// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2015 Google, Inc * Copyright 2014 Rockchip Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_CR_LOOP 5 #define MAX_EQ_LOOP 5 #define DP_LINK_STATUS_SIZE 6 static const char * const voltage_names[] = { "0.4V", "0.6V", "0.8V", "1.2V" }; static const char * const pre_emph_names[] = { "0dB", "3.5dB", "6dB", "9.5dB" }; #define DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200 #define DP_PRE_EMPHASIS_MAX DP_TRAIN_PRE_EMPHASIS_9_5 struct rk_edp_priv { struct rk3288_edp *regs; struct rk3288_grf *grf; struct udevice *panel; struct link_train link_train; u8 train_set[4]; }; static void rk_edp_init_refclk(struct rk3288_edp *regs) { writel(SEL_24M, ®s->analog_ctl_2); writel(REF_CLK_24M, ®s->pll_reg_1); writel(LDO_OUTPUT_V_SEL_145 | KVCO_DEFALUT | CHG_PUMP_CUR_SEL_5US | V2L_CUR_SEL_1MA, ®s->pll_reg_2); writel(LOCK_DET_CNT_SEL_256 | LOOP_FILTER_RESET | PALL_SSC_RESET | LOCK_DET_BYPASS | PLL_LOCK_DET_MODE | PLL_LOCK_DET_FORCE, ®s->pll_reg_3); writel(REGULATOR_V_SEL_950MV | STANDBY_CUR_SEL | CHG_PUMP_INOUT_CTRL_1200MV | CHG_PUMP_INPUT_CTRL_OP, ®s->pll_reg_5); writel(SSC_OFFSET | SSC_MODE | SSC_DEPTH, ®s->ssc_reg); writel(TX_SWING_PRE_EMP_MODE | PRE_DRIVER_PW_CTRL1 | LP_MODE_CLK_REGULATOR | RESISTOR_MSB_CTRL | RESISTOR_CTRL, ®s->tx_common); writel(DP_AUX_COMMON_MODE | DP_AUX_EN | AUX_TERM_50OHM, ®s->dp_aux); writel(DP_BG_OUT_SEL | DP_DB_CUR_CTRL | DP_BG_SEL | DP_RESISTOR_TUNE_BG, ®s->dp_bias); writel(CH1_CH3_SWING_EMP_CTRL | CH0_CH2_SWING_EMP_CTRL, ®s->dp_reserv2); } static void rk_edp_init_interrupt(struct rk3288_edp *regs) { /* Set interrupt pin assertion polarity as high */ writel(INT_POL, ®s->int_ctl); /* Clear pending registers */ writel(0xff, ®s->common_int_sta_1); writel(0x4f, ®s->common_int_sta_2); writel(0xff, ®s->common_int_sta_3); writel(0x27, ®s->common_int_sta_4); writel(0x7f, ®s->dp_int_sta); /* 0:mask,1: unmask */ writel(0x00, ®s->common_int_mask_1); writel(0x00, ®s->common_int_mask_2); writel(0x00, ®s->common_int_mask_3); writel(0x00, ®s->common_int_mask_4); writel(0x00, ®s->int_sta_mask); } static void rk_edp_enable_sw_function(struct rk3288_edp *regs) { clrbits_le32(®s->func_en_1, SW_FUNC_EN_N); } static bool rk_edp_get_pll_locked(struct rk3288_edp *regs) { u32 val; val = readl(®s->dp_debug_ctl); return val & PLL_LOCK; } static int rk_edp_init_analog_func(struct rk3288_edp *regs) { ulong start; writel(0x00, ®s->dp_pd); writel(PLL_LOCK_CHG, ®s->common_int_sta_1); clrbits_le32(®s->dp_debug_ctl, F_PLL_LOCK | PLL_LOCK_CTRL); start = get_timer(0); while (!rk_edp_get_pll_locked(regs)) { if (get_timer(start) > PLL_LOCK_TIMEOUT) { printf("%s: PLL is not locked\n", __func__); return -ETIMEDOUT; } } /* Enable Serdes FIFO function and Link symbol clock domain module */ clrbits_le32(®s->func_en_2, SERDES_FIFO_FUNC_EN_N | LS_CLK_DOMAIN_FUNC_EN_N | AUX_FUNC_EN_N | SSC_FUNC_EN_N); return 0; } static void rk_edp_init_aux(struct rk3288_edp *regs) { /* Clear inerrupts related to AUX channel */ writel(AUX_FUNC_EN_N, ®s->dp_int_sta); /* Disable AUX channel module */ setbits_le32(®s->func_en_2, AUX_FUNC_EN_N); /* Receive AUX Channel DEFER commands equal to DEFFER_COUNT*64 */ writel(DEFER_CTRL_EN | DEFER_COUNT(1), ®s->aux_ch_defer_dtl); /* Enable AUX channel module */ clrbits_le32(®s->func_en_2, AUX_FUNC_EN_N); } static int rk_edp_aux_enable(struct rk3288_edp *regs) { ulong start; setbits_le32(®s->aux_ch_ctl_2, AUX_EN); start = get_timer(0); do { if (!