// SPDX-License-Identifier: GPL-2.0+ /* * SEC Descriptor Construction Library * Basic job descriptor construction * * Copyright 2014 Freescale Semiconductor, Inc. * Copyright 2018 NXP * */ #include #include #include #include "desc_constr.h" #include "jobdesc.h" #include "rsa_caam.h" #include #if defined(CONFIG_MX6) || defined(CONFIG_MX7) || defined(CONFIG_MX7ULP) || \ defined(CONFIG_IMX8M) /*! * Secure memory run command * * @param sec_mem_cmd Secure memory command register * Return: cmd_status Secure memory command status register */ uint32_t secmem_set_cmd(uint32_t sec_mem_cmd) { uint32_t temp_reg; ccsr_sec_t *sec = (void *)CFG_SYS_FSL_SEC_ADDR; uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); uint32_t jr_id = 0; sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd); do { temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id)); } while (temp_reg & CMD_COMPLETE); return temp_reg; } /*! * CAAM page allocation: * Allocates a partition from secure memory, with the id * equal to partition_num. This will de-allocate the page * if it is already allocated. The partition will have * full access permissions. The permissions are set before, * running a job descriptor. A memory page of secure RAM * is allocated for the partition. * * @param page Number of the page to allocate. * @param partition Number of the partition to allocate. * Return: 0 on success, ERROR_IN_PAGE_ALLOC otherwise */ int caam_page_alloc(uint8_t page_num, uint8_t partition_num) { uint32_t temp_reg; ccsr_sec_t *sec = (void *)CFG_SYS_FSL_SEC_ADDR; uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); uint32_t jr_id = 0; /* * De-Allocate partition_num if already allocated to ARM core */ if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) { temp_reg = secmem_set_cmd(PARTITION(partition_num) | CMD_PART_DEALLOC); if (temp_reg & SMCSJR_AERR) { printf("Error: De-allocation status 0x%X\n", temp_reg); return ERROR_IN_PAGE_ALLOC; } } /* set the access rights to allow full access */ sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF); sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF); sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF); /* Now need to allocate partition_num of secure RAM. */ /* De-Allocate page_num by starting with a page inquiry command */ temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); /* if the page is owned, de-allocate it */ if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) { temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC); if (temp_reg & SMCSJR_AERR) { printf("Error: Allocation status 0x%X\n", temp_reg); return ERROR_IN_PAGE_ALLOC; } } /* Allocate page_num to partition_num */ temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num) | CMD_PAGE_ALLOC); if (temp_reg & SMCSJR_AERR) { printf("Error: Allocation status 0x%X\n", temp_reg); return ERROR_IN_PAGE_ALLOC; } /* page inquiry command to ensure that the page was allocated */ temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); /* if the page is not owned => problem */ if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) { printf("Allocation of page %u in partition %u failed 0x%X\n", page_num, partition_num, temp_reg); return ERROR_IN_PAGE_ALLOC; } return 0; } int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt, uint8_t *dek_blob, uint32_t in_sz) { ccsr_sec_t *sec = (void *)CFG_SYS_FSL_SEC_ADDR; uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); uint32_t jr_id = 0; uint32_t ret = 0; u32 aad_w1, aad_w2; /* output blob will have 32 bytes key blob in beginning and * 16 byte HMAC identifier at end of data blob */ uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE; /* Setting HDR for blob */ uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz, HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG}; /* initialize the blob array */ memset(dek_blob, 0, out_sz + 8); /* Copy the header into the DEK blob buffer */ memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr)); /* allocating secure memory */ ret = caam_page_alloc(PAGE_1, PARTITION_1); if (ret) return ret; /* Write DEK to secure memory */ memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz); unsigned long start = (unsigned long)SEC_MEM_PAGE1 & ~(ARCH_DMA_MINALIGN - 1); unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN); flush_dcache_range(start, end); /* Now configure the access rights of the partition */ sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1); sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0); sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM); /* construct aad for AES */ aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE; aad_w2 = 0x0; init_job_desc(desc, 0); append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC | (0x0c << LDST_OFFSET_SHIFT) | 0x08); append_u32(desc, aad_w1); append_u32(desc, aad_w2); append_cmd_ptr(desc, (caam_dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR); append_cmd_ptr(desc, (caam_dma_addr_t)(ulong)(dek_blob + 8), out_sz, CMD_SEQ_OUT_PTR); append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB | OP_PCLID_SECMEM); return ret; } #endif void inline_cnstr_jobdesc_hash(uint32_t *desc, const uint8_t *msg, uint32_t msgsz, uint8_t *digest, u32 alg_type, uint32_t alg_size, int sg_tbl) { /* SHA 256 , output is of length 32 words */ uint32_t storelen = alg_size; u32 options; caam_dma_addr_t dma_addr_in, dma_addr_out; dma_addr_in = virt_to_phys((void *)msg); dma_addr_out = virt_to_phys((void *)digest); init_job_desc(desc, 0); append_operation(desc, OP_TYPE_CLASS2_ALG | OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type); options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2; if (sg_tbl) options |= FIFOLDST_SGF; if (msgsz > 0xffff) { options |= FIFOLDST_EXT; append_fifo_load(desc, dma_addr_in, 0, options); append_cmd(desc, msgsz); } else { append_fifo_load(desc, dma_addr_in, msgsz, options); } append_store(desc, dma_addr_out, storelen, LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); } #ifndef CONFIG_SPL_BUILD void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr, uint8_t *plain_txt, uint8_t *enc_blob, uint32_t in_sz) { caam_dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out; uint32_t key_sz = KEY_IDNFR_SZ_BYTES; /* output blob will have 32 bytes key blob in beginning and * 16 byte HMAC identifier at end of data blob */ uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE; dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr); dma_addr_in = virt_to_phys((void *)plain_txt); dma_addr_out = virt_to_phys((void *)enc_blob); init_job_desc(desc, 0); append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2); append_seq_in_ptr(desc, dma_addr_in, in_sz, 0); append_seq_out_ptr(desc, dma_addr_out, out_sz, 0); append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB); } void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr, uint8_t *enc_blob, uint8_t *plain_txt, uint32_t out_sz) { caam_dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out; uint32_t key_sz = KEY_IDNFR_SZ_BYTES; uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE; dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr); dma_addr_in = virt_to_phys((void *)enc_blob); dma_addr_out = virt_to_phys((void *)plain_txt); init_job_desc(desc, 0); append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2); append_seq_in_ptr(desc, dma_addr_in, in_sz, 0); append_seq_out_ptr(desc, dma_addr_out, out_sz, 0); append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB); } #endif /* * Descriptor to instantiate RNG State Handle 0 in normal mode and * load the JDKEK, TDKEK and TDSK registers */ void inline_cnstr_jobdesc_rng_instantiation(u32 *desc, int handle, int do_sk) { u32 *jump_cmd; init_job_desc(desc, 0); /* INIT RNG in non-test mode */ append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | (handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INIT | OP_ALG_PR_ON); /* For SH0, Secure Keys must be generated as well */ if (!handle && do_sk) { /* wait for done */ jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1); set_jump_tgt_here(desc, jump_cmd); /* * load 1 to clear written reg: * resets the done interrupt and returns the RNG to idle. */ append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW); /* generate secure keys (non-test) */ append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | OP_ALG_RNG4_SK); } } /* Descriptor for deinstantiation of the RNG block. */ void inline_cnstr_jobdesc_rng_deinstantiation(u32 *desc, int handle) { init_job_desc(desc, 0); append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG | (handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INITFINAL); } void inline_cnstr_jobdesc_rng(u32 *desc, void *data_out, u32 size) { caam_dma_addr_t dma_data_out = virt_to_phys(data_out); init_job_desc(desc, 0); append_operation(desc, OP_ALG_ALGSEL_RNG | OP_TYPE_CLASS1_ALG | OP_ALG_PR_ON); append_fifo_store(desc, dma_data_out, size, FIFOST_TYPE_RNGSTORE); } /* Change key size to bytes form bits in calling function*/ void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc, struct pk_in_params *pkin, uint8_t *out, uint32_t out_siz) { caam_dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out; dma_addr_e = virt_to_phys((void *)pkin->e); dma_addr_a = virt_to_phys((void *)pkin->a); dma_addr_n = virt_to_phys((void *)pkin->n); dma_addr_out = virt_to_phys((void *)out); init_job_desc(desc, 0); append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1); append_fifo_load(desc, dma_addr_a, pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A); append_fifo_load(desc, dma_addr_n, pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N); append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO); append_fifo_store(desc, dma_addr_out, out_siz, LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B); }