// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 MediaTek Inc. * * Author: Weijie Gao <weijie.gao@mediatek.com> */ #include <common.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/sizes.h> #include <mach/ddr.h> #include <mach/mc.h> #define DDR_BW_TEST_PAT 0xaa5555aa static const u32 sdr_size_cfg1[] = { [DRAM_8MB] = (1 << NUMROWS_S), [DRAM_16MB] = (1 << NUMROWS_S) | (1 << NUMCOLS_S), [DRAM_32MB] = (2 << NUMROWS_S) | (1 << NUMCOLS_S), [DRAM_64MB] = (2 << NUMROWS_S) | (2 << NUMCOLS_S), }; static const u32 dram_size[] = { [DRAM_8MB] = SZ_8M, [DRAM_16MB] = SZ_16M, [DRAM_32MB] = SZ_32M, [DRAM_64MB] = SZ_64M, [DRAM_128MB] = SZ_128M, [DRAM_256MB] = SZ_256M, }; static void dram_test_write(u32 addr, u32 val) { volatile ulong *target = (volatile ulong *)(KSEG1 + addr); sync(); *target = val; sync(); } static u32 dram_test_read(u32 addr) { volatile ulong *target = (volatile ulong *)(KSEG1 + addr); u32 val; sync(); val = *target; sync(); return val; } static int dram_addr_test_bit(u32 bit) { u32 val; dram_test_write(0, 0); dram_test_write(BIT(bit), DDR_BW_TEST_PAT); val = dram_test_read(0); if (val == DDR_BW_TEST_PAT) return 1; return 0; } static void mc_ddr_init(void __iomem *memc, const struct mc_ddr_cfg *cfg, u32 dq_dly, u32 dqs_dly, mc_reset_t mc_reset, u32 bw) { u32 val; mc_reset(1); __udelay(200); mc_reset(0); clrbits_32(memc + MEMCTL_SDRAM_CFG1_REG, RBC_MAPPING); writel(cfg->cfg2, memc + MEMCTL_DDR_CFG2_REG); writel(cfg->cfg3, memc + MEMCTL_DDR_CFG3_REG); writel(cfg->cfg4, memc + MEMCTL_DDR_CFG4_REG); writel(dq_dly, memc + MEMCTL_DDR_DQ_DLY_REG); writel(dqs_dly, memc + MEMCTL_DDR_DQS_DLY_REG); writel(cfg->cfg0, memc + MEMCTL_DDR_CFG0_REG); val = cfg->cfg1; if (bw) { val &= ~IND_SDRAM_WIDTH_M; val |= (bw << IND_SDRAM_WIDTH_S) & IND_SDRAM_WIDTH_M; } writel(val, memc + MEMCTL_DDR_CFG1_REG); clrsetbits_32(memc + MEMCTL_PWR_SAVE_CNT_REG, SR_TAR_CNT_M, 1 << SR_TAR_CNT_S); setbits_32(memc + MEMCTL_DDR_SELF_REFRESH_REG, SR_AUTO_EN); } void ddr1_init(struct mc_ddr_init_param *param) { enum mc_dram_size sz; u32 bw = 0; /* First initialization, determine bus width */ mc_ddr_init(param->memc, ¶m->cfgs[DRAM_8MB], param->dq_dly, param->dqs_dly, param->mc_reset, IND_SDRAM_WIDTH_16BIT); /* Test bus width */ dram_test_write(0, DDR_BW_TEST_PAT); if (dram_test_read(0) == DDR_BW_TEST_PAT) bw = IND_SDRAM_WIDTH_16BIT; else bw = IND_SDRAM_WIDTH_8BIT; /* Second initialization, determine DDR capacity */ mc_ddr_init(param->memc, ¶m->cfgs[DRAM_128MB], param->dq_dly, param->dqs_dly, param->mc_reset, bw); if (dram_addr_test_bit(9)) { sz = DRAM_8MB; } else { if (dram_addr_test_bit(10)) { if (dram_addr_test_bit(23)) sz = DRAM_16MB; else sz = DRAM_32MB; } else { if (dram_addr_test_bit(24)) sz = DRAM_64MB; else sz = DRAM_128MB; } } /* Final initialization, with DDR calibration */ mc_ddr_init(param->memc, ¶m->cfgs[sz], param->dq_dly, param->dqs_dly, param->mc_reset, bw); /* Return actual DDR configuration */ param->memsize = dram_size[sz]; param->bus_width = bw; } void ddr2_init(struct mc_ddr_init_param *param) { enum mc_dram_size sz; u32 bw = 0; /* First initialization, determine bus width */ mc_ddr_init(param->memc, ¶m->cfgs[DRAM_32MB], param->dq_dly, param->dqs_dly, param->mc_reset, IND_SDRAM_WIDTH_16BIT); /* Test bus width */ dram_test_write(0, DDR_BW_TEST_PAT); if (dram_test_read(0) == DDR_BW_TEST_PAT) bw = IND_SDRAM_WIDTH_16BIT; else bw = IND_SDRAM_WIDTH_8BIT; /* Second initialization, determine DDR capacity */ mc_ddr_init(param->memc, ¶m->cfgs[DRAM_256MB], param->dq_dly, param->dqs_dly, param->mc_reset, bw); if (bw == IND_SDRAM_WIDTH_16BIT) { if (dram_addr_test_bit(10)) { sz = DRAM_32MB; } else { if (dram_addr_test_bit(24)) { if (dram_addr_test_bit(27)) sz = DRAM_64MB; else sz = DRAM_128MB; } else { sz = DRAM_256MB; } } } else { if (dram_addr_test_bit(23)) { sz = DRAM_32MB; } else { if (dram_addr_test_bit(24)) { if (dram_addr_test_bit(27)) sz = DRAM_64MB; else sz = DRAM_128MB; } else { sz = DRAM_256MB; } } } /* Final initialization, with DDR calibration */ mc_ddr_init(param->memc, ¶m->cfgs[sz], param->dq_dly, param->dqs_dly, param->mc_reset, bw); /* Return actual DDR configuration */ param->memsize = dram_size[sz]; param->bus_width = bw; } static void mc_sdr_init(void __iomem *memc, mc_reset_t mc_reset, u32 cfg0, u32 cfg1) { mc_reset(1); __udelay(200); mc_reset(0); writel(cfg0, memc + MEMCTL_SDRAM_CFG0_REG); writel(cfg1, memc + MEMCTL_SDRAM_CFG1_REG); while (!(readl(memc + MEMCTL_SDRAM_CFG1_REG) & SDRAM_INIT_DONE)) ; clrsetbits_32(memc + MEMCTL_PWR_SAVE_CNT_REG, SR_TAR_CNT_M, 1 << SR_TAR_CNT_S); setbits_32(memc + MEMCTL_DDR_SELF_REFRESH_REG, SR_AUTO_EN); } void sdr_init(struct mc_ddr_init_param *param) { enum mc_dram_size sz; u32 cfg1; cfg1 = param->sdr_cfg1 | SDRAM_INIT_START; cfg1 &= ~(NUMCOLS_M | NUMROWS_M); /* First initialization, determine SDR capacity */ mc_sdr_init(param->memc, param->mc_reset, param->sdr_cfg0, cfg1 | sdr_size_cfg1[DRAM_64MB]); if (dram_addr_test_bit(9)) { sz = DRAM_8MB; } else { if (dram_addr_test_bit(10)) { if (dram_addr_test_bit(23)) sz = DRAM_16MB; else sz = DRAM_32MB; } else { sz = DRAM_64MB; } } /* Final initialization */ mc_sdr_init(param->memc, param->mc_reset, param->sdr_cfg0, cfg1 | sdr_size_cfg1[sz]); /* Return actual DDR configuration */ param->memsize = dram_size[sz]; }