim3 |= val << EMIF_REG_T_CKESR_SHIFT;

	return tim3;
}

static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
			     const struct lpddr2_addressing *addressing,
			     u8 volt_ramp)
{
	u32 zq = 0, val = 0;
	if (volt_ramp)
		val =
		    EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
		    addressing->t_REFI_us_x10;
	else
		val =
		    EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
		    addressing->t_REFI_us_x10;
	zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;

	zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;

	zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;

	zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;

	/*
	 * Assuming that two chipselects have a single calibration resistor
	 * If there are indeed two calibration resistors, then this flag should
	 * be enabled to take advantage of dual calibration feature.
	 * This data should ideally come from board files. But considering
	 * that none of the boards today have calibration resistors per CS,
	 * it would be an unnecessary overhead.
	 */
	zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;

	zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;

	zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;

	return zq;
}

static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
				 const struct lpddr2_addressing *addressing,
				 u8 is_derated)
{
	u32 alert = 0, interval;
	interval =
	    TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
	if (is_derated)
		interval *= 4;
	alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;

	alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;

	alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;

	alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;

	alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;

	alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;

	return alert;
}

static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
{
	u32 idle = 0, val = 0;
	if (volt_ramp)
		val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
	else
		/*Maximum value in normal conditions - suggested by hw team */
		val = 0x1FF;
	idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;

	idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;

	return idle;
}

static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
{
	u32 phy = 0, val = 0;

	phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;

	if (freq <= 100000000)
		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
	else if (freq <= 200000000)
		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
	else
		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
	phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;

	/* Other fields are constant magic values. Hardcode them together */
	phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
		EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;

	return phy;
}

static u32 get_emif_mem_size(u32 base)
{
	u32 size_mbytes = 0, temp;
	struct emif_device_details dev_details;
	struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
	u32 emif_nr = emif_num(base);

	emif_reset_phy(base);
	dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
						&cs0_dev_details);
	dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
						&cs1_dev_details);
	emif_reset_phy(base);

	if (dev_details.cs0_device_details) {
		temp = dev_details.cs0_device_details->density;
		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
	}

	if (dev_details.cs1_device_details) {
		temp = dev_details.cs1_device_details->density;
		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
	}
	/* convert to bytes */
	return size_mbytes << 20;
}

/* Gets the encoding corresponding to a given DMM section size */
u32 get_dmm_section_size_map(u32 section_size)
{
	/*
	 * Section size mapping:
	 * 0x0: 16-MiB section
	 * 0x1: 32-MiB section
	 * 0x2: 64-MiB section
	 * 0x3: 128-MiB section
	 * 0x4: 256-MiB section
	 * 0x5: 512-MiB section
	 * 0x6: 1-GiB section
	 * 0x7: 2-GiB section
	 */
	section_size >>= 24; /* divide by 16 MB */
	return log_2_n_round_down(section_size);
}

static void emif_calculate_regs(
		const struct emif_device_details *emif_dev_details,
		u32 freq, struct emif_regs *regs)
{
	u32 temp, sys_freq;
	const struct lpddr2_addressing *addressing;
	const struct lpddr2_ac_timings *timings;
	const struct lpddr2_min_tck *min_tck;
	const struct lpddr2_device_details *cs0_dev_details =
					emif_dev_details->cs0_device_details;
	const struct lpddr2_device_details *cs1_dev_details =
					emif_dev_details->cs1_device_details;
	const struct lpddr2_device_timings *cs0_dev_timings =
					emif_dev_details->cs0_device_timings;

	emif_assert(emif_dev_details);
	emif_assert(regs);
	/*
	 * You can not have a device on CS1 without one on CS0
	 * So configuring EMIF without a device on CS0 doesn't
	 * make sense
	 */
	emif_assert(cs0_dev_details);
	emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
	/*
	 * If there is a device on CS1 it should be same type as CS0
	 * (or NVM. But NVM is not supported in this driver yet)
	 */
	emif_assert((cs1_dev_details == NULL) ||
		    (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
		    (cs0_dev_details->type == cs1_dev_details->type));
	emif_assert(freq <= MAX_LPDDR2_FREQ);

	set_ddr_clk_period(freq);

