/* * SPI flash interface * * Copyright (C) 2008 Atmel Corporation * Copyright (C) 2010 Reinhard Meyer, EMK Elektronik * * Licensed under the GPL-2 or later. */ #include #include #include #include #include #include #include "spi_flash_internal.h" DECLARE_GLOBAL_DATA_PTR; static void spi_flash_addr(u32 addr, u8 *cmd) { /* cmd[0] is actual command */ cmd[1] = addr >> 16; cmd[2] = addr >> 8; cmd[3] = addr >> 0; } static int spi_flash_read_write(struct spi_slave *spi, const u8 *cmd, size_t cmd_len, const u8 *data_out, u8 *data_in, size_t data_len) { unsigned long flags = SPI_XFER_BEGIN; int ret; if (data_len == 0) flags |= SPI_XFER_END; ret = spi_xfer(spi, cmd_len * 8, cmd, NULL, flags); if (ret) { debug("SF: Failed to send command (%zu bytes): %d\n", cmd_len, ret); } else if (data_len != 0) { ret = spi_xfer(spi, data_len * 8, data_out, data_in, SPI_XFER_END); if (ret) debug("SF: Failed to transfer %zu bytes of data: %d\n", data_len, ret); } return ret; } int spi_flash_cmd(struct spi_slave *spi, u8 cmd, void *response, size_t len) { return spi_flash_cmd_read(spi, &cmd, 1, response, len); } int spi_flash_cmd_read(struct spi_slave *spi, const u8 *cmd, size_t cmd_len, void *data, size_t data_len) { return spi_flash_read_write(spi, cmd, cmd_len, NULL, data, data_len); } int spi_flash_cmd_write(struct spi_slave *spi, const u8 *cmd, size_t cmd_len, const void *data, size_t data_len) { return spi_flash_read_write(spi, cmd, cmd_len, data, NULL, data_len); } int spi_flash_cmd_write_multi(struct spi_flash *flash, u32 offset, size_t len, const void *buf) { unsigned long page_addr, byte_addr, page_size; size_t chunk_len, actual; int ret; u8 cmd[4]; page_size = flash->page_size; page_addr = offset / page_size; byte_addr = offset % page_size; ret = spi_claim_bus(flash->spi); if (ret) { debug("SF: unable to claim SPI bus\n"); return ret; } cmd[0] = CMD_PAGE_PROGRAM; for (actual = 0; actual < len; actual += chunk_len) { chunk_len = min(len - actual, page_size - byte_addr); if (flash->spi->max_write_size) chunk_len = min(chunk_len, flash->spi->max_write_size); cmd[1] = page_addr >> 8; cmd[2] = page_addr; cmd[3] = byte_addr; debug("PP: 0x%p => cmd = { 0x%02x 0x%02x%02x%02x } chunk_len = %zu\n", buf + actual, cmd[0], cmd[1], cmd[2], cmd[3], chunk_len); ret = spi_flash_cmd_write_enable(flash); if (ret < 0) { debug("SF: enabling write failed\n"); break; } ret = spi_flash_cmd_write(flash->spi, cmd, 4, buf + actual, chunk_len); if (ret < 0) { debug("SF: write failed\n"); break; } ret = spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT); if (ret) break; byte_addr += chunk_len; if (byte_addr == page_size) { page_addr++; byte_addr = 0; } } spi_release_bus(flash->spi); return ret; } int spi_flash_read_common(struct spi_flash *flash, const u8 *cmd, size_t cmd_len, void *data, size_t data_len) { struct spi_slave *spi = flash->spi; int ret; spi_claim_bus(spi); ret = spi_flash_cmd_read(spi, cmd, cmd_len, data, data_len); spi_release_bus(spi); return ret; } int spi_flash_cmd_read_fast(struct spi_flash *flash, u32 offset, size_t len, void *data) { u8 cmd[5]; /* Handle memory-mapped SPI */ if (flash->memory_map) { memcpy(data, flash->memory_map + offset, len); return 0; } cmd[0] = CMD_READ_ARRAY_FAST; spi_flash_addr(offset, cmd); cmd[4] = 0x00; return spi_flash_read_common(flash, cmd, sizeof(cmd), data, len); } int spi_flash_cmd_poll_bit(struct spi_flash *flash, unsigned long timeout, u8 cmd, u8 poll_bit) { struct spi_slave *spi = flash->spi; unsigned long timebase; int ret; u8 status; ret = spi_xfer(spi, 8, &cmd, NULL, SPI_XFER_BEGIN); if (ret) { debug("SF: Failed to send command %02x: %d\n", cmd, ret); return ret; } timebase = get_timer(0); do { WATCHDOG_RESET(); ret = spi_xfer(spi, 8, NULL, &status, 0); if (ret) return -1; if ((status & poll_bit) == 0) break; } while (get_timer(timebase) < timeout); spi_xfer(spi, 0, NULL, NULL, SPI_XFER_END); if ((status & poll_bit) == 0) return 0; /* Timed out */ debug("SF: time out!