// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2017-2019, 2021 NXP * * Peng Fan */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #if defined(CONFIG_IMX_HAB) struct imx_sec_config_fuse_t const imx_sec_config_fuse = { .bank = 1, .word = 3, }; #endif int timer_init(void) { #ifdef CONFIG_SPL_BUILD struct sctr_regs *sctr = (struct sctr_regs *)SYSCNT_CTRL_BASE_ADDR; unsigned long freq = readl(&sctr->cntfid0); /* Update with accurate clock frequency */ asm volatile("msr cntfrq_el0, %0" : : "r" (freq) : "memory"); clrsetbits_le32(&sctr->cntcr, SC_CNTCR_FREQ0 | SC_CNTCR_FREQ1, SC_CNTCR_FREQ0 | SC_CNTCR_ENABLE | SC_CNTCR_HDBG); #endif gd->arch.tbl = 0; gd->arch.tbu = 0; return 0; } void enable_tzc380(void) { struct iomuxc_gpr_base_regs *gpr = (struct iomuxc_gpr_base_regs *)IOMUXC_GPR_BASE_ADDR; /* Enable TZASC and lock setting */ setbits_le32(&gpr->gpr[10], GPR_TZASC_EN); setbits_le32(&gpr->gpr[10], GPR_TZASC_EN_LOCK); /* * According to TRM, TZASC_ID_SWAP_BYPASS should be set in * order to avoid AXI Bus errors when GPU is in use */ setbits_le32(&gpr->gpr[10], GPR_TZASC_ID_SWAP_BYPASS); /* * imx8mn and imx8mp implements the lock bit for * TZASC_ID_SWAP_BYPASS, enable it to lock settings */ setbits_le32(&gpr->gpr[10], GPR_TZASC_ID_SWAP_BYPASS_LOCK); /* * set Region 0 attribute to allow secure and non-secure * read/write permission. Found some masters like usb dwc3 * controllers can't work with secure memory. */ writel(0xf0000000, TZASC_BASE_ADDR + 0x108); } void set_wdog_reset(struct wdog_regs *wdog) { /* * Output WDOG_B signal to reset external pmic or POR_B decided by * the board design. Without external reset, the peripherals/DDR/ * PMIC are not reset, that may cause system working abnormal. * WDZST bit is write-once only bit. Align this bit in kernel, * otherwise kernel code will have no chance to set this bit. */ setbits_le16(&wdog->wcr, WDOG_WDT_MASK | WDOG_WDZST_MASK); } static struct mm_region imx8m_mem_map[] = { { /* ROM */ .virt = 0x0UL, .phys = 0x0UL, .size = 0x100000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE }, { /* CAAM */ .virt = 0x100000UL, .phys = 0x100000UL, .size = 0x8000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* OCRAM_S */ .virt = 0x180000UL, .phys = 0x180000UL, .size = 0x8000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE }, { /* TCM */ .virt = 0x7C0000UL, .phys = 0x7C0000UL, .size = 0x80000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* OCRAM */ .virt = 0x900000UL, .phys = 0x900000UL, .size = 0x200000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE }, { /* AIPS */ .virt = 0xB00000UL, .phys = 0xB00000UL, .size = 0x3f500000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* DRAM1 */ .virt = 0x40000000UL, .phys = 0x40000000UL, .size = PHYS_SDRAM_SIZE, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE #ifdef PHYS_SDRAM_2_SIZE }, { /* DRAM2 */ .virt = 0x100000000UL, .phys = 0x100000000UL, .size = PHYS_SDRAM_2_SIZE, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE #endif }, { /* empty entrie to split table entry 5 if needed when TEEs are used */ 0, }, { /* List terminator */ 0, } }; struct mm_region *mem_map = imx8m_mem_map; static unsigned int imx8m_find_dram_entry_in_mem_map(void) { int i; for (i = 0; i < ARRAY_SIZE(imx8m_mem_map); i++) if (imx8m_mem_map[i].phys == CONFIG_SYS_SDRAM_BASE) return i; hang(); /* Entry not found, this must never happen. */ } void enable_caches(void) { /* If OPTEE runs, remove OPTEE memory from MMU table to avoid speculative prefetch * If OPTEE does not run, still update the MMU table according to dram banks structure * to set correct dram size from board_phys_sdram_size */ int i = 0; /* * please make sure that entry initial value matches * imx8m_mem_map for DRAM1 */ int entry = imx8m_find_dram_entry_in_mem_map(); u64 attrs = imx8m_mem_map[entry].attrs; while (i < CONFIG_NR_DRAM_BANKS && entry < ARRAY_SIZE(imx8m_mem_map)) { if (gd->bd->bi_dram[i].start == 0) break; imx8m_mem_map[entry].phys = gd->bd->bi_dram[i].start; imx8m_mem_map[entry].virt = gd->bd->bi_dram[i].start; imx8m_mem_map[entry].size = gd->bd->bi_dram[i].size; imx8m_mem_map[entry].attrs = attrs; debug("Added memory mapping (%d): %llx %llx\n", entry, imx8m_mem_map[entry].phys, imx8m_mem_map[entry].size); i++; entry++; } icache_enable(); dcache_enable(); } __weak int board_phys_sdram_size(phys_size_t *size) { if (!size) return -EINVAL; *size = PHYS_SDRAM_SIZE; #ifdef PHYS_SDRAM_2_SIZE *size += PHYS_SDRAM_2_SIZE; #endif return 0; } int dram_init(void) { phys_size_t sdram_size; int ret; ret = board_phys_sdram_size(&sdram_size); if (ret) return ret; /* rom_pointer[1] contains the size of TEE occupies */ if (rom_pointer[1]) gd->ram_size = sdram_size - rom_pointer[1]; else gd->ram_size = sdram_size; return 0; } int dram_init_banksize(void) { int bank = 0; int ret; phys_size_t sdram_size; phys_size_t sdram_b1_size, sdram_b2_size; ret = board_phys_sdram_size(&sdram_size); if (ret) return ret; /* Bank 1 can't cross over 4GB space */ if (sdram_size > 0xc0000000) { sdram_b1_size = 0xc0000000; sdram_b2_size = sdram_size - 0xc0000000; } else { sdram_b1_size = sdram_size; sdram_b2_size = 0; } gd->bd->bi_dram[bank].start = PHYS_SDRAM; if (rom_pointer[1]) { phys_addr_t optee_start = (phys_addr_t)rom_pointer[0]; phys_size_t optee_size = (size_t)rom_pointer[1]; gd->bd->bi_dram[bank].size = optee_start - gd->bd->bi_dram[bank].start; if ((optee_start + optee_size) < (PHYS_SDRAM + sdram_b1_size)) { if (++bank >= CONFIG_NR_DRAM_BANKS) { puts("CONFIG_NR_DRAM_BANKS is not enough\n"); return -1; } gd->bd->bi_dram[bank].start = optee_start + optee_size; gd->bd->bi_dram[bank].size = PHYS_SDRAM + sdram_b1_size - gd->bd->bi_dram[bank].start; } } else { gd->bd->bi_dram[bank].size = sdram_b1_size; } if (sdram_b2_size) { if (++bank >= CONFIG_NR_DRAM_BANKS) { puts("CONFIG_NR_DRAM_BANKS is not enough for SDRAM_2\n"); return -1; } gd->bd->bi_dram[bank].start = 0x100000000UL; gd->bd->bi_dram[bank].size = sdram_b2_size; } return 0; } phys_size_t get_effective_memsize(void) { int ret; phys_size_t sdram_size; phys_size_t sdram_b1_size; ret = board_phys_sdram_size(&sdram_size); if (!ret) { /* Bank 1 can't cross over 4GB space */ if (sdram_size > 0xc0000000) { sdram_b1_size = 0xc0000000; } else { sdram_b1_size = sdram_size; } if (rom_pointer[1]) { /* We will relocate u-boot to Top of dram1. Tee position has two cases: * 1. At the top of dram1, Then return the size removed optee size. * 2. In the middle of dram1, return the size of dram1. */ if ((rom_pointer[0] + rom_pointer[1]) == (PHYS_SDRAM + sdram_b1_size)) return ((phys_addr_t)rom_pointer[0] - PHYS_SDRAM); } return sdram_b1_size; } else { return PHYS_SDRAM_SIZE; } } ulong board_get_usable_ram_top(ulong total_size) { ulong top_addr; /* * Some IPs have their accessible