	/*
	 * The device on CS0 is used for all timing calculations
	 * There is only one set of registers for timings per EMIF. So, if the
	 * second CS(CS1) has a device, it should have the same timings as the
	 * device on CS0
	 */
	timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
	emif_assert(timings);
	min_tck = cs0_dev_timings->min_tck;

	temp = addressing_table_index(cs0_dev_details->type,
				      cs0_dev_details->density,
				      cs0_dev_details->io_width);

	emif_assert((temp >= 0));
	addressing = &(addressing_table[temp]);
	emif_assert(addressing);

	sys_freq = get_sys_clk_freq();

	regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
							cs1_dev_details,
							addressing, RL_BOOT);

	regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
						cs1_dev_details,
						addressing, RL_FINAL);

	regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);

	regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);

	regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);

	regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);

	regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);

	regs->temp_alert_config =
	    get_temp_alert_config(cs1_dev_details, addressing, 0);

	regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
					    LPDDR2_VOLTAGE_STABLE);

	regs->emif_ddr_phy_ctlr_1_init =
			get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);

	regs->emif_ddr_phy_ctlr_1 =
			get_ddr_phy_ctrl_1(freq, RL_FINAL);

	regs->freq = freq;

	print_timing_reg(regs->sdram_config_init);
	print_timing_reg(regs->sdram_config);
	print_timing_reg(regs->ref_ctrl);
	print_timing_reg(regs->sdram_tim1);
	print_timing_reg(regs->sdram_tim2);
	print_timing_reg(regs->sdram_tim3);
	print_timing_reg(regs->read_idle_ctrl);
	print_timing_reg(regs->temp_alert_config);
	print_timing_reg(regs->zq_config);
	print_timing_reg(regs->emif_ddr_phy_ctlr_1);
	print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
}
#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */

#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
const char *get_lpddr2_type(u8 type_id)
{
	switch (type_id) {
	case LPDDR2_TYPE_S4:
		return "LPDDR2-S4";
	case LPDDR2_TYPE_S2:
		return "LPDDR2-S2";
	default:
		return NULL;
	}
}

const char *get_lpddr2_io_width(u8 width_id)
{
	switch (width_id) {
	case LPDDR2_IO_WIDTH_8:
		return "x8";
	case LPDDR2_IO_WIDTH_16:
		return "x16";
	case LPDDR2_IO_WIDTH_32:
		return "x32";
	default:
		return NULL;
	}
}

const char *get_lpddr2_manufacturer(u32 manufacturer)
{
	switch (manufacturer) {
	case LPDDR2_MANUFACTURER_SAMSUNG:
		return "Samsung";
	case LPDDR2_MANUFACTURER_QIMONDA:
		return "Qimonda";
	case LPDDR2_MANUFACTURER_ELPIDA:
		return "Elpida";
	case LPDDR2_MANUFACTURER_ETRON:
		return "Etron";
	case LPDDR2_MANUFACTURER_NANYA:
		return "Nanya";
	case LPDDR2_MANUFACTURER_HYNIX:
		return "Hynix";
	case LPDDR2_MANUFACTURER_MOSEL:
		return "Mosel";
	case LPDDR2_MANUFACTURER_WINBOND:
		return "Winbond";
	case LPDDR2_MANUFACTURER_ESMT:
		return "ESMT";
	case LPDDR2_MANUFACTURER_SPANSION:
		return "Spansion";
	case LPDDR2_MANUFACTURER_SST:
		return "SST";
	case LPDDR2_MANUFACTURER_ZMOS:
		return "ZMOS";
	case LPDDR2_MANUFACTURER_INTEL:
		return "Intel";
	case LPDDR2_MANUFACTURER_NUMONYX:
		return "Numonyx";
	case LPDDR2_MANUFACTURER_MICRON:
		return "Micron";
	default:
		return NULL;
	}
}

static void display_sdram_details(u32 emif_nr, u32 cs,
				  struct lpddr2_device_details *device)
{
	const char *mfg_str;
	const char *type_str;
	char density_str[10];
	u32 density;

	debug("EMIF%d CS%d\t", emif_nr, cs);

	if (!device) {
		debug("None\n");
		return;
	}

	mfg_str = get_lpddr2_manufacturer(device->manufacturer);
	type_str = get_lpddr2_type(device->type);

	density = lpddr2_density_2_size_in_mbytes[device->density];
	if ((density / 1024 * 1024) == density) {
		density /= 1024;
		sprintf(density_str, "%d GB", density);
	} else
		sprintf(density_str, "%d MB", density);
	if (mfg_str && type_str)
		debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
}

static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
				  struct lpddr2_device_details *lpddr2_device)
{
	u32 mr = 0, temp;