\n"); return -1; } int spi_flash_cmd_wait_ready(struct spi_flash *flash, unsigned long timeout) { return spi_flash_cmd_poll_bit(flash, timeout, CMD_READ_STATUS, STATUS_WIP); } int spi_flash_cmd_erase(struct spi_flash *flash, u32 offset, size_t len) { u32 end, erase_size; int ret; u8 cmd[4]; erase_size = flash->sector_size; if (offset % erase_size || len % erase_size) { debug("SF: Erase offset/length not multiple of erase size\n"); return -1; } ret = spi_claim_bus(flash->spi); if (ret) { debug("SF: Unable to claim SPI bus\n"); return ret; } if (erase_size == 4096) cmd[0] = CMD_ERASE_4K; else cmd[0] = CMD_ERASE_64K; end = offset + len; while (offset < end) { spi_flash_addr(offset, cmd); offset += erase_size; debug("SF: erase %2x %2x %2x %2x (%x)\n", cmd[0], cmd[1], cmd[2], cmd[3], offset); ret = spi_flash_cmd_write_enable(flash); if (ret) goto out; ret = spi_flash_cmd_write(flash->spi, cmd, sizeof(cmd), NULL, 0); if (ret) goto out; ret = spi_flash_cmd_wait_ready(flash, SPI_FLASH_PAGE_ERASE_TIMEOUT); if (ret) goto out; } out: spi_release_bus(flash->spi); return ret; } int spi_flash_cmd_write_status(struct spi_flash *flash, u8 sr) { u8 cmd; int ret; ret = spi_flash_cmd_write_enable(flash); if (ret < 0) { debug("SF: enabling write failed\n"); return ret; } cmd = CMD_WRITE_STATUS; ret = spi_flash_cmd_write(flash->spi, &cmd, 1, &sr, 1); if (ret) { debug("SF: fail to write status register\n"); return ret; } ret = spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT); if (ret < 0) { debug("SF: write status register timed out\n"); return ret; } return 0; } int spi_flash_cmd_bankaddr_write(struct spi_flash *flash, u8 bank_sel) { u8 cmd; int ret; ret = spi_flash_cmd_write_enable(flash); if (ret < 0) { debug("SF: enabling write failed\n"); return ret; } ret = spi_flash_cmd_write(flash->spi, &cmd, 1, &bank_sel, 1); if (ret) { debug("SF: fail to write bank addr register\n"); return ret; } ret = spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT); if (ret < 0) { debug("SF: write bank addr register timed out\n"); return ret; } return 0; } int spi_flash_bank_config(struct spi_flash *flash, u8 idcode0) { /* discover bank cmds */ switch (idcode0) { case SPI_FLASH_SPANSION_IDCODE0: flash->bank_read_cmd = CMD_BANKADDR_BRRD; flash->bank_write_cmd = CMD_BANKADDR_BRWR; break; case SPI_FLASH_STMICRO_IDCODE0: case SPI_FLASH_WINBOND_IDCODE0: flash->bank_read_cmd = CMD_EXTNADDR_RDEAR; flash->bank_write_cmd = CMD_EXTNADDR_WREAR; break; default: printf("SF: Unsupported bank commands %02x\n", idcode0); return -1; } return 0; } #ifdef CONFIG_OF_CONTROL int spi_flash_decode_fdt(const void *blob, struct spi_flash *flash) { fdt_addr_t addr; fdt_size_t size; int node; /* If there is no node, do nothing */ node = fdtdec_next_compatible(blob, 0, COMPAT_GENERIC_SPI_FLASH); if (node < 0) return 0; addr = fdtdec_get_addr_size(blob, node, "memory-map", &size); if (addr == FDT_ADDR_T_NONE) { debug("%s: Cannot decode address\n", __func__); return 0; } if (flash->size != size) { debug("%s: Memory map must cover entire device\n", __func__); return -1; } flash->memory_map = (void *)addr; return 0; } #endif /* CONFIG_OF_CONTROL */ /* * The following table holds all device probe functions * * shift: number of continuation bytes before the ID * idcode: the expected IDCODE or 0xff for non JEDEC devices * probe: the function to call * * Non JEDEC devices should be ordered in the table such that * the probe functions with best detection algorithms come first. * * Several matching entries are permitted, they will be tried * in sequence until a probe function returns non NULL. * * IDCODE_CONT_LEN may be redefined