address space restricted by * the interconnect. Let's make sure U-Boot only ever uses the * space below the 4G address boundary (which is 3GiB big), * even when the effective available memory is bigger. */ top_addr = clamp_val((u64)PHYS_SDRAM + gd->ram_size, 0, 0xffffffff); /* * rom_pointer[0] stores the TEE memory start address. * rom_pointer[1] stores the size TEE uses. * We need to reserve the memory region for TEE. */ if (rom_pointer[0] && rom_pointer[1] && top_addr > rom_pointer[0]) top_addr = rom_pointer[0]; return top_addr; } static u32 get_cpu_variant_type(u32 type) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[1]; struct fuse_bank1_regs *fuse = (struct fuse_bank1_regs *)bank->fuse_regs; u32 value = readl(&fuse->tester4); if (type == MXC_CPU_IMX8MQ) { if ((value & 0x3) == 0x2) return MXC_CPU_IMX8MD; else if (value & 0x200000) return MXC_CPU_IMX8MQL; } else if (type == MXC_CPU_IMX8MM) { switch (value & 0x3) { case 2: if (value & 0x1c0000) return MXC_CPU_IMX8MMDL; else return MXC_CPU_IMX8MMD; case 3: if (value & 0x1c0000) return MXC_CPU_IMX8MMSL; else return MXC_CPU_IMX8MMS; default: if (value & 0x1c0000) return MXC_CPU_IMX8MML; break; } } else if (type == MXC_CPU_IMX8MN) { switch (value & 0x3) { case 2: if (value & 0x1000000) { if (value & 0x10000000) /* MIPI DSI */ return MXC_CPU_IMX8MNUD; else return MXC_CPU_IMX8MNDL; } else { return MXC_CPU_IMX8MND; } case 3: if (value & 0x1000000) { if (value & 0x10000000) /* MIPI DSI */ return MXC_CPU_IMX8MNUS; else return MXC_CPU_IMX8MNSL; } else { return MXC_CPU_IMX8MNS; } default: if (value & 0x1000000) { if (value & 0x10000000) /* MIPI DSI */ return MXC_CPU_IMX8MNUQ; else return MXC_CPU_IMX8MNL; } break; } } else if (type == MXC_CPU_IMX8MP) { u32 value0 = readl(&fuse->tester3); u32 flag = 0; if ((value0 & 0xc0000) == 0x80000) return MXC_CPU_IMX8MPD; /* vpu disabled */ if ((value0 & 0x43000000) == 0x43000000) flag = 1; /* npu disabled*/ if ((value & 0x8) == 0x8) flag |= BIT(1); /* isp disabled */ if ((value & 0x3) == 0x3) flag |= BIT(2); /* gpu disabled */ if ((value & 0xc0) == 0xc0) flag |= BIT(3); /* lvds disabled */ if ((value & 0x180000) == 0x180000) flag |= BIT(4); /* mipi dsi disabled */ if ((value & 0x60000) == 0x60000) flag |= BIT(5); switch (flag) { case 0x3f: return MXC_CPU_IMX8MPUL; case 7: return MXC_CPU_IMX8MPL; case 2: return MXC_CPU_IMX8MP6; default: break; } } return type; } u32 get_cpu_rev(void) { struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR; u32 reg = readl(&ana_pll->digprog); u32 type = (reg >> 16) & 0xff; u32 major_low = (reg >> 8) & 0xff; u32 rom_version; reg &= 0xff; /* iMX8MP */ if (major_low == 0x43) { type = get_cpu_variant_type(MXC_CPU_IMX8MP); } else if (major_low == 0x42) { /* iMX8MN */ type = get_cpu_variant_type(MXC_CPU_IMX8MN); } else if (major_low == 0x41) { type = get_cpu_variant_type(MXC_CPU_IMX8MM); } else { if (reg == CHIP_REV_1_0) { /* * For B0 chip, the DIGPROG is not updated, * it is still TO1.0. we have to check ROM * version or OCOTP_READ_FUSE_DATA. * 0xff0055aa is magic number for B1. */ if (readl((void __iomem *)(OCOTP_BASE_ADDR + 0x40)) == 0xff0055aa) { /* * B2 uses same DIGPROG and OCOTP_READ_FUSE_DATA value with B1, * so have to check ROM to distinguish them */ rom_version = readl((void __iomem *)ROM_VERSION_B0); rom_version &= 0xff; if (rom_version == CHIP_REV_2_2) reg = CHIP_REV_2_2; else reg = CHIP_REV_2_1; } else { rom_version = readl((void __iomem *)ROM_VERSION_A0); if (rom_version != CHIP_REV_1_0) { rom_version = readl((void __iomem *)ROM_VERSION_B0); rom_version &= 0xff; if (rom_version == CHIP_REV_2_0) reg = CHIP_REV_2_0; } } } type = get_cpu_variant_type(type); } return (type << 12) | reg; } static void imx_set_wdog_powerdown(bool enable) { struct wdog_regs *wdog1 = (struct wdog_regs *)WDOG1_BASE_ADDR; struct wdog_regs *wdog2 = (struct wdog_regs *)WDOG2_BASE_ADDR; struct wdog_regs *wdog3 = (struct wdog_regs *)WDOG3_BASE_ADDR; /* Write to the PDE (Power Down Enable) bit */ writew(enable, &wdog1->wmcr); writew(enable, &wdog2->wmcr); writew(enable, &wdog3->wmcr); } static int imx8m_check_clock(void *ctx, struct event *event) { struct udevice *dev; int ret; if (CONFIG_IS_ENABLED(CLK)) { ret = uclass_get_device_by_name(UCLASS_CLK, "clock-controller@30380000", &dev); if (ret < 0) { printf("Failed to find clock node. Check device tree\n"); return ret; } } return 0; } EVENT_SPY(EVT_DM_POST_INIT, imx8m_check_clock); int arch_cpu_init(void) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; #if !CONFIG_IS_ENABLED(SYS_ICACHE_OFF) icache_enable(); #endif /* * ROM might disable clock for SCTR, * enable the clock before timer_init. */ if (IS_ENABLED(CONFIG_SPL_BUILD)) clock_enable(CCGR_SCTR, 1); /* * Init timer at very early state, because sscg pll setting * will use it */ timer_init(); if (IS_ENABLED(CONFIG_SPL_BUILD)) { clock_init(); imx_set_wdog_powerdown(false); if (is_imx8md() || is_imx8mmd() || is_imx8mmdl() || is_imx8mms() || is_imx8mmsl() || is_imx8mnd() || is_imx8mndl() || is_imx8mns() || is_imx8mnsl() || is_imx8mpd() || is_imx8mnud() || is_imx8mnus()) { /* Power down cpu core 1, 2 and 3 for iMX8M Dual core or Single core */ struct pgc_reg *pgc_core1 = (struct pgc_reg *)(GPC_BASE_ADDR + 0x840); struct pgc_reg *pgc_core2 = (struct pgc_reg *)(GPC_BASE_ADDR + 0x880); struct pgc_reg *pgc_core3 = (struct pgc_reg *)(GPC_BASE_ADDR + 0x8C0); struct gpc_reg *gpc = (struct gpc_reg *)GPC_BASE_ADDR; writel(0x1, &pgc_core2->pgcr); writel(0x1, &pgc_core3->pgcr); if (is_imx8mms() || is_imx8mmsl() || is_imx8mns() || is_imx8mnsl() || is_imx8mnus()) { writel(0x1, &pgc_core1->pgcr); writel(0xE, &gpc->cpu_pgc_dn_trg); } else { writel(0xC, &gpc->cpu_pgc_dn_trg); } } } if (is_imx8mq()) { clock_enable(CCGR_OCOTP, 1); if (readl(&ocotp->ctrl) & 0x200) writel(0x200, &ocotp->ctrl_clr); } return 0; } #if defined(CONFIG_IMX8MN) || defined(CONFIG_IMX8MP) struct rom_api *g_rom_api = (struct rom_api *)0x980; enum boot_device get_boot_device(void) { volatile gd_t *pgd = gd; int ret; u32 boot; u16 boot_type; u8 boot_instance; enum boot_device boot_dev = SD1_BOOT; ret = g_rom_api->query_boot_infor(QUERY_BT_DEV, &boot, ((uintptr_t)&boot) ^ QUERY_BT_DEV); set_gd(pgd); if (ret != ROM_API_OKAY) { puts("ROMAPI: failure at query_boot_info\n"); return -1; } boot_type = boot >> 16; boot_instance = (boot >> 8) & 0xff; switch (boot_type) { case BT_DEV_TYPE_SD: boot_dev = boot_instance + SD1_BOOT; break; case BT_DEV_TYPE_MMC: boot_dev = boot_instance + MMC1_BOOT; break; case BT_DEV_TYPE_NAND: boot_dev = NAND_BOOT; break; case BT_DEV_TYPE_FLEXSPINOR: boot_dev = QSPI_BOOT; break; case BT_DEV_TYPE_SPI_NOR: boot_dev = SPI_NOR_BOOT; break; case BT_DEV_TYPE_USB: boot_dev = USB_BOOT; break; default: break; } return boot_dev; } #endif #if defined(CONFIG_IMX8M) #include int