	mr = get_mr(base, cs, LPDDR2_MR0);
	if (mr > 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
	if (temp) {
		/* Not SDRAM */
		return 0;
	}
	temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;

	if (temp) {
		/* DNV supported - But DNV is only supported for NVM */
		return 0;
	}

	mr = get_mr(base, cs, LPDDR2_MR4);
	if (mr > 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	mr = get_mr(base, cs, LPDDR2_MR5);
	if (mr > 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	if (!get_lpddr2_manufacturer(mr)) {
		/* Manufacturer not identified */
		return 0;
	}
	lpddr2_device->manufacturer = mr;

	mr = get_mr(base, cs, LPDDR2_MR6);
	if (mr >= 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	mr = get_mr(base, cs, LPDDR2_MR7);
	if (mr >= 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	mr = get_mr(base, cs, LPDDR2_MR8);
	if (mr >= 0xFF) {
		/* Mode register value bigger than 8 bit */
		return 0;
	}

	temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
	if (!get_lpddr2_type(temp)) {
		/* Not SDRAM */
		return 0;
	}
	lpddr2_device->type = temp;

	temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
	if (temp > LPDDR2_DENSITY_32Gb) {
		/* Density not supported */
		return 0;
	}
	lpddr2_device->density = temp;

	temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
	if (!get_lpddr2_io_width(temp)) {
		/* IO width unsupported value */
		return 0;
	}
	lpddr2_device->io_width = temp;

	/*
	 * If all the above tests pass we should
	 * have a device on this chip-select
	 */
	return 1;
}

struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
			struct lpddr2_device_details *lpddr2_dev_details)
{
	u32 phy;
	u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;

	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;

	if (!lpddr2_dev_details)
		return NULL;

	/* Do the minimum init for mode register accesses */
	if (!(running_from_sdram() || warm_reset())) {
		phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
		writel(phy, &emif->emif_ddr_phy_ctrl_1);
	}

	if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
		return NULL;

	display_sdram_details(emif_num(base), cs, lpddr2_dev_details);

	return lpddr2_dev_details;
}
#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */

static void do_sdram_init(u32 base)
{
	const struct emif_regs *regs;
	u32 in_sdram, emif_nr;

	debug(">>do_sdram_init() %x\n", base);

	in_sdram = running_from_sdram();
	emif_nr = (base == EMIF1_BASE) ? 1 : 2;

#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
	emif_get_reg_dump(emif_nr, &regs);
	if (!regs) {
		debug("EMIF: reg dump not provided\n");
		return;
	}
#else
	/*
	 * The user has not provided the register values. We need to
	 * calculate it based on the timings and the DDR frequency
	 */
	struct emif_device_details dev_details;
	struct emif_regs calculated_regs;

	/*
	 * Get device details:
	 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
	 * - Obtained from user otherwise
	 */
	struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
	emif_reset_phy(base);
	dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
						&cs0_dev_details);
	dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
						&cs1_dev_details);
	emif_reset_phy(base);

	/* Return if no devices on this EMIF */
	if (!dev_details.cs0_device_details &&
	    !dev_details.cs1_device_details) {
		return;
	}

	/*
	 * Get device timings:
	 * - Default timings specified by JESD209-2 if
	 *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
	 * - Obtained from user otherwise
	 */
	emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
				&dev_details.cs1_device_timings);

	/* Calculate the register values */
	emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
	regs = &calculated_regs;
#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */

	/*
	 * Initializing the DDR device can not happen from SDRAM.
	 * Changing the timing registers in EMIF can happen(going from one
	 * OPP to another)
	 */
	if (!in_sdram && (!warm_reset() || is_dra7xx())) {
		if (emif_sdram_type(regs->sdram_config) ==
		    EMIF_SDRAM_TYPE_LPDDR2)
			lpddr2_init(base, regs);
#ifndef CONFIG_OMAP44XX
		else
			ddr3_init(base, regs);
#endif
	}
#ifdef CONFIG_OMAP54XX
	if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
	    EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
		set_lpmode_selfrefresh(base);
		emif_reset_phy(base);
		omap5_ddr3_leveling(base, regs);
	}
#endif

	/* Write to the shadow registers */
	emif_update_timings(base, regs);

	debug("<<do_sdram_init() %x\n", base);
}

void emif_post_init_config(u32 base)
{
	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
	u32 omap_rev = omap_revision();

	/* reset phy on ES2.0 */
	if (omap_rev == OMAP4430_ES2_0)
		emif_reset_phy(base);