(readl(®s->aux_ch_ctl_2) & AUX_EN)) return 0; } while (get_timer(start) < 20); return -ETIMEDOUT; } static int rk_edp_is_aux_reply(struct rk3288_edp *regs) { ulong start; start = get_timer(0); while (!(readl(®s->dp_int_sta) & RPLY_RECEIV)) { if (get_timer(start) > 10) return -ETIMEDOUT; } writel(RPLY_RECEIV, ®s->dp_int_sta); return 0; } static int rk_edp_start_aux_transaction(struct rk3288_edp *regs) { int val, ret; /* Enable AUX CH operation */ ret = rk_edp_aux_enable(regs); if (ret) { debug("AUX CH enable timeout!\n"); return ret; } /* Is AUX CH command reply received? */ if (rk_edp_is_aux_reply(regs)) { debug("AUX CH command reply failed!\n"); return ret; } /* Clear interrupt source for AUX CH access error */ val = readl(®s->dp_int_sta); if (val & AUX_ERR) { writel(AUX_ERR, ®s->dp_int_sta); return -EIO; } /* Check AUX CH error access status */ val = readl(®s->dp_int_sta); if (val & AUX_STATUS_MASK) { debug("AUX CH error happens: %d\n\n", val & AUX_STATUS_MASK); return -EIO; } return 0; } static int rk_edp_dpcd_transfer(struct rk3288_edp *regs, unsigned int val_addr, u8 *in_data, unsigned int length, enum dpcd_request request) { int val; int i, try_times; u8 *data; int ret = 0; u32 len = 0; while (length) { len = min(length, 16U); for (try_times = 0; try_times < 10; try_times++) { data = in_data; /* Clear AUX CH data buffer */ writel(BUF_CLR, ®s->buf_data_ctl); /* Select DPCD device address */ writel(AUX_ADDR_7_0(val_addr), ®s->aux_addr_7_0); writel(AUX_ADDR_15_8(val_addr), ®s->aux_addr_15_8); writel(AUX_ADDR_19_16(val_addr), ®s->aux_addr_19_16); /* * Set DisplayPort transaction and read 1 byte * If bit 3 is 1, DisplayPort transaction. * If Bit 3 is 0, I2C transaction. */ if (request == DPCD_WRITE) { val = AUX_LENGTH(len) | AUX_TX_COMM_DP_TRANSACTION | AUX_TX_COMM_WRITE; for (i = 0; i < len; i++) writel(*data++, ®s->buf_data[i]); } else val = AUX_LENGTH(len) | AUX_TX_COMM_DP_TRANSACTION | AUX_TX_COMM_READ; writel(val, ®s->aux_ch_ctl_1); /* Start AUX transaction */ ret = rk_edp_start_aux_transaction(regs); if (ret == 0) break; else printf("read dpcd Aux Transaction fail!\n"); } if (ret) return ret; if (request == DPCD_READ) { for (i = 0; i < len; i++) *data++ = (u8)readl(®s->buf_data[i]); } length -= len; val_addr += len; in_data += len; } return 0; } static int rk_edp_dpcd_read(struct rk3288_edp *regs, u32 addr, u8 *values, size_t size) { return rk_edp_dpcd_transfer(regs, addr, values, size, DPCD_READ); } static int rk_edp_dpcd_write(struct rk3288_edp *regs, u32 addr, u8 *values, size_t size) { return rk_edp_dpcd_transfer(regs, addr, values, size, DPCD_WRITE); } static int rk_edp_link_power_up(struct rk_edp_priv *edp) { u8 value; int ret; /* DP_SET_POWER register is only available on DPCD v1.1 and later */ if (edp->link_train.revision < 0x11) return 0; ret = rk_edp_dpcd_read(edp->regs, DPCD_LINK_POWER_STATE, &value, 1); if (ret) return ret; value &= ~DP_SET_POWER_MASK; value |= DP_SET_POWER_D0; ret = rk_edp_dpcd_write(edp->regs, DPCD_LINK_POWER_STATE, &value, 1); if (ret) return ret; /* * According to the DP 1.1 specification, a "Sink Device must exit the * power saving state within 1 ms" (Section 2.5.3.1, Table 5-52, "Sink * Control Field" (register 0x600). */ mdelay(1); return 0; } static