// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2017 NXP * * Peng Fan */ #include #include #include #include #include #include #include #include #include static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR; static u32 get_root_clk(enum clk_root_index clock_id); static u32 decode_frac_pll(enum clk_root_src frac_pll) { u32 pll_cfg0, pll_cfg1, pllout; u32 pll_refclk_sel, pll_refclk; u32 divr_val, divq_val, divf_val, divff, divfi; u32 pllout_div_shift, pllout_div_mask, pllout_div; switch (frac_pll) { case ARM_PLL_CLK: pll_cfg0 = readl(&ana_pll->arm_pll_cfg0); pll_cfg1 = readl(&ana_pll->arm_pll_cfg1); pllout_div_shift = HW_FRAC_ARM_PLL_DIV_SHIFT; pllout_div_mask = HW_FRAC_ARM_PLL_DIV_MASK; break; default: printf("Frac PLL %d not supporte\n", frac_pll); return 0; } pllout_div = readl(&ana_pll->frac_pllout_div_cfg); pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift; /* Power down */ if (pll_cfg0 & FRAC_PLL_PD_MASK) return 0; /* output not enabled */ if ((pll_cfg0 & FRAC_PLL_CLKE_MASK) == 0) return 0; pll_refclk_sel = pll_cfg0 & FRAC_PLL_REFCLK_SEL_MASK; if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_25M) pll_refclk = 25000000u; else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_27M) pll_refclk = 27000000u; else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_HDMI_PHY_27M) pll_refclk = 27000000u; else pll_refclk = 0; if (pll_cfg0 & FRAC_PLL_BYPASS_MASK) return pll_refclk; divr_val = (pll_cfg0 & FRAC_PLL_REFCLK_DIV_VAL_MASK) >> FRAC_PLL_REFCLK_DIV_VAL_SHIFT; divq_val = pll_cfg0 & FRAC_PLL_OUTPUT_DIV_VAL_MASK; divff = (pll_cfg1 & FRAC_PLL_FRAC_DIV_CTL_MASK) >> FRAC_PLL_FRAC_DIV_CTL_SHIFT; divfi = pll_cfg1 & FRAC_PLL_INT_DIV_CTL_MASK; divf_val = 1 + divfi + divff / (1 << 24); pllout = pll_refclk / (divr_val + 1) * 8 * divf_val / ((divq_val + 1) * 2); return pllout / (pllout_div + 1); } static u32 decode_sscg_pll(enum clk_root_src sscg_pll) { u32 pll_cfg0, pll_cfg1, pll_cfg2; u32 pll_refclk_sel, pll_refclk; u32 divr1, divr2, divf1, divf2, divq, div; u32 sse; u32 pll_clke; u32 pllout_div_shift, pllout_div_mask, pllout_div; u32 pllout; switch (sscg_pll) { case SYSTEM_PLL1_800M_CLK: case SYSTEM_PLL1_400M_CLK: case SYSTEM_PLL1_266M_CLK: case SYSTEM_PLL1_200M_CLK: case SYSTEM_PLL1_160M_CLK: case SYSTEM_PLL1_133M_CLK: case SYSTEM_PLL1_100M_CLK: case SYSTEM_PLL1_80M_CLK: case SYSTEM_PLL1_40M_CLK: pll_cfg0 = readl(&ana_pll->sys_pll1_cfg0); pll_cfg1 = readl(&ana_pll->sys_pll1_cfg1); pll_cfg2 = readl(&ana_pll->sys_pll1_cfg2); pllout_div_shift = HW_SSCG_SYSTEM_PLL1_DIV_SHIFT; pllout_div_mask = HW_SSCG_SYSTEM_PLL1_DIV_MASK; break; case SYSTEM_PLL2_1000M_CLK: case SYSTEM_PLL2_500M_CLK: case SYSTEM_PLL2_333M_CLK: case SYSTEM_PLL2_250M_CLK: case SYSTEM_PLL2_200M_CLK: case SYSTEM_PLL2_166M_CLK: case SYSTEM_PLL2_125M_CLK: case SYSTEM_PLL2_100M_CLK: case SYSTEM_PLL2_50M_CLK: pll_cfg0 = readl(&ana_pll->sys_pll2_cfg0); pll_cfg1 = readl(&ana_pll->sys_pll2_cfg1); pll_cfg2 = readl(&ana_pll->sys_pll2_cfg2); pllout_div_shift = HW_SSCG_SYSTEM_PLL2_DIV_SHIFT; pllout_div_mask = HW_SSCG_SYSTEM_PLL2_DIV_MASK; break; case SYSTEM_PLL3_CLK: pll_cfg0 = readl(&ana_pll->sys_pll3_cfg0); pll_cfg1 = readl(&ana_pll->sys_pll3_cfg1); pll_cfg2 = readl(&ana_pll->sys_pll3_cfg2); pllout_div_shift = HW_SSCG_SYSTEM_PLL3_DIV_SHIFT; pllout_div_mask = HW_SSCG_SYSTEM_PLL3_DIV_MASK; break; case DRAM_PLL1_CLK: pll_cfg0 = readl(&ana_pll->dram_pll_cfg0); pll_cfg1 = readl(&ana_pll->dram_pll_cfg1); pll_cfg2 = readl(&ana_pll->dram_pll_cfg2); pllout_div_shift = HW_SSCG_DRAM_PLL_DIV_SHIFT; pllout_div_mask = HW_SSCG_DRAM_PLL_DIV_MASK; break; default: printf("sscg pll %d not supporte\n", sscg_pll); return 0; } switch (sscg_pll) { case DRAM_PLL1_CLK: pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK; div = 1; break; case SYSTEM_PLL3_CLK: pll_clke = SSCG_PLL_PLL3_CLKE_MASK; div = 1; break; case SYSTEM_PLL2_1000M_CLK: case SYSTEM_PLL1_800M_CLK: pll_clke = SSCG_PLL_CLKE_MASK; div = 1; break; case SYSTEM_PLL2_500M_CLK: case SYSTEM_PLL1_400M_CLK: pll_clke = SSCG_PLL_DIV2_CLKE_MASK; div = 2; break; case SYSTEM_PLL2_333M_CLK: case SYSTEM_PLL1_266M_CLK: pll_clke = SSCG_PLL_DIV3_CLKE_MASK; div = 3; break; case SYSTEM_PLL2_250M_CLK: case SYSTEM_PLL1_200M_CLK: pll_clke = SSCG_PLL_DIV4_CLKE_MASK; div = 4; break; case SYSTEM_PLL2_200M_CLK: case SYSTEM_PLL1_160M_CLK: pll_clke = SSCG_PLL_DIV5_CLKE_MASK; div = 5; break; case SYSTEM_PLL2_166M_CLK: case SYSTEM_PLL1_133M_CLK: pll_clke = SSCG_PLL_DIV6_CLKE_MASK; div = 6; break; case SYSTEM_PLL2_125M_CLK: case SYSTEM_PLL1_100M_CLK: pll_clke = SSCG_PLL_DIV8_CLKE_MASK; div = 8; break; case SYSTEM_PLL2_100M_CLK: case SYSTEM_PLL1_80M_CLK: pll_clke = SSCG_PLL_DIV10_CLKE_MASK; div = 10; break; case SYSTEM_PLL2_50M_CLK: case SYSTEM_PLL1_40M_CLK: pll_clke = SSCG_PLL_DIV20_CLKE_MASK; div = 20; break; default: printf("sscg pll %d not supporte\n", sscg_pll); return 0; } /* Power down */ if (pll_cfg0 & SSCG_PLL_PD_MASK) return 0; /* output not enabled */ if ((pll_cfg0 & pll_clke) == 0) return 0; pllout_div = readl(&ana_pll->sscg_pllout_div_cfg); pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift; pll_refclk_sel = pll_cfg0 & SSCG_PLL_REFCLK_SEL_MASK; if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_25M) pll_refclk = 25000000u; else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_27M) pll_refclk = 27000000u; else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_HDMI_PHY_27M) pll_refclk = 27000000u; else pll_refclk = 0; /* We assume bypass1/2 are the same value */ if ((pll_cfg0 & SSCG_PLL_BYPASS1_MASK) || (pll_cfg0 & SSCG_PLL_BYPASS2_MASK)) return pll_refclk; divr1 = (pll_cfg2 & SSCG_PLL_REF_DIVR1_MASK) >> SSCG_PLL_REF_DIVR1_SHIFT; divr2 = (pll_cfg2 & SSCG_PLL_REF_DIVR2_MASK) >> SSCG_PLL_REF_DIVR2_SHIFT; divf1 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F1_MASK) >> SSCG_PLL_FEEDBACK_DIV_F1_SHIFT; divf2 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F2_MASK) >> SSCG_PLL_FEEDBACK_DIV_F2_SHIFT; divq = (pll_cfg2 & SSCG_PLL_OUTPUT_DIV_VAL_MASK) >> SSCG_PLL_OUTPUT_DIV_VAL_SHIFT; sse = pll_cfg1 & SSCG_PLL_SSE_MASK; if (sse) sse = 8; else sse = 2; pllout = pll_refclk / (divr1 + 1) * sse * (divf1 + 1) / (divr2 + 1) * (divf2 + 1) / (divq + 1); return pllout / (pllout_div + 1) / div; } static u32 get_root_src_clk(enum clk_root_src root_src) { switch (root_src) { case OSC_25M_CLK: return 25000000; case OSC_27M_CLK: return 27000000; case OSC_32K_CLK: return 32768; case ARM_PLL_CLK: return decode_frac_pll(root_src); case SYSTEM_PLL1_800M_CLK: case SYSTEM_PLL1_400M_CLK: case SYSTEM_PLL1_266M_CLK: case SYSTEM_PLL1_200M_CLK: case SYSTEM_PLL1_160M_CLK: case SYSTEM_PLL1_133M_CLK: case SYSTEM_PLL1_100M_CLK: case SYSTEM_PLL1_80M_CLK: case SYSTEM_PLL1_40M_CLK: case SYSTEM_PLL2_1000M_CLK: case SYSTEM_PLL2_500M_CLK: case SYSTEM_PLL2_333M_CLK: case SYSTEM_PLL2_250M_CLK: case