	/* Put EMIF back in smart idle on ES1.0 */
	if (omap_rev == OMAP4430_ES1_0)
		writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
}

void dmm_init(u32 base)
{
	const struct dmm_lisa_map_regs *lisa_map_regs;
	u32 i, section, valid;

#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
	emif_get_dmm_regs(&lisa_map_regs);
#else
	u32 emif1_size, emif2_size, mapped_size, section_map = 0;
	u32 section_cnt, sys_addr;
	struct dmm_lisa_map_regs lis_map_regs_calculated = {0};

	mapped_size = 0;
	section_cnt = 3;
	sys_addr = CFG_SYS_SDRAM_BASE;
	emif1_size = get_emif_mem_size(EMIF1_BASE);
	emif2_size = get_emif_mem_size(EMIF2_BASE);
	debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);

	if (!emif1_size && !emif2_size)
		return;

	/* symmetric interleaved section */
	if (emif1_size && emif2_size) {
		mapped_size = min(emif1_size, emif2_size);
		section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
		section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
		/* only MSB */
		section_map |= (sys_addr >> 24) <<
				EMIF_SYS_ADDR_SHIFT;
		section_map |= get_dmm_section_size_map(mapped_size * 2)
				<< EMIF_SYS_SIZE_SHIFT;
		lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
		emif1_size -= mapped_size;
		emif2_size -= mapped_size;
		sys_addr += (mapped_size * 2);
		section_cnt--;
	}

	/*
	 * Single EMIF section(we can have a maximum of 1 single EMIF
	 * section- either EMIF1 or EMIF2 or none, but not both)
	 */
	if (emif1_size) {
		section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
		section_map |= get_dmm_section_size_map(emif1_size)
				<< EMIF_SYS_SIZE_SHIFT;
		/* only MSB */
		section_map |= (mapped_size >> 24) <<
				EMIF_SDRC_ADDR_SHIFT;
		/* only MSB */
		section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
		section_cnt--;
	}
	if (emif2_size) {
		section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
		section_map |= get_dmm_section_size_map(emif2_size) <<
				EMIF_SYS_SIZE_SHIFT;
		/* only MSB */
		section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
		/* only MSB */
		section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
		section_cnt--;
	}

	if (section_cnt == 2) {
		/* Only 1 section - either symmetric or single EMIF */
		lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
		lis_map_regs_calculated.dmm_lisa_map_2 = 0;
		lis_map_regs_calculated.dmm_lisa_map_1 = 0;
	} else {
		/* 2 sections - 1 symmetric, 1 single EMIF */
		lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
		lis_map_regs_calculated.dmm_lisa_map_1 = 0;
	}

	/* TRAP for invalid TILER mappings in section 0 */
	lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;

	if (omap_revision() >= OMAP4460_ES1_0)
		lis_map_regs_calculated.is_ma_present = 1;

	lisa_map_regs = &lis_map_regs_calculated;
#endif
	struct dmm_lisa_map_regs *hw_lisa_map_regs =
	    (struct dmm_lisa_map_regs *)base;

	writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
	writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
	writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
	writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);

	writel(lisa_map_regs->dmm_lisa_map_3,
		&hw_lisa_map_regs->dmm_lisa_map_3);
	writel(lisa_map_regs->dmm_lisa_map_2,
		&hw_lisa_map_regs->dmm_lisa_map_2);
	writel(lisa_map_regs->dmm_lisa_map_1,
		&hw_lisa_map_regs->dmm_lisa_map_1);
	writel(lisa_map_regs->dmm_lisa_map_0,
		&hw_lisa_map_regs->dmm_lisa_map_0);

	if (lisa_map_regs->is_ma_present) {
		hw_lisa_map_regs =
		    (struct dmm_lisa_map_regs *)MA_BASE;

		writel(lisa_map_regs->dmm_lisa_map_3,
			&hw_lisa_map_regs->dmm_lisa_map_3);
		writel(lisa_map_regs->dmm_lisa_map_2,
			&hw_lisa_map_regs->dmm_lisa_map_2);
		writel(lisa_map_regs->dmm_lisa_map_1,
			&hw_lisa_map_regs->dmm_lisa_map_1);
		writel(lisa_map_regs->dmm_lisa_map_0,
			&hw_lisa_map_regs->dmm_lisa_map_0);

		setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
	}

	/*
	 * EMIF should be configured only when
	 * memory is mapped on it. Using emif1_enabled
	 * and emif2_enabled variables for this.
	 */
	emif1_enabled = 0;
	emif2_enabled = 0;
	for (i = 0; i < 4; i++) {
		section	= __raw_readl(DMM_BASE + i*4);
		valid = (section & EMIF_SDRC_MAP_MASK) >>
			(EMIF_SDRC_MAP_SHIFT);
		if (valid == 3) {
			emif1_enabled = 1;
			emif2_enabled = 1;
			break;
		}

		if (valid == 1)
			emif1_enabled = 1;

		if (valid == 2)
			emif2_enabled = 1;
	}
}

static void do_bug0039_workaround(u32 base)
{
	u32 val, i, clkctrl;
	struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
	const struct read_write_regs *bug_00339_regs;
	u32 iterations;
	u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
	u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;

	if (is_dra7xx())
		phy_status_base++;

	bug_00339_regs = get_bug_regs(&iterations);

	/* Put EMIF in to idle */
	clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
	__raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);

	/* Copy the phy status registers in to phy ctrl shadow registers */
	for (i = 0; i < iterations; i++) {
		val = __raw_readl(phy_status_base +
				  bug_00339_regs[i].read_reg - 1);

		__raw_writel(val, phy_ctrl_base +
			     ((bug_00339_regs[i].write_reg - 1) << 1));

		__raw_writel(val, phy_ctrl_base +
			     (bug_00339_regs[i].write_reg << 1) - 1);
	}

	/* Disable leveling */
	writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);

	__raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
}

/*
 * SDRAM initialization:
 * SDRAM initialization has two parts:
 * 1. Configuring the SDRAM device
 * 2. Update the AC timings related parameters in the EMIF module
 * (1) should be done only once and should not be done while we are
 * running from SDRAM.
 * (2) can and should be done more than once if OPP changes.
 * Particularly, this may be needed when we boot without SPL and
 * and using Configuration Header(CH). ROM code supports only at 50% OPP
 * at boot (low power boot). So u-boot has to switch to OPP100 and update
 * the frequency. So,
 * Doing (1) and (2) makes sense - first time initialization
 * Doing (2) and not (1) makes sense - OPP change (when using CH)
 * Doing (1) and not (2) doen't make sense
 * See do_sdram_init() for the details
 */
void sdram_init(void)
{
	u32 in_sdram, size_prog, size_detect;
	struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
	u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);

	debug(">>sdram_init()\n");

	if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
		return;

	in_sdram = running_from_sdram();
	debug("in_sdram = %d\n", in_sdram);

	if (!in_sdram) {
		if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
			bypass_dpll((*prcm)->cm_clkmode_dpll_core);
		else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
			writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
	}

	if (!in_sdram)
		dmm_init(DMM_BASE);

	if (emif1_enabled)
		do_sdram_init(EMIF1_BASE);

	if (emif2_enabled)
		do_sdram_init(EMIF2_BASE);

	if (!(in_sdram || warm_reset())) {
		if (emif1_enabled)
			emif_post_init_config(EMIF1_BASE);
		if (emif2_enabled)
			emif_post_init_config(EMIF2_BASE);
	}

	/* for the shadow registers to take effect */
	if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
		freq_update_core();

	/* Do some testing after the init */
	if (!in_sdram) {
		size_prog = omap_sdram_size();
		size_prog = log_2_n_round_down(size_prog);
		size_prog = (1 << size_prog);

		size_detect = get_ram_size((long *)CFG_SYS_SDRAM_BASE,
						size_prog);
		/* Compare with the size programmed */
		if (size_detect != size_prog) {
			printf("SDRAM: identified size not same as expected"
				" size identified: %x expected: %x\n",
				size_detect,
				size_prog);
		} else
			debug("get_ram_size() successful");
	}

#if defined(CONFIG_TI_SECURE_DEVICE)
	/*
	 * On HS devices, do static EMIF firewall configuration
	 * but only do it if not already running in SDRAM
	 */
	if (!in_sdram)
		if (0 != secure_emif_reserve())
			hang();

	/* On HS devices, ensure static EMIF firewall APIs are locked */
	if (0 != secure_emif_firewall_lock())
		hang();
#endif

	if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
	    (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
		if (emif1_enabled)
			do_bug0039_workaround(EMIF1_BASE);
		if (emif2_enabled)
			do_bug0039_workaround(EMIF2_BASE);
	}

	debug("<<sdram_init()\n");
}