spl_mmc_emmc_boot_partition(struct mmc *mmc) { u32 *rom_log_addr = (u32 *)0x9e0; u32 *rom_log; u8 event_id; int i, part; part = default_spl_mmc_emmc_boot_partition(mmc); /* If the ROM event log pointer is not valid. */ if (*rom_log_addr < 0x900000 || *rom_log_addr >= 0xb00000 || *rom_log_addr & 0x3) return part; /* Parse the ROM event ID version 2 log */ rom_log = (u32 *)(uintptr_t)(*rom_log_addr); for (i = 0; i < 128; i++) { event_id = rom_log[i] >> 24; switch (event_id) { case 0x00: /* End of list */ return part; /* Log entries with 1 parameter, skip 1 */ case 0x80: /* Start to perform the device initialization */ case 0x81: /* The boot device initialization completes */ case 0x8f: /* The boot device initialization fails */ case 0x90: /* Start to read data from boot device */ case 0x91: /* Reading data from boot device completes */ case 0x9f: /* Reading data from boot device fails */ i += 1; continue; /* Log entries with 2 parameters, skip 2 */ case 0xa0: /* Image authentication result */ case 0xc0: /* Jump to the boot image soon */ i += 2; continue; /* Boot from the secondary boot image */ case 0x51: /* * Swap the eMMC boot partitions in case there was a * fallback event (i.e. primary image was corrupted * and that corruption was recognized by the BootROM), * so the SPL loads the rest of the U-Boot from the * correct eMMC boot partition, since the BootROM * leaves the boot partition set to the corrupted one. */ if (part == 1) part = 2; else if (part == 2) part = 1; continue; default: continue; } } return part; } #endif bool is_usb_boot(void) { return get_boot_device() == USB_BOOT; } #ifdef CONFIG_OF_SYSTEM_SETUP bool check_fdt_new_path(void *blob) { const char *soc_path = "/soc@0"; int nodeoff; nodeoff = fdt_path_offset(blob, soc_path); if (nodeoff < 0) return false; return true; } static int disable_fdt_nodes(void *blob, const char *const nodes_path[], int size_array) { int i = 0; int rc; int nodeoff; const char *status = "disabled"; for (i = 0; i < size_array; i++) { nodeoff = fdt_path_offset(blob, nodes_path[i]); if (nodeoff < 0) continue; /* Not found, skip it */ printf("Found %s node\n", nodes_path[i]); add_status: rc = fdt_setprop(blob, nodeoff, "status", status, strlen(status) + 1); if (rc) { if (rc == -FDT_ERR_NOSPACE) { rc = fdt_increase_size(blob, 512); if (!rc) goto add_status; } printf("Unable to update property %s:%s, err=%s\n", nodes_path[i], "status", fdt_strerror(rc)); } else { printf("Modify %s:%s disabled\n", nodes_path[i], "status"); } } return 0; } #ifdef CONFIG_IMX8MQ bool check_dcss_fused(void) { struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[1]; struct fuse_bank1_regs *fuse = (struct fuse_bank1_regs *)bank->fuse_regs; u32 value = readl(&fuse->tester4); if (value & 0x4000000) return true; return false; } static int disable_mipi_dsi_nodes(void *blob) { static const char * const nodes_path[] = { "/mipi_dsi@30A00000", "/mipi_dsi_bridge@30A00000", "/dsi_phy@30A00300", "/soc@0/bus@30800000/mipi_dsi@30a00000", "/soc@0/bus@30800000/dphy@30a00300", "/soc@0/bus@30800000/mipi-dsi@30a00000", }; return disable_fdt_nodes(blob, nodes_path, ARRAY_SIZE(nodes_path)); } static int disable_dcss_nodes(void *blob) { static const char * const nodes_path[] = { "/dcss@0x32e00000", "/dcss@32e00000", "/hdmi@32c00000", "/hdmi_cec@32c33800", "/hdmi_drm@32c00000", "/display-subsystem", "/sound-hdmi", "/sound-hdmi-arc", "/soc@0/bus@32c00000/display-controller@32e00000", "/soc@0/bus@32c00000/hdmi@32c00000", }; return