if a device needs to declare a * larger "shift" value. IDCODE_PART_LEN generally shouldn't be * changed. This is the max number of bytes probe functions may * examine when looking up part-specific identification info. * * Probe functions will be given the idcode buffer starting at their * manu id byte (the "idcode" in the table below). In other words, * all of the continuation bytes will be skipped (the "shift" below). */ #define IDCODE_CONT_LEN 0 #define IDCODE_PART_LEN 5 static const struct { const u8 shift; const u8 idcode; struct spi_flash *(*probe) (struct spi_slave *spi, u8 *idcode); } flashes[] = { /* Keep it sorted by define name */ #ifdef CONFIG_SPI_FLASH_ATMEL { 0, 0x1f, spi_flash_probe_atmel, }, #endif #ifdef CONFIG_SPI_FLASH_EON { 0, 0x1c, spi_flash_probe_eon, }, #endif #ifdef CONFIG_SPI_FLASH_MACRONIX { 0, 0xc2, spi_flash_probe_macronix, }, #endif #ifdef CONFIG_SPI_FLASH_SPANSION { 0, 0x01, spi_flash_probe_spansion, }, #endif #ifdef CONFIG_SPI_FLASH_SST { 0, 0xbf, spi_flash_probe_sst, }, #endif #ifdef CONFIG_SPI_FLASH_STMICRO { 0, 0x20, spi_flash_probe_stmicro, }, #endif #ifdef CONFIG_SPI_FLASH_WINBOND { 0, 0xef, spi_flash_probe_winbond, }, #endif #ifdef CONFIG_SPI_FRAM_RAMTRON { 6, 0xc2, spi_fram_probe_ramtron, }, # undef IDCODE_CONT_LEN # define IDCODE_CONT_LEN 6 #endif /* Keep it sorted by best detection */ #ifdef CONFIG_SPI_FLASH_STMICRO { 0, 0xff, spi_flash_probe_stmicro, }, #endif #ifdef CONFIG_SPI_FRAM_RAMTRON_NON_JEDEC { 0, 0xff, spi_fram_probe_ramtron, }, #endif }; #define IDCODE_LEN (IDCODE_CONT_LEN + IDCODE_PART_LEN) struct spi_flash *spi_flash_probe(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int spi_mode) { struct spi_slave *spi; struct spi_flash *flash = NULL; int ret, i, shift; u8 idcode[IDCODE_LEN], *idp; spi = spi_setup_slave(bus, cs, max_hz, spi_mode); if (!spi) { printf("SF: Failed to set up slave\n"); return NULL; } ret = spi_claim_bus(spi); if (ret) { debug("SF: Failed to claim SPI bus: %d\n", ret); goto err_claim_bus; } /* Read the ID codes */ ret = spi_flash_cmd(spi, CMD_READ_ID, idcode, sizeof(idcode)); if (ret) goto err_read_id; #ifdef DEBUG printf("SF: Got idcodes\n"); print_buffer(0, idcode, 1, sizeof(idcode), 0); #endif /* count the number of continuation bytes */ for (shift = 0, idp = idcode; shift < IDCODE_CONT_LEN && *idp == 0x7f; ++shift, ++idp) continue; /* search the table for matches in shift and id */ for (i = 0; i < ARRAY_SIZE(flashes); ++i) if (flashes[i].shift == shift && flashes[i].idcode == *idp) { /* we have a match, call probe */ flash = flashes[i].probe(spi, idp); if (flash) break; } if (!flash) { printf("SF: Unsupported manufacturer %02x\n", *idp); goto err_manufacturer_probe; } #ifdef CONFIG_OF_CONTROL if (spi_flash_decode_fdt(gd->fdt_blob, flash)) { debug("SF: FDT decode error\n"); goto err_manufacturer_probe; } #endif printf("SF: Detected %s with page size ", flash->name); print_size(flash->sector_size, ", total "); print_size(flash->size, ""); if (flash->memory_map) printf(", mapped at %p", flash->memory_map); puts("\n"); spi_release_bus(spi); return flash; err_manufacturer_probe: err_read_id: spi_release_bus(spi); err_claim_bus: spi_free_slave(spi); return NULL; } void *spi_flash_do_alloc(int offset, int size, struct spi_slave *spi, const char *name) { struct spi_flash *flash; void *ptr; ptr = malloc(size); if (!ptr) { debug("SF: Failed to allocate memory\n"); return NULL; } memset(ptr, '\0', size); flash = (struct spi_flash *)(ptr + offset); /* Set up some basic fields - caller will sort out sizes */ flash->spi = spi; flash->name = name; flash->read = spi_flash_cmd_read_fast; flash->write = spi_flash_cmd_write_multi; flash->erase = spi_flash_cmd_erase; return flash; } void spi_flash_free(struct spi_flash *flash) { spi_free_slave(flash->spi); free(flash); }