int rk_edp_link_configure(struct rk_edp_priv *edp) { u8 values[2]; values[0] = edp->link_train.link_rate; values[1] = edp->link_train.lane_count; return rk_edp_dpcd_write(edp->regs, DPCD_LINK_BW_SET, values, sizeof(values)); } static void rk_edp_set_link_training(struct rk_edp_priv *edp, const u8 *training_values) { int i; for (i = 0; i < edp->link_train.lane_count; i++) writel(training_values[i], &edp->regs->ln_link_trn_ctl[i]); } static u8 edp_link_status(const u8 *link_status, int r) { return link_status[r - DPCD_LANE0_1_STATUS]; } static int rk_edp_dpcd_read_link_status(struct rk_edp_priv *edp, u8 *link_status) { return rk_edp_dpcd_read(edp->regs, DPCD_LANE0_1_STATUS, link_status, DP_LINK_STATUS_SIZE); } static u8 edp_get_lane_status(const u8 *link_status, int lane) { int i = DPCD_LANE0_1_STATUS + (lane >> 1); int s = (lane & 1) * 4; u8 l = edp_link_status(link_status, i); return (l >> s) & 0xf; } static int rk_edp_clock_recovery(const u8 *link_status, int lane_count) { int lane; u8 lane_status; for (lane = 0; lane < lane_count; lane++) { lane_status = edp_get_lane_status(link_status, lane); if ((lane_status & DP_LANE_CR_DONE) == 0) return -EIO; } return 0; } static int rk_edp_channel_eq(const u8 *link_status, int lane_count) { u8 lane_align; u8 lane_status; int lane; lane_align = edp_link_status(link_status, DPCD_LANE_ALIGN_STATUS_UPDATED); if (!(lane_align & DP_INTERLANE_ALIGN_DONE)) return -EIO; for (lane = 0; lane < lane_count; lane++) { lane_status = edp_get_lane_status(link_status, lane); if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS) return -EIO; } return 0; } static uint rk_edp_get_adjust_request_voltage(const u8 *link_status, int lane) { int i = DPCD_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); u8 l = edp_link_status(link_status, i); return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; } static uint rk_edp_get_adjust_request_pre_emphasis(const u8 *link_status, int lane) { int i = DPCD_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); u8 l = edp_link_status(link_status, i); return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; } static void edp_get_adjust_train(const u8 *link_status, int lane_count, u8 train_set[]) { uint v = 0; uint p = 0; int lane; for (lane = 0; lane < lane_count; lane++) { uint this_v, this_p; this_v = rk_edp_get_adjust_request_voltage(link_status, lane); this_p = rk_edp_get_adjust_request_pre_emphasis(link_status, lane); debug("requested signal parameters: lane %d voltage %s pre_emph %s\n", lane, voltage_names[this_v >> DP_TRAIN_VOLTAGE_SWING_SHIFT], pre_emph_names[this_p >> DP_TRAIN_PRE_EMPHASIS_SHIFT]); if (this_v > v) v = this_v; if (this_p > p) p = this_p; } if (v >= DP_VOLTAGE_MAX) v |= DP_TRAIN_MAX_SWING_REACHED; if (p >= DP_PRE_EMPHASIS_MAX) p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; debug("using signal parameters: voltage %s pre_emph %s\n", voltage_names[(v & DP_TRAIN_VOLTAGE_SWING_MASK) >> DP_TRAIN_VOLTAGE_SWING_SHIFT], pre_emph_names[(p & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT]); for (lane = 0; lane < 4; lane++) train_set[lane] = v | p; } static int rk_edp_link_train_cr(struct rk_edp_priv *edp) { struct rk3288_edp *regs = edp->regs; int clock_recovery; uint voltage, tries = 0; u8 status[DP_LINK_STATUS_SIZE]; int i, ret; u8 value; value = DP_TRAINING_PATTERN_1; writel(value, ®s->dp_training_ptn_set); ret = rk_edp_dpcd_write(regs, DPCD_TRAINING_PATTERN_SET, &value, 1); if (ret) return ret; memset(edp->train_set, '\0', sizeof(edp->train_set)); /* clock recovery loop */ clock_recovery = 0; tries = 0; voltage = 0xff; while (1) { rk_edp_set_link_training(edp, edp->train_set); ret = rk_edp_dpcd_write(regs, DPCD_TRAINING_LANE0_SET, edp->train_set, edp->link_train.lane_count); if (ret) return ret; mdelay(1); ret = rk_edp_dpcd_read_link_status(edp, status); if (ret) { printf("displayport link status failed, ret=%d\n", ret); break; } clock_recovery = rk_edp_clock_recovery(status, edp->link_train.lane_count); if (!clock_recovery) break; for (i = 0; i < edp->link_train.lane_count; i++) { if ((edp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) break; } if (i == edp->link_train.lane_count) { printf("clock recovery reached max voltage\n"); break; } if ((edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { if (++tries == MAX_CR_LOOP) { printf("clock recovery tried 5 times\n"); break; } } else { tries = 0; } voltage = edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; /* Compute new train_set as requested by sink */ edp_get_adjust_train(status, edp->link_train.lane_count, edp->train_set); } if (clock_recovery) { printf("clock recovery failed: %d\n", clock_recovery); return clock_recovery; } else { debug("clock recovery at voltage %d pre-emphasis %d\n", edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK, (edp->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); return 0; } } static int rk_edp_link_train_ce(struct rk_edp_priv *edp) { struct rk3288_edp *regs = edp->regs; int channel_eq; u8 value; int tries; u8 status[DP_LINK_STATUS_SIZE]; int ret; value = DP_TRAINING_PATTERN_2; writel(value, ®s->dp_training_ptn_set); ret = rk_edp_dpcd_write(regs, DPCD_TRAINING_PATTERN_SET, &value, 1); if (ret) return ret; /* channel equalization loop */ channel_eq = 0; for (tries = 0; tries < 5; tries++) { rk_edp_set_link_training(edp, edp->train_set); udelay(400); if (rk_edp_dpcd_read_link_status(edp, status) < 0) { printf("displayport link status failed\n"); return -1; } channel_eq = rk_edp_channel_eq(status, edp->link_train.lane_count); if (!channel_eq) break; edp_get_adjust_train(status, edp->link_train.lane_count, edp->train_set); } if (channel_eq) { printf("channel eq failed, ret=%d\n", channel_eq); return channel_eq; } debug("channel eq at voltage %d pre-emphasis %d\n", edp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK, (edp->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); return 0; } static int rk_edp_init_training(struct rk_edp_priv *edp) { u8 values[3]; int ret; ret = rk_edp_dpcd_read(edp->regs, DPCD_DPCD_REV, values, sizeof(values)); if (ret < 0) return ret; edp->link_train.revision = values[0]; edp->link_train.link_rate = values[1]; edp->link_train.lane_count = values[2] & DP_MAX_LANE_COUNT_MASK; debug("max link rate:%d.