SYSTEM_PLL2_200M_CLK: case SYSTEM_PLL2_166M_CLK: case SYSTEM_PLL2_125M_CLK: case SYSTEM_PLL2_100M_CLK: case SYSTEM_PLL2_50M_CLK: case SYSTEM_PLL3_CLK: return decode_sscg_pll(root_src); case ARM_A53_ALT_CLK: return get_root_clk(ARM_A53_CLK_ROOT); default: return 0; } return 0; } static u32 get_root_clk(enum clk_root_index clock_id) { enum clk_root_src root_src; u32 post_podf, pre_podf, root_src_clk; if (clock_root_enabled(clock_id) <= 0) return 0; if (clock_get_prediv(clock_id, &pre_podf) < 0) return 0; if (clock_get_postdiv(clock_id, &post_podf) < 0) return 0; if (clock_get_src(clock_id, &root_src) < 0) return 0; root_src_clk = get_root_src_clk(root_src); return root_src_clk / (post_podf + 1) / (pre_podf + 1); } #ifdef CONFIG_IMX_HAB void hab_caam_clock_enable(unsigned char enable) { /* The CAAM clock is always on for iMX8M */ } #endif #ifdef CONFIG_MXC_OCOTP void enable_ocotp_clk(unsigned char enable) { clock_enable(CCGR_OCOTP, !!enable); } #endif int enable_i2c_clk(unsigned char enable, unsigned int i2c_num) { /* 0 - 3 is valid i2c num */ if (i2c_num > 3) return -EINVAL; clock_enable(CCGR_I2C1 + i2c_num, !!enable); return 0; } u32 get_arm_core_clk(void) { enum clk_root_src root_src; u32 root_src_clk; if (clock_get_src(CORE_SEL_CFG, &root_src) < 0) return 0; root_src_clk = get_root_src_clk(root_src); return root_src_clk; } unsigned int mxc_get_clock(enum mxc_clock clk) { u32 val; switch (clk) { case MXC_ARM_CLK: return get_arm_core_clk(); case MXC_IPG_CLK: clock_get_target_val(IPG_CLK_ROOT, &val); val = val & 0x3; return get_root_clk(AHB_CLK_ROOT) / (val + 1); case MXC_ESDHC_CLK: return get_root_clk(USDHC1_CLK_ROOT); case MXC_ESDHC2_CLK: return get_root_clk(USDHC2_CLK_ROOT); default: return get_root_clk(clk); } } u32 imx_get_uartclk(void) { return mxc_get_clock(UART1_CLK_ROOT); } void mxs_set_lcdclk(u32 base_addr, u32 freq) { /* * LCDIF_PIXEL_CLK: select 800MHz root clock, * select pre divider 8, output is 100 MHz */ clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(4) | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV8)); } void init_wdog_clk(void) { clock_enable(CCGR_WDOG1, 0); clock_enable(CCGR_WDOG2, 0); clock_enable(CCGR_WDOG3, 0); clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_WDOG1, 1); clock_enable(CCGR_WDOG2, 1); clock_enable(CCGR_WDOG3, 1); } void init_usb_clk(void) { if (!is_usb_boot()) { clock_enable(CCGR_USB_CTRL1, 0); clock_enable(CCGR_USB_CTRL2, 0); clock_enable(CCGR_USB_PHY1, 0); clock_enable(CCGR_USB_PHY2, 0); /* 500MHz */ clock_set_target_val(USB_BUS_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); /* 100MHz */ clock_set_target_val(USB_CORE_REF_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); /* 100MHz */ clock_set_target_val(USB_PHY_REF_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); clock_enable(CCGR_USB_CTRL1, 1); clock_enable(CCGR_USB_CTRL2, 1); clock_enable(CCGR_USB_PHY1, 1); clock_enable(CCGR_USB_PHY2, 1); } } void init_nand_clk(void) { clock_enable(CCGR_RAWNAND, 0); clock_set_target_val(NAND_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(3) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4)); clock_enable(CCGR_RAWNAND, 1); } void init_uart_clk(u32 index) { /* Set uart clock root 25M OSC */ switch (index) { case 0: clock_enable(CCGR_UART1, 0); clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_UART1, 1); return; case 1: clock_enable(CCGR_UART2, 0); clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_UART2, 1); return; case 2: clock_enable(CCGR_UART3, 0); clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_UART3, 1); return; case 3: clock_enable(CCGR_UART4, 0); clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_enable(CCGR_UART4, 1); return; default: printf("Invalid uart index\n"); return; } } void init_clk_usdhc(u32 index) { /* * set usdhc clock root * sys pll1 400M */ switch (index) { case 0: clock_enable(CCGR_USDHC1, 0); clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); clock_enable(CCGR_USDHC1, 1); return; case 1: clock_enable(CCGR_USDHC2, 0); clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); clock_enable(CCGR_USDHC2, 1); return; default: printf("Invalid usdhc index\n"); return; } } int set_clk_qspi(void) { /* * set qspi root * sys pll1 100M */ clock_enable(CCGR_QSPI, 0); clock_set_target_val(QSPI_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(7)); clock_enable(CCGR_QSPI, 1); return 0; } #ifdef CONFIG_FEC_MXC int set_clk_enet(enum enet_freq type) { u32 target; u32 enet1_ref; switch (type) { case ENET_125MHZ: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK; break; case ENET_50MHZ: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK; break; case ENET_25MHZ: enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK; break; default: return -EINVAL; } /* disable the clock first */ clock_enable(CCGR_ENET1, 0); clock_enable(CCGR_SIM_ENET, 0); /* set enet axi clock 266Mhz */ target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(ENET_AXI_CLK_ROOT, target); target = CLK_ROOT_ON | enet1_ref | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1); clock_set_target_val(ENET_REF_CLK_ROOT, target); target = CLK_ROOT_ON | ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) | CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4); clock_set_target_val(ENET_TIMER_CLK_ROOT, target); /* enable clock */ clock_enable(CCGR_SIM_ENET, 1); clock_enable(CCGR_ENET1, 1); return 0; } #endif u32 imx_get_fecclk(void) { return get_root_clk(ENET_AXI_CLK_ROOT); } static struct dram_bypass_clk_setting imx8mq_dram_bypass_tbl[] = { DRAM_BYPASS_ROOT_CONFIG(MHZ(100), 2, CLK_ROOT_PRE_DIV1, 2, CLK_ROOT_PRE_DIV2), DRAM_BYPASS_ROOT_CONFIG(MHZ(250), 3, CLK_ROOT_PRE_DIV2, 2, CLK_ROOT_PRE_DIV2), DRAM_BYPASS_ROOT_CONFIG(MHZ(400), 1, CLK_ROOT_PRE_DIV2, 3, CLK_ROOT_PRE_DIV2), }; void dram_enable_bypass(ulong clk_val) { int i; struct dram_bypass_clk_setting *config; for (i = 0; i < ARRAY_SIZE(imx8mq_dram_bypass_tbl); i++) { if (clk_val == imx8mq_dram_bypass_tbl[i].clk) break; } if (i == ARRAY_SIZE(imx8mq_dram_bypass_tbl)) { printf("No matched freq table %lu\n", clk_val); return; } config = &imx8mq_dram_bypass_tbl[i]; clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(config->alt_root_sel) | CLK_ROOT_PRE_DIV(config->alt_pre_div)); clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(config->apb_root_sel) | CLK_ROOT_PRE_DIV(config->apb_pre_div)); clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); } void dram_disable_bypass(void) { clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(4) | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV5)); } #ifdef CONFIG_SPL_BUILD void dram_pll_init(ulong pll_val) { u32 val; void __iomem *pll_control_reg = &ana_pll->dram_pll_cfg0; void __iomem *pll_cfg_reg2 = &ana_pll->dram_pll_cfg2; /* Bypass */ setbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK); setbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK); switch (pll_val) { case MHZ(800): val = readl(pll_cfg_reg2); val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK | SSCG_PLL_FEEDBACK_DIV_F2_MASK | SSCG_PLL_FEEDBACK_DIV_F1_MASK | SSCG_PLL_REF_DIVR2_MASK); val |= SSCG_PLL_OUTPUT_DIV_VAL(0); val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11); val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39); val |= SSCG_PLL_REF_DIVR2_VAL(29); writel(val, pll_cfg_reg2); break; case MHZ(600): val = readl(pll_cfg_reg2); val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK | SSCG_PLL_FEEDBACK_DIV_F2_MASK | SSCG_PLL_FEEDBACK_DIV_F1_MASK | SSCG_PLL_REF_DIVR2_MASK); val |= SSCG_PLL_OUTPUT_DIV_VAL(1); val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(17); val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39); val |= SSCG_PLL_REF_DIVR2_VAL(29); writel(val, pll_cfg_reg2); break; case MHZ(400): val = readl(pll_cfg_reg2); val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK | SSCG_PLL_FEEDBACK_DIV_F2_MASK | SSCG_PLL_FEEDBACK_DIV_F1_MASK | SSCG_PLL_REF_DIVR2_MASK); val |= SSCG_PLL_OUTPUT_DIV_VAL(1); val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11); val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39); val |= SSCG_PLL_REF_DIVR2_VAL(29); writel(val, pll_cfg_reg2); break; case MHZ(167): val = readl(pll_cfg_reg2); val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK | SSCG_PLL_FEEDBACK_DIV_F2_MASK | SSCG_PLL_FEEDBACK_DIV_F1_MASK | SSCG_PLL_REF_DIVR2_MASK); val |= SSCG_PLL_OUTPUT_DIV_VAL(3); val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(8); val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(45); val |= SSCG_PLL_REF_DIVR2_VAL(30); writel(val, pll_cfg_reg2); break; default: break; } /* Clear power down bit */ clrbits_le32(pll_control_reg, SSCG_PLL_PD_MASK); /* Eanble ARM_PLL/SYS_PLL */ setbits_le32(pll_control_reg, SSCG_PLL_DRAM_PLL_CLKE_MASK); /* Clear bypass */ clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK); __udelay(100); clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK); /* Wait lock */ while (!(readl(pll_control_reg) & SSCG_PLL_LOCK_MASK)) ; } static int frac_pll_init(u32 pll, enum frac_pll_out_val val) { void __iomem *pll_cfg0, __iomem *pll_cfg1; u32 val_cfg0, val_cfg1, divq; int ret; switch (pll) { case ANATOP_ARM_PLL: pll_cfg0 = &ana_pll->arm_pll_cfg0; pll_cfg1 = &ana_pll->arm_pll_cfg1; if (val == FRAC_PLL_OUT_1000M) { val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(49); divq = 0; } else { val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(79); divq = 1; } val_cfg0 = FRAC_PLL_CLKE_MASK | FRAC_PLL_REFCLK_SEL_OSC_25M | FRAC_PLL_LOCK_SEL_MASK | FRAC_PLL_NEWDIV_VAL_MASK | FRAC_PLL_REFCLK_DIV_VAL(4) | FRAC_PLL_OUTPUT_DIV_VAL(divq); break; default: return -EINVAL; } /* bypass the clock */ setbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK); /* Set the value */ writel(val_cfg1, pll_cfg1); writel(val_cfg0 | FRAC_PLL_BYPASS_MASK, pll_cfg0); val_cfg0 = readl(pll_cfg0); /* unbypass the clock */ clrbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK); ret = readl_poll_timeout(pll_cfg0, val_cfg0, val_cfg0 & FRAC_PLL_LOCK_MASK, 1); if (ret) printf("%s timeout\n", __func__); clrbits_le32(pll_cfg0, FRAC_PLL_NEWDIV_VAL_MASK); return 0; } int clock_init(void) { u32 grade; clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(0)); /* * 