/* * sunxi DRAM controller initialization * (C) Copyright 2012 Henrik Nordstrom * (C) Copyright 2013 Luke Kenneth Casson Leighton * * Based on sun4i Linux kernel sources mach-sunxi/pm/standby/dram*.c * and earlier U-Boot Allwiner A10 SPL work * * (C) Copyright 2007-2012 * Allwinner Technology Co., Ltd. * Berg Xing * Tom Cubie * * SPDX-License-Identifier: GPL-2.0+ */ /* * Unfortunately the only documentation we have on the sun7i DRAM * controller is Allwinner boot0 + boot1 code, and that code uses * magic numbers & shifts with no explanations. Hence this code is * rather undocumented and full of magic. */ #include #include #include #include #include #include #define CPU_CFG_CHIP_VER(n) ((n) << 6) #define CPU_CFG_CHIP_VER_MASK CPU_CFG_CHIP_VER(0x3) #define CPU_CFG_CHIP_REV_A 0x0 #define CPU_CFG_CHIP_REV_C1 0x1 #define CPU_CFG_CHIP_REV_C2 0x2 #define CPU_CFG_CHIP_REV_B 0x3 /* * Wait up to 1s for mask to be clear in given reg. */ static void await_completion(u32 *reg, u32 mask) { unsigned long tmo = timer_get_us() + 1000000; while (readl(reg) & mask) { if (timer_get_us() > tmo) panic("Timeout initialising DRAM\n"); } } /* * This performs the external DRAM reset by driving the RESET pin low and * then high again. According to the DDR3 spec, the RESET pin needs to be * kept low for at least 200 us. */ static void mctl_ddr3_reset(void) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; #ifdef CONFIG_SUN4I struct sunxi_timer_reg *timer = (struct sunxi_timer_reg *)SUNXI_TIMER_BASE; u32 reg_val; writel(0, &timer->cpu_cfg); reg_val = readl(&timer->cpu_cfg); if ((reg_val & CPU_CFG_CHIP_VER_MASK) != CPU_CFG_CHIP_VER(CPU_CFG_CHIP_REV_A)) { setbits_le32(&dram->mcr, DRAM_MCR_RESET); udelay(200); clrbits_le32(&dram->mcr, DRAM_MCR_RESET); } else #endif { clrbits_le32(&dram->mcr, DRAM_MCR_RESET); udelay(200); setbits_le32(&dram->mcr, DRAM_MCR_RESET); } /* After the RESET pin is de-asserted, the DDR3 spec requires to wait * for additional 500 us before driving the CKE pin (Clock Enable) * high. The duration of this delay can be configured in the SDR_IDCR * (Initialization Delay Configuration Register) and applied * automatically by the DRAM controller during the DDR3 initialization * step. But SDR_IDCR has limited range on sun4i/sun5i hardware and * can't provide sufficient delay at DRAM clock frequencies higher than * 524 MHz (while Allwinner A13 supports DRAM clock frequency up to * 533 MHz according to the datasheet). Additionally, there is no * official documentation for the SDR_IDCR register anywhere, and * there is always a chance that we are interpreting it wrong. * Better be safe than sorry, so add an explicit delay here. */ udelay(500); } static void mctl_set_drive(void) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; #ifdef CONFIG_SUN7I clrsetbits_le32(&dram->mcr, DRAM_MCR_MODE_NORM(0x3) | (0x3 << 28), #else clrsetbits_le32(&dram->mcr, DRAM_MCR_MODE_NORM(0x3), #endif DRAM_MCR_MODE_EN(0x3) | 0xffc); } static void mctl_itm_disable(void) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; clrsetbits_le32(&dram->ccr, DRAM_CCR_INIT, DRAM_CCR_ITM_OFF); } static void mctl_itm_enable(void) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; clrbits_le32(&dram->ccr, DRAM_CCR_ITM_OFF); } static void mctl_enable_dll0(u32 phase) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; clrsetbits_le32(&dram->dllcr[0], 0x3f << 6, ((phase >> 16) & 0x3f) << 6); clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET, DRAM_DLLCR_DISABLE); udelay(2); clrbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET | DRAM_DLLCR_DISABLE); udelay(22); clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_DISABLE, DRAM_DLLCR_NRESET); udelay(22); } /* * Note: This differs from pm/standby in that it checks the bus width */ static void mctl_enable_dllx(u32 phase) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; u32 i, n, bus_width; bus_width = readl(&dram->dcr); if ((bus_width & DRAM_DCR_BUS_WIDTH_MASK) == DRAM_DCR_BUS_WIDTH(DRAM_DCR_BUS_WIDTH_32BIT)) n = DRAM_DCR_NR_DLLCR_32BIT; else n = DRAM_DCR_NR_DLLCR_16BIT; for (i = 1; i < n; i++) { clrsetbits_le32(&dram->dllcr[i], 0xf << 14, (phase & 0xf) << 14); clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET, DRAM_DLLCR_DISABLE); phase >>= 4; } udelay(2); for (i = 1; i < n; i++) clrbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET | DRAM_DLLCR_DISABLE); udelay(22); for (i = 1; i < n; i++) clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_DISABLE, DRAM_DLLCR_NRESET); udelay(22); } static u32 hpcr_value[32] = { #ifdef CONFIG_SUN5I 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x1031, 0x1031, 0x0735, 0x1035, 0x1035, 0x0731, 0x1031, 0, 0x0301, 0x0301, 0x0301, 0x0301, 0x0301, 0x0301, 0x0301, 0 #endif #ifdef CONFIG_SUN4I 0x0301, 0x0301, 0x0301, 0x0301, 0x0301, 0x0301, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x1031, 0x1031, 0x0735, 0x5031, 0x1035, 0x0731, 0x1031, 0x0735, 0x1035, 0x1031, 0x0731, 0x1035, 0x1031, 0x0301, 0x0301, 0x0731 #endif #ifdef CONFIG_SUN7I 0x0301, 0x0301, 0x0301, 0x0301, 0x0301, 0x0301, 0x0301, 0x0301, 0, 0, 0, 0, 0, 0, 0, 0, 0x1031, 0x1031, 0x0735, 0x1035, 0x1035, 0x0731, 0x1031, 0x0735, 0x1035, 0x1031, 0x0731, 0x1035, 0x0001, 0x1031, 0, 0x1031 /* last row differs from boot0 source table * 0x1031, 0x0301, 0x0301, 0x0731 * but boot0 code skips #28 and #30, and sets #29 and #31 to the * value from #28 entry (0x1031) */ #endif }; static void mctl_configure_hostport(void) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; u32 i; for (i = 0; i < 32; i++) writel(hpcr_value[i], &dram->hpcr[i]); } static void mctl_setup_dram_clock(u32 clk) { u32 reg_val; struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; /* setup DRAM PLL */ reg_val = readl(&ccm->pll5_cfg); reg_val &= ~CCM_PLL5_CTRL_M_MASK; /* set M to 0 (x1) */ reg_val &= ~CCM_PLL5_CTRL_K_MASK; /* set K to 0 (x1) */ reg_val &= ~CCM_PLL5_CTRL_N_MASK; /* set N to 0 (x0) */ reg_val &= ~CCM_PLL5_CTRL_P_MASK; /* set P to 0 (x1) */ if (clk >= 540 && clk < 552) { /* dram = 540MHz, pll5p = 540MHz */ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2)); reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3)); reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(15)); reg_val |= CCM_PLL5_CTRL_P(1); } else if (clk >= 512 && clk < 528) { /* dram = 512MHz, pll5p = 384MHz */ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3)); reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(4)); reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(16)); reg_val |= CCM_PLL5_CTRL_P(2); } else if (clk >= 496 && clk < 504) { /* dram = 496MHz, pll5p = 372MHz */ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3)); reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2)); reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(31)); reg_val |= CCM_PLL5_CTRL_P(2); } else if (clk >= 468 && clk < 480) { /* dram = 468MHz, pll5p = 468MHz */ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2)); reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3)); reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(13)); reg_val |= CCM_PLL5_CTRL_P(1); } else if (clk >= 396 && clk < 408) { /* dram = 396MHz, pll5p = 396MHz */ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2)); reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3)); reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(11)); reg_val |= CCM_PLL5_CTRL_P(1); } else { /* any other frequency that is a multiple of 24 */ reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2)); reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2)); reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(clk / 24)); reg_val |= CCM_PLL5_CTRL_P(CCM_PLL5_CTRL_P_X(2)); } reg_val &= ~CCM_PLL5_CTRL_VCO_GAIN; /* PLL VCO Gain off */ reg_val |= CCM_PLL5_CTRL_EN; /* PLL On */ writel(reg_val, &ccm->pll5_cfg); udelay(5500); setbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_DDR_CLK); #if