%dGps max number of lanes:%d\n", edp->link_train.link_rate * 27 / 100, edp->link_train.link_rate * 27 % 100, edp->link_train.lane_count); if ((edp->link_train.link_rate != LINK_RATE_1_62GBPS) && (edp->link_train.link_rate != LINK_RATE_2_70GBPS)) { debug("Rx Max Link Rate is abnormal :%x\n", edp->link_train.link_rate); return -EPERM; } if (edp->link_train.lane_count == 0) { debug("Rx Max Lane count is abnormal :%x\n", edp->link_train.lane_count); return -EPERM; } ret = rk_edp_link_power_up(edp); if (ret) return ret; return rk_edp_link_configure(edp); } static int rk_edp_hw_link_training(struct rk_edp_priv *edp) { ulong start; u32 val; int ret; /* Set link rate and count as you want to establish */ writel(edp->link_train.link_rate, &edp->regs->link_bw_set); writel(edp->link_train.lane_count, &edp->regs->lane_count_set); ret = rk_edp_link_train_cr(edp); if (ret) return ret; ret = rk_edp_link_train_ce(edp); if (ret) return ret; writel(HW_LT_EN, &edp->regs->dp_hw_link_training); start = get_timer(0); do { val = readl(&edp->regs->dp_hw_link_training); if (!(val & HW_LT_EN)) break; } while (get_timer(start) < 10); if (val & HW_LT_ERR_CODE_MASK) { printf("edp hw link training error: %d\n", val >> HW_LT_ERR_CODE_SHIFT); return -EIO; } return 0; } static int rk_edp_select_i2c_device(struct rk3288_edp *regs, unsigned int device_addr, unsigned int val_addr) { int ret; /* Set EDID device address */ writel(device_addr, ®s->aux_addr_7_0); writel(0x0, ®s->aux_addr_15_8); writel(0x0, ®s->aux_addr_19_16); /* Set offset from base address of EDID device */ writel(val_addr, ®s->buf_data[0]); /* * Set I2C transaction and write address * If bit 3 is 1, DisplayPort transaction. * If Bit 3 is 0, I2C transaction. */ writel(AUX_TX_COMM_I2C_TRANSACTION | AUX_TX_COMM_MOT | AUX_TX_COMM_WRITE, ®s->aux_ch_ctl_1); /* Start AUX transaction */ ret = rk_edp_start_aux_transaction(regs); if (ret != 0) { debug("select_i2c_device Aux Transaction fail!\n"); return ret; } return 0; } static int rk_edp_i2c_read(struct rk3288_edp *regs, unsigned int device_addr, unsigned int val_addr, unsigned int count, u8 edid[]) { u32 val; unsigned int i, j; unsigned int cur_data_idx; unsigned int defer = 0; int ret = 0; for (i = 0; i < count; i += 16) { for (j = 0; j < 10; j++) { /* try 10 times */ /* Clear AUX CH data buffer */ writel(BUF_CLR, ®s->buf_data_ctl); /* Set normal AUX CH command */ clrbits_le32(®s->aux_ch_ctl_2, ADDR_ONLY); /* * If Rx sends defer, Tx sends only reads * request without sending addres */ if (!defer) { ret = rk_edp_select_i2c_device(regs, device_addr, val_addr + i); } else { defer = 0; } /* * Set I2C transaction and write data * If bit 3 is 1, DisplayPort transaction. * If Bit 3 is 0, I2C transaction. */ writel(AUX_LENGTH(16) | AUX_TX_COMM_I2C_TRANSACTION | AUX_TX_COMM_READ, ®s->aux_ch_ctl_1); /* Start AUX transaction */ ret = rk_edp_start_aux_transaction(regs); if (ret == 0) { break; } else { debug("Aux Transaction fail!\n"); continue; } /* Check if Rx sends defer */ val = readl(®s->aux_rx_comm); if (val == AUX_RX_COMM_AUX_DEFER || val == AUX_RX_COMM_I2C_DEFER) { debug("Defer: %d\n\n", val); defer = 1; } } if (ret) return ret; for (cur_data_idx = 0; cur_data_idx < 16; cur_data_idx++) { val = readl(®s->buf_data[cur_data_idx]); edid[i + cur_data_idx] = (u8)val; } } return 0; } static int rk_edp_set_link_train(struct rk_edp_priv *edp) { int ret; ret = rk_edp_init_training(edp); if (ret) { printf("DP LT init failed!