// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2013 Google, Inc */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; static int testfdt_drv_ping(struct udevice *dev, int pingval, int *pingret) { const struct dm_test_pdata *pdata = dev->platdata; struct dm_test_priv *priv = dev_get_priv(dev); *pingret = pingval + pdata->ping_add; priv->ping_total += *pingret; return 0; } static const struct test_ops test_ops = { .ping = testfdt_drv_ping, }; static int testfdt_ofdata_to_platdata(struct udevice *dev) { struct dm_test_pdata *pdata = dev_get_platdata(dev); pdata->ping_add = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "ping-add", -1); pdata->base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev), "ping-expect"); return 0; } static int testfdt_drv_probe(struct udevice *dev) { struct dm_test_priv *priv = dev_get_priv(dev); priv->ping_total += DM_TEST_START_TOTAL; /* * If this device is on a bus, the uclass_flag will be set before * calling this function. In the meantime the uclass_postp is * initlized to a value -1. These are used respectively by * dm_test_bus_child_pre_probe_uclass() and * dm_test_bus_child_post_probe_uclass(). */ priv->uclass_total += priv->uclass_flag; priv->uclass_postp = -1; return 0; } static const struct udevice_id testfdt_ids[] = { { .compatible = "denx,u-boot-fdt-test", .data = DM_TEST_TYPE_FIRST }, { .compatible = "google,another-fdt-test", .data = DM_TEST_TYPE_SECOND }, { } }; U_BOOT_DRIVER(testfdt_drv) = { .name = "testfdt_drv", .of_match = testfdt_ids, .id = UCLASS_TEST_FDT, .ofdata_to_platdata = testfdt_ofdata_to_platdata, .probe = testfdt_drv_probe, .ops = &test_ops, .priv_auto_alloc_size = sizeof(struct dm_test_priv), .platdata_auto_alloc_size = sizeof(struct dm_test_pdata), }; static const struct udevice_id testfdt1_ids[] = { { .compatible = "denx,u-boot-fdt-test1", .data = DM_TEST_TYPE_FIRST }, { } }; U_BOOT_DRIVER(testfdt1_drv) = { .name = "testfdt1_drv", .of_match = testfdt1_ids, .id = UCLASS_TEST_FDT, .ofdata_to_platdata = testfdt_ofdata_to_platdata, .probe = testfdt_drv_probe, .ops = &test_ops, .priv_auto_alloc_size = sizeof(struct dm_test_priv), .platdata_auto_alloc_size = sizeof(struct dm_test_pdata), .flags = DM_FLAG_PRE_RELOC, }; /* From here is the testfdt uclass code */ int testfdt_ping(struct udevice *dev, int pingval, int *pingret) { const struct test_ops *ops = device_get_ops(dev); if (!ops->ping) return -ENOSYS; return ops->ping(dev, pingval, pingret); } UCLASS_DRIVER(testfdt) = { .name = "testfdt", .id = UCLASS_TEST_FDT, .flags = DM_UC_FLAG_SEQ_ALIAS, }; struct dm_testprobe_pdata { int probe_err; }; static int testprobe_drv_probe(struct udevice *dev) { struct dm_testprobe_pdata *pdata = dev_get_platdata(dev); return pdata->probe_err; } static const struct udevice_id testprobe_ids[] = { { .compatible = "denx,u-boot-probe-test" }, { } }; U_BOOT_DRIVER(testprobe_drv) = { .name = "testprobe_drv", .of_match = testprobe_ids, .id = UCLASS_TEST_PROBE, .probe = testprobe_drv_probe, .platdata_auto_alloc_size = sizeof(struct dm_testprobe_pdata), }; UCLASS_DRIVER(testprobe) = { .name = "testprobe", .id = UCLASS_TEST_PROBE, .flags = DM_UC_FLAG_SEQ_ALIAS, }; int dm_check_devices(struct unit_test_state *uts, int num_devices) { struct udevice *dev; int ret; int i; /* * Now check that the ping adds are what we expect. This is using the * ping-add property in each node. */ for (i = 0; i < num_devices; i++) { uint32_t base; ret = uclass_get_device(UCLASS_TEST_FDT, i, &dev); ut_assert(!ret); /* * Get the 'ping-expect' property, which tells us what the * ping add should be. We don't use the platdata because we * want to test the code that sets that up * (testfdt_drv_probe()). */ base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev), "ping-expect"); debug("dev=%d, base=%d: %s\n", i, base, fdt_get_name(gd->fdt_blob, dev_of_offset(dev), NULL)); ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev))); } return 0; } /* Test that FDT-based binding works correctly */ static int dm_test_fdt(struct unit_test_state *uts) { const int num_devices = 8; struct udevice *dev; struct uclass *uc; int ret; int i; ret = dm_scan_fdt(gd->fdt_blob, false); ut_assert(!ret); ret = uclass_get(UCLASS_TEST_FDT, &uc); ut_assert(!ret); /* These are num_devices compatible root-level device tree nodes */ ut_asserteq(num_devices, list_count_items(&uc->dev_head)); /* Each should have platform data but no private data */ for (i = 0; i < num_devices; i++) { ret = uclass_find_device(UCLASS_TEST_FDT, i, &dev); ut_assert(!ret); ut_assert(!dev_get_priv(dev)); ut_assert(dev->platdata); } ut_assertok(dm_check_devices(uts, num_devices)); return 0; } DM_TEST(dm_test_fdt, 0); static int dm_test_fdt_pre_reloc(struct unit_test_state *uts) { struct uclass *uc; int ret; ret = dm_scan_fdt(gd->fdt_blob, true); ut_assert(!ret); ret = uclass_get(UCLASS_TEST_FDT, &uc); ut_assert(!ret); /* * These are 2 pre-reloc devices: * one with "u-boot,dm-pre-reloc" property (a-test node), and the other * one whose driver marked with DM_FLAG_PRE_RELOC flag (h-test node). */ ut_asserteq(2, list_count_items(&uc->dev_head)); return 0; } DM_TEST(dm_test_fdt_pre_reloc, 0); /* Test that sequence numbers are allocated properly */ static int dm_test_fdt_uclass_seq(struct unit_test_state *uts) { struct udevice *dev; /* A few basic santiy tests */ ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 3, true, &dev)); ut_asserteq_str("b-test", dev->name); ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 8, true, &dev)); ut_asserteq_str("a-test", dev->name); ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 5, true, &dev)); ut_asserteq_ptr(NULL, dev); /* Test aliases */ ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 6, &dev)); ut_asserteq_str("e-test", dev->name); ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 7, true, &dev)); /* * Note that c-test nodes are not probed since it is not a top-level * node */ ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 3, &dev)); ut_asserteq_str("b-test", dev->name); /* * d-test wants sequence number 3 also, but it can't have it because * b-test gets it first. */ ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 2, &dev)); ut_asserteq_str("d-test", dev->name); /* d-test actually gets 0 */ ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 0, &dev)); ut_asserteq_str("d-test", dev->name); /* initially no one wants seq 1 */ ut_asserteq(-ENODEV, uclass_get_device_by_seq(UCLASS_TEST_FDT, 1, &dev)); ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 0, &dev)); ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 4, &dev)); /* But now that it is probed, we can find it */ ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 1, &dev)); ut_asserteq_str("f-test", dev->name); return 0; } DM_TEST(dm_test_fdt_uclass_seq, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); /* Test that we can find a device by device tree offset */ static int dm_test_fdt_offset(struct unit_test_state *uts) { const void *blob = gd->fdt_blob; struct udevice *dev; int node; node = fdt_path_offset(blob, "/e-test"); ut_assert(node > 0); ut_assertok(uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node, &dev)); ut_asserteq_str("e-test", dev->name); /* This node should not be bound */ node = fdt_path_offset(blob, "/junk"); ut_assert(node > 0); ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node, &dev)); /* This is not a top level node so should not be probed */ node = fdt_path_offset(blob, "/some-bus/c-test@5"); ut_assert(node > 0); ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node, &dev)); return 0; } DM_TEST(dm_test_fdt_offset, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE); /** * Test various error conditions with uclass_first_device() and * uclass_next_device() */ static int dm_test_first_next_device(struct unit_test_state *uts) { struct dm_testprobe_pdata *pdata; struct udevice *dev, *parent = NULL; int count; int ret; /* There should be 4 devices */ for (ret = uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0; dev; ret = uclass_next_device(&dev)) { count++; parent = dev_get_parent(dev); } ut_assertok(ret); ut_asserteq(4, count); /* Remove them and try again, with an error on the second one */ ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 1, &dev)); pdata = dev_get_platdata(dev); pdata->probe_err = -ENOMEM; device_remove(parent, DM_REMOVE_NORMAL); ut_assertok(uclass_first_device(UCLASS_TEST_PROBE, &dev)); ut_asserteq(-ENOMEM, uclass_next_device(&dev)); ut_asserteq_ptr(dev, NULL); /* Now an error on the first one */ ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 0, &dev)); pdata = dev_get_platdata(dev); pdata->probe_err = -ENOENT; device_remove(parent, DM_REMOVE_NORMAL); ut_asserteq(-ENOENT, uclass_first_device(UCLASS_TEST_PROBE, &dev)); return 0; } DM_TEST(dm_test_first_next_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); /** * check_devices() - Check return values and pointers * * This runs through a full sequence of uclass_first_device_check()... * uclass_next_device_check() checking that the return values and devices * are correct. * * @uts: Test state * @devlist: List of expected devices * @mask: Indicates which devices should return an error. Device n should * return error (-NOENT - n) if bit n is set, or no error (i.e. 0) if * bit n is clear. */ static int check_devices(struct unit_test_state *uts, struct udevice *devlist[], int mask) { int expected_ret; struct udevice *dev; int i; expected_ret = (mask & 1) ? -ENOENT : 0; mask >>= 1; ut_asserteq(expected_ret, uclass_first_device_check(UCLASS_TEST_PROBE, &dev)); for (i = 0; i < 4; i++) { ut_asserteq_ptr(devlist[i], dev); expected_ret = (mask & 1) ? -ENOENT - (i + 1) : 0; mask >>= 1; ut_asserteq(expected_ret, uclass_next_device_check(&dev)); } ut_asserteq_ptr(NULL, dev); return 0; } /* Test uclass_first_device_check() and uclass_next_device_check() */ static int dm_test_first_next_ok_device(struct unit_test_state *uts) { struct dm_testprobe_pdata *pdata; struct udevice *dev, *parent = NULL, *devlist[4]; int count; int ret; /* There should be 4 devices */ count = 0; for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev); dev; ret = uclass_next_device_check(&dev)) { ut_assertok(ret); devlist[count++] = dev; parent = dev_get_parent(dev); } ut_asserteq(4, count); ut_assertok(uclass_first_device_check(UCLASS_TEST_PROBE, &dev)); ut_assertok(check_devices(uts, devlist, 0)); /* Remove them and try again, with an error on the second one */ pdata = dev_get_platdata(devlist[1]); pdata->probe_err = -ENOENT - 1; device_remove(parent, DM_REMOVE_NORMAL); ut_assertok(check_devices(uts, devlist, 1 << 1)); /* Now an error on the first one */ pdata = dev_get_platdata(devlist[0]); pdata->probe_err = -ENOENT - 0; device_remove(parent, DM_REMOVE_NORMAL); ut_assertok(check_devices(uts, devlist, 3 << 0)); /* Now errors on all */ pdata = dev_get_platdata(devlist[2]); pdata->probe_err = -ENOENT - 2; pdata = dev_get_platdata(devlist[3]); pdata->probe_err = -ENOENT - 3; device_remove(parent, DM_REMOVE_NORMAL); ut_assertok(check_devices(uts, devlist, 0xf << 0)); return 0; } DM_TEST(dm_test_first_next_ok_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); static const struct udevice_id fdt_dummy_ids[] = { { .compatible = "denx,u-boot-fdt-dummy", }, { } }; UCLASS_DRIVER(fdt_dummy) = { .name = "fdt-dummy", .id = UCLASS_TEST_DUMMY, .flags = DM_UC_FLAG_SEQ_ALIAS, }; U_BOOT_DRIVER(fdt_dummy_drv) = { .name = "fdt_dummy_drv", .of_match = fdt_dummy_ids, .id = UCLASS_TEST_DUMMY, }; static int dm_test_fdt_translation(struct unit_test_state *uts) { struct udevice *dev; /* Some simple translations */ ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev)); ut_asserteq_str("dev@0,0", dev->name); ut_asserteq(0x8000, dev_read_addr(dev)); ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, true, &dev)); ut_asserteq_str("dev@1,100", dev->name); ut_asserteq(0x9000, dev_read_addr(dev)); ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 2, true, &dev)); ut_asserteq_str("dev@2,200", dev->name); ut_asserteq(0xA000, dev_read_addr(dev)); /* No translation for busses with #size-cells == 0 */ ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 3, true, &dev)); ut_asserteq_str("dev@42", dev->name); ut_asserteq(0x42, dev_read_addr(dev)); return 0; } DM_TEST(dm_test_fdt_translation, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); /* Test devfdt_remap_addr_index() */ static int dm_test_fdt_remap_addr_flat(struct unit_test_state *uts) { struct udevice *dev; fdt_addr_t addr; void *paddr; ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev)); addr = devfdt_get_addr(dev); ut_asserteq(0x8000, addr); paddr = map_physmem(addr, 0, MAP_NOCACHE); ut_assertnonnull(paddr); ut_asserteq_ptr(paddr, devfdt_remap_addr(dev)); return 0; } DM_TEST(dm_test_fdt_remap_addr_flat, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE); /* Test dev_remap_addr_index() */ static int dm_test_fdt_remap_addr_live(struct unit_test_state *uts) { struct udevice *dev; fdt_addr_t addr; void *paddr; ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev)); addr = dev_read_addr(dev); ut_asserteq(0x8000, addr); paddr = map_physmem(addr, 0, MAP_NOCACHE); ut_assertnonnull(paddr); ut_asserteq_ptr(paddr, dev_remap_addr(dev)); return 0; } DM_TEST(dm_test_fdt_remap_addr_live, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); static int dm_test_fdt_livetree_writing(struct unit_test_state *uts) { struct udevice *dev; ofnode node; if (!of_live_active()) { printf("Live tree not active; ignore test\n"); return 0; } /* Test enabling devices */ node = ofnode_path("/usb@2"); ut_assert(!of_device_is_available(ofnode_to_np(node))); ofnode_set_enabled(node, true); ut_assert(of_device_is_available(ofnode_to_np(node))); device_bind_driver_to_node(dm_root(), "usb_sandbox", "usb@2", node, &dev); ut_assertok(uclass_find_device_by_seq(UCLASS_USB, 2, true, &dev)); /* Test string property setting */ ut_assert(device_is_compatible(dev, "sandbox,usb")); ofnode_write_string(node, "compatible", "gdsys,super-usb"); ut_assert(device_is_compatible(dev, "gdsys,super-usb")); ofnode_write_string(node, "compatible", "sandbox,usb"); ut_assert(device_is_compatible(dev, "sandbox,usb")); /* Test setting generic properties */ /* Non-existent in DTB */ ut_asserteq(FDT_ADDR_T_NONE, dev_read_addr(dev)); /* reg = 0x42, size = 0x100 */ ut_assertok(ofnode_write_prop(node, "reg", 8, "\x00\x00\x00\x42\x00\x00\x01\x00")); ut_asserteq(0x42, dev_read_addr(dev)); /* Test disabling devices */ device_remove(dev, DM_REMOVE_NORMAL); device_unbind(dev); ut_assert(of_device_is_available(ofnode_to_np(node))); ofnode_set_enabled(node, false); ut_assert(!of_device_is_available(ofnode_to_np(node))); return 0; } DM_TEST(dm_test_fdt_livetree_writing, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); static int dm_test_fdt_disable_enable_by_path(struct unit_test_state *uts) { ofnode node; if (!of_live_active()) { printf("Live tree not active; ignore test\n"); return 0; } node = ofnode_path("/usb@2"); /* Test enabling devices */ ut_assert(!of_device_is_available(ofnode_to_np(node))); dev_enable_by_path("/usb@2"); ut_assert(of_device_is_available(ofnode_to_np(node))); /* Test disabling devices */ ut_assert(of_device_is_available(ofnode_to_np(node))); dev_disable_by_path("/usb@2"); ut_assert(!of_device_is_available(ofnode_to_np(node))); return 0; } DM_TEST(dm_test_fdt_disable_enable_by_path, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); /* Test a few uclass phandle functions */ static int dm_test_fdt_phandle(struct unit_test_state *uts) { struct udevice *back, *dev, *dev2; ut_assertok(uclass_find_first_device(UCLASS_PANEL_BACKLIGHT, &back)); ut_asserteq(-ENOENT, uclass_find_device_by_phandle(UCLASS_REGULATOR, back, "missing", &dev)); ut_assertok(uclass_find_device_by_phandle(UCLASS_REGULATOR, back, "power-supply", &dev)); ut_asserteq(0, device_active(dev)); ut_asserteq_str("ldo1", dev->name); ut_assertok(uclass_get_device_by_phandle(UCLASS_REGULATOR, back, "power-supply", &dev2)); ut_asserteq_ptr(dev, dev2); return 0; } DM_TEST(dm_test_fdt_phandle, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);