defined(CONFIG_SUN4I) || defined(CONFIG_SUN7I) /* reset GPS */ clrbits_le32(&ccm->gps_clk_cfg, CCM_GPS_CTRL_RESET | CCM_GPS_CTRL_GATE); setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_GPS); udelay(1); clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_GPS); #endif #if defined(CONFIG_SUN5I) || defined(CONFIG_SUN7I) /* setup MBUS clock */ reg_val = CCM_MBUS_CTRL_GATE | #ifdef CONFIG_SUN7I CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL6) | CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(2)) | CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(2)); #else /* defined(CONFIG_SUN5I) */ CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL5) | CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) | CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(2)); #endif writel(reg_val, &ccm->mbus_clk_cfg); #endif /* * open DRAMC AHB & DLL register clock * close it first */ #if defined(CONFIG_SUN5I) || defined(CONFIG_SUN7I) clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM | CCM_AHB_GATE_DLL); #else clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM); #endif udelay(22); /* then open it */ #if defined(CONFIG_SUN5I) || defined(CONFIG_SUN7I) setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM | CCM_AHB_GATE_DLL); #else setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM); #endif udelay(22); } static int dramc_scan_readpipe(void) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; u32 reg_val; /* data training trigger */ #ifdef CONFIG_SUN7I clrbits_le32(&dram->csr, DRAM_CSR_FAILED); #endif setbits_le32(&dram->ccr, DRAM_CCR_DATA_TRAINING); /* check whether data training process has completed */ await_completion(&dram->ccr, DRAM_CCR_DATA_TRAINING); /* check data training result */ reg_val = readl(&dram->csr); if (reg_val & DRAM_CSR_FAILED) return -1; return 0; } static void dramc_clock_output_en(u32 on) { #if defined(CONFIG_SUN5I) || defined(CONFIG_SUN7I) struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; if (on) setbits_le32(&dram->mcr, DRAM_MCR_DCLK_OUT); else clrbits_le32(&dram->mcr, DRAM_MCR_DCLK_OUT); #endif #ifdef CONFIG_SUN4I struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; if (on) setbits_le32(&ccm->dram_clk_cfg, CCM_DRAM_CTRL_DCLK_OUT); else clrbits_le32(&ccm->dram_clk_cfg, CCM_DRAM_CTRL_DCLK_OUT); #endif } static const u16 tRFC_table[2][6] = { /* 256Mb 512Mb 1Gb 2Gb 4Gb 8Gb */ /* DDR2 75ns 105ns 127.5ns 195ns 327.5ns invalid */ { 77, 108, 131, 200, 336, 336 }, /* DDR3 invalid 90ns 110ns 160ns 300ns 350ns */ { 93, 93, 113, 164, 308, 359 } }; static void dramc_set_autorefresh_cycle(u32 clk, u32 type, u32 density) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; u32 tRFC, tREFI; tRFC = (tRFC_table[type][density] * clk + 1023) >> 10; tREFI = (7987 * clk) >> 10; /* <= 7.8us */ writel(DRAM_DRR_TREFI(tREFI) | DRAM_DRR_TRFC(tRFC), &dram->drr); } /* * If the dram->ppwrsctl (SDR_DPCR) register has the lowest bit set to 1, this * means that DRAM is currently in self-refresh mode and retaining the old * data. Since we have no idea what to do in this situation yet, just set this * register to 0 and initialize DRAM in the same way as on any normal reboot * (discarding whatever was stored there). * * Note: on sun7i hardware, the highest 16 bits need to be set to 0x1651 magic * value for this write operation to have any effect. On sun5i hadware this * magic value is not necessary. And on sun4i hardware the writes to this * register seem to have no effect at all. */ static void mctl_disable_power_save(void) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; writel(0x16510000, &dram->ppwrsctl); } /* * After the DRAM is powered up or reset, the DDR3 spec requires to wait at * least 500 us before driving the CKE pin (Clock Enable) high. The dram->idct * (SDR_IDCR) register appears to configure this delay, which gets applied * right at the time when the DRAM initialization is activated in the * 