8MQ only supports two grades: consumer and industrial. * We set ARM clock to 1Ghz for consumer, 800Mhz for industrial */ grade = get_cpu_temp_grade(NULL, NULL); if (!grade) frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1000M); else frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_800M); /* Bypass CCM A53 ROOT, Switch to ARM PLL -> MUX-> CPU */ clock_set_target_val(CORE_SEL_CFG, CLK_ROOT_SOURCE_SEL(1)); /* * According to ANAMIX SPEC * sys pll1 fixed at 800MHz * sys pll2 fixed at 1GHz * Here we only enable the outputs. */ setbits_le32(&ana_pll->sys_pll1_cfg0, SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK); setbits_le32(&ana_pll->sys_pll2_cfg0, SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK); clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); init_wdog_clk(); clock_enable(CCGR_TSENSOR, 1); clock_enable(CCGR_OCOTP, 1); /* config GIC ROOT to sys_pll2_200m */ clock_enable(CCGR_GIC, 0); clock_set_target_val(GIC_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1)); clock_enable(CCGR_GIC, 1); return 0; } #endif /* * Dump some clockes. */ #ifndef CONFIG_SPL_BUILD static int do_imx8m_showclocks(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[]) { u32 freq; freq = decode_frac_pll(ARM_PLL_CLK); printf("ARM_PLL %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(DRAM_PLL1_CLK); printf("DRAM_PLL %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL1_800M_CLK); printf("SYS_PLL1_800 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL1_400M_CLK); printf("SYS_PLL1_400 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL1_266M_CLK); printf("SYS_PLL1_266 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL1_200M_CLK); printf("SYS_PLL1_200 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL1_160M_CLK); printf("SYS_PLL1_160 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL1_133M_CLK); printf("SYS_PLL1_133 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL1_100M_CLK); printf("SYS_PLL1_100 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL1_80M_CLK); printf("SYS_PLL1_80 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL1_40M_CLK); printf("SYS_PLL1_40 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL2_1000M_CLK); printf("SYS_PLL2_1000 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL2_500M_CLK); printf("SYS_PLL2_500 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL2_333M_CLK); printf("SYS_PLL2_333 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL2_250M_CLK); printf("SYS_PLL2_250 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL2_200M_CLK); printf("SYS_PLL2_200 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL2_166M_CLK); printf("SYS_PLL2_166 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL2_125M_CLK); printf("SYS_PLL2_125 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL2_100M_CLK); printf("SYS_PLL2_100 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL2_50M_CLK); printf("SYS_PLL2_50 %8d MHz\n", freq / 1000000); freq = decode_sscg_pll(SYSTEM_PLL3_CLK); printf("SYS_PLL3 %8d MHz\n", freq / 1000000); freq = mxc_get_clock(UART1_CLK_ROOT); printf("UART1 %8d MHz\n", freq / 1000000); freq = mxc_get_clock(USDHC1_CLK_ROOT); printf("USDHC1 %8d MHz\n", freq / 1000000); freq = mxc_get_clock(QSPI_CLK_ROOT); printf("QSPI %8d MHz\n", freq / 1000000); return 0; } U_BOOT_CMD( clocks, CONFIG_SYS_MAXARGS, 1, do_imx8m_showclocks, "display clocks", "" ); #endif