disable_fdt_nodes(blob, nodes_path, ARRAY_SIZE(nodes_path)); } static int check_mipi_dsi_nodes(void *blob) { static const char * const lcdif_path[] = { "/lcdif@30320000", "/soc@0/bus@30000000/lcdif@30320000", "/soc@0/bus@30000000/lcd-controller@30320000" }; static const char * const mipi_dsi_path[] = { "/mipi_dsi@30A00000", "/soc@0/bus@30800000/mipi_dsi@30a00000" }; static const char * const lcdif_ep_path[] = { "/lcdif@30320000/port@0/mipi-dsi-endpoint", "/soc@0/bus@30000000/lcdif@30320000/port@0/endpoint", "/soc@0/bus@30000000/lcd-controller@30320000/port@0/endpoint" }; static const char * const mipi_dsi_ep_path[] = { "/mipi_dsi@30A00000/port@1/endpoint", "/soc@0/bus@30800000/mipi_dsi@30a00000/ports/port@0/endpoint", "/soc@0/bus@30800000/mipi-dsi@30a00000/ports/port@0/endpoint@0" }; int lookup_node; int nodeoff; bool new_path = check_fdt_new_path(blob); int i = new_path ? 1 : 0; nodeoff = fdt_path_offset(blob, lcdif_path[i]); if (nodeoff < 0 || !fdtdec_get_is_enabled(blob, nodeoff)) { /* * If can't find lcdif node or lcdif node is disabled, * then disable all mipi dsi, since they only can input * from DCSS */ return disable_mipi_dsi_nodes(blob); } nodeoff = fdt_path_offset(blob, mipi_dsi_path[i]); if (nodeoff < 0 || !fdtdec_get_is_enabled(blob, nodeoff)) return 0; nodeoff = fdt_path_offset(blob, lcdif_ep_path[i]); if (nodeoff < 0) { /* * If can't find lcdif endpoint, then disable all mipi dsi, * since they only can input from DCSS */ return disable_mipi_dsi_nodes(blob); } lookup_node = fdtdec_lookup_phandle(blob, nodeoff, "remote-endpoint"); nodeoff = fdt_path_offset(blob, mipi_dsi_ep_path[i]); if (nodeoff > 0 && nodeoff == lookup_node) return 0; return disable_mipi_dsi_nodes(blob); } #endif int disable_vpu_nodes(void *blob) { static const char * const nodes_path_8mq[] = { "/vpu@38300000", "/soc@0/vpu@38300000" }; static const char * const nodes_path_8mm[] = { "/vpu_g1@38300000", "/vpu_g2@38310000", "/vpu_h1@38320000" }; static const char * const nodes_path_8mp[] = { "/vpu_g1@38300000", "/vpu_g2@38310000", "/vpu_vc8000e@38320000" }; if (is_imx8mq()) return disable_fdt_nodes(blob, nodes_path_8mq, ARRAY_SIZE(nodes_path_8mq)); else if (is_imx8mm()) return disable_fdt_nodes(blob, nodes_path_8mm, ARRAY_SIZE(nodes_path_8mm)); else if (is_imx8mp()) return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp)); else return -EPERM; } #ifdef CONFIG_IMX8MN_LOW_DRIVE_MODE static int low_drive_gpu_freq(void *blob) { static const char *nodes_path_8mn[] = { "/gpu@38000000", "/soc@0/gpu@38000000" }; int nodeoff, cnt, i; u32 assignedclks[7]; nodeoff = fdt_path_offset(blob, nodes_path_8mn[0]); if (nodeoff < 0) return nodeoff; cnt = fdtdec_get_int_array_count(blob, nodeoff, "assigned-clock-rates", assignedclks, 7); if (cnt < 0) return cnt; if (cnt != 7) printf("Warning: %s, assigned-clock-rates count %d\n", nodes_path_8mn[0], cnt); assignedclks[cnt - 1] = 200000000; assignedclks[cnt - 2] = 200000000; for (i = 0; i < cnt; i++) { debug("<%u>, ", assignedclks[i]); assignedclks[i] = cpu_to_fdt32(assignedclks[i]); } debug("\n"); return fdt_setprop(blob, nodeoff, "assigned-clock-rates", &assignedclks, sizeof(assignedclks)); } #endif static bool check_remote_endpoint(void *blob, const char *ep1, const char *ep2) { int lookup_node; int nodeoff; nodeoff = fdt_path_offset(blob, ep1); if (nodeoff) { lookup_node = fdtdec_lookup_phandle(blob, nodeoff, "remote-endpoint"); nodeoff = fdt_path_offset(blob, ep2); if (nodeoff > 0 && nodeoff == lookup_node) return true; } return false; } int disable_dsi_lcdif_nodes(void *blob) { int ret; static const char * const dsi_path_8mp[] = { "/soc@0/bus@32c00000/mipi_dsi@32e60000" }; static const char * const lcdif_path_8mp[] = { "/soc@0/bus@32c00000/lcd-controller@32e80000" }; static const char * const lcdif_ep_path_8mp[] = { "/soc@0/bus@32c00000/lcd-controller@32e80000/port@0/endpoint" }; static const char * const dsi_ep_path_8mp[] = { "/soc@0/bus@32c00000/mipi_dsi@32e60000/port@0/endpoint" }; ret = disable_fdt_nodes(blob, dsi_path_8mp, ARRAY_SIZE(dsi_path_8mp)); if (ret) return ret; if (check_remote_endpoint(blob, dsi_ep_path_8mp[0], lcdif_ep_path_8mp[0])) { /* Disable lcdif node */ return disable_fdt_nodes(blob, lcdif_path_8mp, ARRAY_SIZE(lcdif_path_8mp)); } return 0; } int disable_lvds_lcdif_nodes(void *blob) { int ret, i; static const char * const ldb_path_8mp[] = { "/soc@0/bus@32c00000/ldb@32ec005c", "/soc@0/bus@32c00000/phy@32ec0128" }; static const char * const lcdif_path_8mp[] = { "/soc@0/bus@32c00000/lcd-controller@32e90000" }; static const char * const lcdif_ep_path_8mp[] = { "/soc@0/bus@32c00000/lcd-controller@32e90000/port@0/endpoint@0", "/soc@0/bus@32c00000/lcd-controller@32e90000/port@0/endpoint@1" }; static const char * const ldb_ep_path_8mp[] = { "/soc@0/bus@32c00000/ldb@32ec005c/lvds-channel@0/port@0/endpoint", "/soc@0/bus@32c00000/ldb@32ec005c/lvds-channel@1/port@0/endpoint" }; ret = disable_fdt_nodes(blob, ldb_path_8mp, ARRAY_SIZE(ldb_path_8mp)); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(ldb_ep_path_8mp); i++) { if (check_remote_endpoint(blob, ldb_ep_path_8mp[i], lcdif_ep_path_8mp[i])) { /* Disable lcdif node */ return disable_fdt_nodes(blob, lcdif_path_8mp, ARRAY_SIZE(lcdif_path_8mp)); } } return 0; } int disable_gpu_nodes(void *blob) { static const char * const nodes_path_8mn[] = { "/gpu@38000000", "/soc@/gpu@38000000" }; static const char * const nodes_path_8mp[] = { "/gpu3d@38000000", "/gpu2d@38008000" }; if (is_imx8mp()) return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp)); else return disable_fdt_nodes(blob, nodes_path_8mn, ARRAY_SIZE(nodes_path_8mn)); } int disable_npu_nodes(void *blob) { static const char * const nodes_path_8mp[] = { "/vipsi@38500000" }; return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp)); } int disable_isp_nodes(void *blob) { static const char * const nodes_path_8mp[] = { "/soc@0/bus@32c00000/camera/isp@32e10000", "/soc@0/bus@32c00000/camera/isp@32e20000" }; return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp)); } int disable_dsp_nodes(void *blob) { static const char * const nodes_path_8mp[] = { "/dsp@3b6e8000" }; return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp)); } static void disable_thermal_cpu_nodes(void *blob, u32 disabled_cores) { static const char * const thermal_path[] = { "/thermal-zones/cpu-thermal/cooling-maps/map0" }; int nodeoff, cnt, i, ret, j; u32 cooling_dev[12]; for (i = 0; i < ARRAY_SIZE(thermal_path); i++) { nodeoff = fdt_path_offset(blob, thermal_path[i]); if (nodeoff < 0) continue; /* Not found, skip it */ cnt = fdtdec_get_int_array_count(blob, nodeoff, "cooling-device", cooling_dev, 12); if (cnt < 0) continue; if (cnt != 