\n"); return ret; } ret = rk_edp_hw_link_training(edp); if (ret) return ret; return 0; } static void rk_edp_init_video(struct rk3288_edp *regs) { writel(VSYNC_DET | VID_FORMAT_CHG | VID_CLK_CHG, ®s->common_int_sta_1); writel(CHA_CRI(4) | CHA_CTRL, ®s->sys_ctl_2); writel(VID_HRES_TH(2) | VID_VRES_TH(0), ®s->video_ctl_8); } static void rk_edp_config_video_slave_mode(struct rk3288_edp *regs) { clrbits_le32(®s->func_en_1, VID_FIFO_FUNC_EN_N | VID_CAP_FUNC_EN_N); } static void rk_edp_set_video_cr_mn(struct rk3288_edp *regs, enum clock_recovery_m_value_type type, u32 m_value, u32 n_value) { if (type == REGISTER_M) { setbits_le32(®s->sys_ctl_4, FIX_M_VID); writel(m_value & 0xff, ®s->m_vid_0); writel((m_value >> 8) & 0xff, ®s->m_vid_1); writel((m_value >> 16) & 0xff, ®s->m_vid_2); writel(n_value & 0xf, ®s->n_vid_0); writel((n_value >> 8) & 0xff, ®s->n_vid_1); writel((n_value >> 16) & 0xff, ®s->n_vid_2); } else { clrbits_le32(®s->sys_ctl_4, FIX_M_VID); writel(0x00, ®s->n_vid_0); writel(0x80, ®s->n_vid_1); writel(0x00, ®s->n_vid_2); } } static int rk_edp_is_video_stream_clock_on(struct rk3288_edp *regs) { ulong start; u32 val; start = get_timer(0); do { val = readl(®s->sys_ctl_1); /* must write value to update DET_STA bit status */ writel(val, ®s->sys_ctl_1); val = readl(®s->sys_ctl_1); if (!(val & DET_STA)) continue; val = readl(®s->sys_ctl_2); /* must write value to update CHA_STA bit status */ writel(val, ®s->sys_ctl_2); val = readl(®s->sys_ctl_2); if (!(val & CHA_STA)) return 0; } while (get_timer(start) < 100); return -ETIMEDOUT; } static int rk_edp_is_video_stream_on(struct rk_edp_priv *edp) { ulong start; u32 val; start = get_timer(0); do { val = readl(&edp->regs->sys_ctl_3); /* must write value to update STRM_VALID bit status */ writel(val, &edp->regs->sys_ctl_3); val = readl(&edp->regs->sys_ctl_3); if (!(val & STRM_VALID)) return 0; } while (get_timer(start) < 100); return -ETIMEDOUT; } static int rk_edp_config_video(struct rk_edp_priv *edp) { int ret; rk_edp_config_video_slave_mode(edp->regs); if (!rk_edp_get_pll_locked(edp->regs)) { debug("PLL is not locked yet.\n"); return -ETIMEDOUT; } ret = rk_edp_is_video_stream_clock_on(edp->regs); if (ret) return ret; /* Set to use the register calculated M/N video */ rk_edp_set_video_cr_mn(edp->regs, CALCULATED_M, 0, 0); /* For video bist, Video timing must be generated by register */ clrbits_le32(&edp->regs->video_ctl_10, F_SEL); /* Disable video mute */ clrbits_le32(&edp->regs->video_ctl_1, VIDEO_MUTE); /* Enable video at next frame */ setbits_le32(&edp->regs->video_ctl_1, VIDEO_EN); return rk_edp_is_video_stream_on(edp); } static void rockchip_edp_force_hpd(struct rk_edp_priv *edp) { setbits_le32(&edp->regs->sys_ctl_3, F_HPD | HPD_CTRL); } static int rockchip_edp_get_plug_in_status(struct rk_edp_priv *edp) { u32 val; val = readl(&edp->regs->sys_ctl_3); if (val & HPD_STATUS) return 1; return 0; } /* * support edp HPD function * some hardware version do not support edp hdp, * we use 200ms to try to get the hpd single now, * if we can not get edp hpd single, it will delay 200ms, * also meet the edp power timing request, to compatible * all of the hardware version */ static void rockchip_edp_wait_hpd(struct rk_edp_priv *edp) { ulong start; start = get_timer(0); do { if (rockchip_edp_get_plug_in_status(edp)) return; udelay(100); } while (get_timer(start) < 200); debug("do not get hpd single, force hpd\n"); rockchip_edp_force_hpd(edp); } static int rk_edp_enable(struct udevice *dev, int panel_bpp, const struct display_timing *edid) { struct rk_edp_priv *priv = dev_get_priv(dev); int ret = 0; ret = rk_edp_set_link_train(priv); if (ret) { printf("link train failed!