'mctl_ddr3_initialize' function. */ static void mctl_set_cke_delay(void) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; /* The CKE delay is represented in DRAM clock cycles, multiplied by N * (where N=2 for sun4i/sun5i and N=3 for sun7i). Here it is set to * the maximum possible value 0x1ffff, just like in the Allwinner's * boot0 bootloader. The resulting delay value is somewhere between * ~0.4 ms (sun5i with 648 MHz DRAM clock speed) and ~1.1 ms (sun7i * with 360 MHz DRAM clock speed). */ setbits_le32(&dram->idcr, 0x1ffff); } /* * This triggers the DRAM initialization. It performs sending the mode registers * to the DRAM among other things. Very likely the ZQCL command is also getting * executed (to do the initial impedance calibration on the DRAM side of the * wire). The memory controller and the PHY must be already configured before * calling this function. */ static void mctl_ddr3_initialize(void) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; setbits_le32(&dram->ccr, DRAM_CCR_INIT); await_completion(&dram->ccr, DRAM_CCR_INIT); } unsigned long dramc_init(struct dram_para *para) { struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE; u32 reg_val; u32 density; int ret_val; /* check input dram parameter structure */ if (!para) return 0; /* setup DRAM relative clock */ mctl_setup_dram_clock(para->clock); /* Disable any pad power save control */ mctl_disable_power_save(); mctl_set_drive(); /* dram clock off */ dramc_clock_output_en(0); #ifdef CONFIG_SUN4I /* select dram controller 1 */ writel(DRAM_CSEL_MAGIC, &dram->csel); #endif mctl_itm_disable(); mctl_enable_dll0(para->tpr3); /* configure external DRAM */ reg_val = 0x0; if (para->type == DRAM_MEMORY_TYPE_DDR3) reg_val |= DRAM_DCR_TYPE_DDR3; reg_val |= DRAM_DCR_IO_WIDTH(para->io_width >> 3); if (para->density == 256) density = DRAM_DCR_CHIP_DENSITY_256M; else if (para->density == 512) density = DRAM_DCR_CHIP_DENSITY_512M; else if (para->density == 1024) density = DRAM_DCR_CHIP_DENSITY_1024M; else if (para->density == 2048) density = DRAM_DCR_CHIP_DENSITY_2048M; else if (para->density == 4096) density = DRAM_DCR_CHIP_DENSITY_4096M; else if (para->density == 8192) density = DRAM_DCR_CHIP_DENSITY_8192M; else density = DRAM_DCR_CHIP_DENSITY_256M; reg_val |= DRAM_DCR_CHIP_DENSITY(density); reg_val |= DRAM_DCR_BUS_WIDTH((para->bus_width >> 3) - 1); reg_val |= DRAM_DCR_RANK_SEL(para->rank_num - 1); reg_val |= DRAM_DCR_CMD_RANK_ALL; reg_val |= DRAM_DCR_MODE(DRAM_DCR_MODE_INTERLEAVE); writel(reg_val, &dram->dcr); dramc_clock_output_en(1); mctl_set_cke_delay(); mctl_ddr3_reset(); udelay(1); await_completion(&dram->ccr, DRAM_CCR_INIT); mctl_enable_dllx(para->tpr3); /* set refresh period */ dramc_set_autorefresh_cycle(para->clock, para->type - 2, density); /* set timing parameters */ writel(para->tpr0, &dram->tpr0); writel(para->tpr1, &dram->tpr1); writel(para->tpr2, &dram->tpr2); if (para->type == DRAM_MEMORY_TYPE_DDR3) { reg_val = DRAM_MR_BURST_LENGTH(0x0); #if (defined(CONFIG_SUN5I) || defined(CONFIG_SUN7I)) reg_val |= DRAM_MR_POWER_DOWN; #endif reg_val |= DRAM_MR_CAS_LAT(para->cas - 4); reg_val |= DRAM_MR_WRITE_RECOVERY(0x5); } else if (para->type == DRAM_MEMORY_TYPE_DDR2) { reg_val = DRAM_MR_BURST_LENGTH(0x2); reg_val |= DRAM_MR_CAS_LAT(para->cas); reg_val |= DRAM_MR_WRITE_RECOVERY(0x5); } writel(reg_val, &dram->mr); writel(para->emr1, &dram->emr); writel(para->emr2, &dram->emr2); writel(para->emr3, &dram->emr3); /* set DQS window mode */ clrsetbits_le32(&dram->ccr, DRAM_CCR_DQS_DRIFT_COMP, DRAM_CCR_DQS_GATE); #ifdef CONFIG_SUN7I /* Command rate timing mode 2T & 1T */ if (para->tpr4 & 0x1) setbits_le32(&dram->ccr, DRAM_CCR_COMMAND_RATE_1T); #endif /* initialize external DRAM */ mctl_ddr3_initialize(); /* scan read pipe value */ mctl_itm_enable(); ret_val = dramc_scan_readpipe(); if (ret_val < 0) return 0; /* configure all host port */ mctl_configure_hostport(); return get_ram_size((long *)PHYS_SDRAM_0, PHYS_SDRAM_0_SIZE); }