\n"); return ret; } rk_edp_init_video(priv->regs); ret = rk_edp_config_video(priv); if (ret) { printf("config video failed\n"); return ret; } ret = panel_enable_backlight(priv->panel); if (ret) { debug("%s: backlight error: %d\n", __func__, ret); return ret; } return 0; } static int rk_edp_read_edid(struct udevice *dev, u8 *buf, int buf_size) { struct rk_edp_priv *priv = dev_get_priv(dev); u32 edid_size = EDID_LENGTH; int ret; int i; for (i = 0; i < 3; i++) { ret = rk_edp_i2c_read(priv->regs, EDID_ADDR, EDID_HEADER, EDID_LENGTH, &buf[EDID_HEADER]); if (ret) { debug("EDID read failed\n"); continue; } /* * check if the EDID has an extension flag, and read additional * EDID data if needed */ if (buf[EDID_EXTENSION_FLAG]) { edid_size += EDID_LENGTH; ret = rk_edp_i2c_read(priv->regs, EDID_ADDR, EDID_LENGTH, EDID_LENGTH, &buf[EDID_LENGTH]); if (ret) { debug("EDID Read failed!\n"); continue; } } goto done; } /* After 3 attempts, give up */ return ret; done: return edid_size; } static int rk_edp_ofdata_to_platdata(struct udevice *dev) { struct rk_edp_priv *priv = dev_get_priv(dev); priv->regs = dev_read_addr_ptr(dev); priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF); return 0; } static int rk_edp_remove(struct udevice *dev) { struct rk_edp_priv *priv = dev_get_priv(dev); struct rk3288_edp *regs = priv->regs; setbits_le32(®s->video_ctl_1, VIDEO_MUTE); clrbits_le32(®s->video_ctl_1, VIDEO_EN); clrbits_le32(®s->sys_ctl_3, F_HPD | HPD_CTRL); setbits_le32(®s->func_en_1, SW_FUNC_EN_N); return 0; } static int rk_edp_probe(struct udevice *dev) { struct display_plat *uc_plat = dev_get_uclass_platdata(dev); struct rk_edp_priv *priv = dev_get_priv(dev); struct rk3288_edp *regs = priv->regs; struct clk clk; int ret; ret = uclass_get_device_by_phandle(UCLASS_PANEL, dev, "rockchip,panel", &priv->panel); if (ret) { debug("%s: Cannot find panel for '%s' (ret=%d)\n", __func__, dev->name, ret); return ret; } int vop_id = uc_plat->source_id; debug("%s, uc_plat=%p, vop_id=%u\n", __func__, uc_plat, vop_id); ret = clk_get_by_index(dev, 1, &clk); if (ret >= 0) { ret = clk_set_rate(&clk, 0); clk_free(&clk); } if (ret) { debug("%s: Failed to set EDP clock: ret=%d\n", __func__, ret); return ret; } ret = clk_get_by_index(uc_plat->src_dev, 0, &clk); if (ret >= 0) { ret = clk_set_rate(&clk, 192000000); clk_free(&clk); } if (ret < 0) { debug("%s: Failed to set clock in source device '%s': ret=%d\n", __func__, uc_plat->src_dev->name, ret); return ret; } /* grf_edp_ref_clk_sel: from internal 24MHz or 27MHz clock */ rk_setreg(&priv->grf->soc_con12, 1 << 4); /* select epd signal from vop0 or vop1 */ rk_setreg(&priv->grf->soc_con6, (vop_id == 1) ? (1 << 5) : (1 << 5)); rockchip_edp_wait_hpd(priv); rk_edp_init_refclk(regs); rk_edp_init_interrupt(regs); rk_edp_enable_sw_function(regs); ret = rk_edp_init_analog_func(regs); if (ret) return ret; rk_edp_init_aux(regs); return 0; } static const struct dm_display_ops dp_rockchip_ops = { .read_edid = rk_edp_read_edid, .enable = rk_edp_enable, }; static const struct udevice_id rockchip_dp_ids[] = { { .compatible = "rockchip,rk3288-edp" }, { } }; U_BOOT_DRIVER(dp_rockchip) = { .name = "edp_rockchip", .id = UCLASS_DISPLAY, .of_match = rockchip_dp_ids, .ops = &dp_rockchip_ops, .ofdata_to_platdata = rk_edp_ofdata_to_platdata, .probe = rk_edp_probe, .remove = rk_edp_remove, .priv_auto_alloc_size = sizeof(struct rk_edp_priv), };