12) printf("Warning: %s, cooling-device count %d\n", thermal_path[i], cnt); for (j = 0; j < cnt; j++) cooling_dev[j] = cpu_to_fdt32(cooling_dev[j]); ret = fdt_setprop(blob, nodeoff, "cooling-device", &cooling_dev, sizeof(u32) * (12 - disabled_cores * 3)); if (ret < 0) { printf("Warning: %s, cooling-device setprop failed %d\n", thermal_path[i], ret); continue; } printf("Update node %s, cooling-device prop\n", thermal_path[i]); } } static void disable_pmu_cpu_nodes(void *blob, u32 disabled_cores) { static const char * const pmu_path[] = { "/pmu" }; int nodeoff, cnt, i, ret, j; u32 irq_affinity[4]; for (i = 0; i < ARRAY_SIZE(pmu_path); i++) { nodeoff = fdt_path_offset(blob, pmu_path[i]); if (nodeoff < 0) continue; /* Not found, skip it */ cnt = fdtdec_get_int_array_count(blob, nodeoff, "interrupt-affinity", irq_affinity, 4); if (cnt < 0) continue; if (cnt != 4) printf("Warning: %s, interrupt-affinity count %d\n", pmu_path[i], cnt); for (j = 0; j < cnt; j++) irq_affinity[j] = cpu_to_fdt32(irq_affinity[j]); ret = fdt_setprop(blob, nodeoff, "interrupt-affinity", &irq_affinity, sizeof(u32) * (4 - disabled_cores)); if (ret < 0) { printf("Warning: %s, interrupt-affinity setprop failed %d\n", pmu_path[i], ret); continue; } printf("Update node %s, interrupt-affinity prop\n", pmu_path[i]); } } static int disable_cpu_nodes(void *blob, u32 disabled_cores) { static const char * const nodes_path[] = { "/cpus/cpu@1", "/cpus/cpu@2", "/cpus/cpu@3", }; u32 i = 0; int rc; int nodeoff; if (disabled_cores > 3) return -EINVAL; i = 3 - disabled_cores; for (; i < 3; i++) { nodeoff = fdt_path_offset(blob, nodes_path[i]); if (nodeoff < 0) continue; /* Not found, skip it */ debug("Found %s node\n", nodes_path[i]); rc = fdt_del_node(blob, nodeoff); if (rc < 0) { printf("Unable to delete node %s, err=%s\n", nodes_path[i], fdt_strerror(rc)); } else { printf("Delete node %s\n", nodes_path[i]); } } disable_thermal_cpu_nodes(blob, disabled_cores); disable_pmu_cpu_nodes(blob, disabled_cores); return 0; } static int cleanup_nodes_for_efi(void *blob) { static const char * const path[][2] = { { "/soc@0/bus@32c00000/usb@32e40000", "extcon" }, { "/soc@0/bus@32c00000/usb@32e50000", "extcon" }, { "/soc@0/bus@30800000/ethernet@30be0000", "phy-reset-gpios" }, { "/soc@0/bus@30800000/ethernet@30bf0000", "phy-reset-gpios" } }; int nodeoff, i, rc; for (i = 0; i < ARRAY_SIZE(path); i++) { nodeoff = fdt_path_offset(blob, path[i][0]); if (nodeoff < 0) continue; /* Not found, skip it */ debug("Found %s node\n", path[i][0]); rc = fdt_delprop(blob, nodeoff, path[i][1]); if (rc == -FDT_ERR_NOTFOUND) continue; if (rc) { printf("Unable to update property %s:%s, err=%s\n", path[i][0], path[i][1], fdt_strerror(rc)); return rc; } printf("Remove %s:%s\n", path[i][0], path[i][1]); } return 0; } int ft_system_setup(void *blob, struct bd_info *bd) { #ifdef CONFIG_IMX8MQ int i = 0; int rc; int nodeoff; if (get_boot_device() == USB_BOOT) { disable_dcss_nodes(blob); bool new_path = check_fdt_new_path(blob); int v = new_path ? 1 : 0; static const char * const usb_dwc3_path[] = { "/usb@38100000/dwc3", "/soc@0/usb@38100000" }; nodeoff = fdt_path_offset(blob, usb_dwc3_path[v]); if (nodeoff >= 0) { const char *speed = "high-speed"; printf("Found %s node\n", usb_dwc3_path[v]); usb_modify_speed: rc = fdt_setprop(blob, nodeoff, "maximum-speed", speed, strlen(speed) + 1); if (rc) { if (rc == -FDT_ERR_NOSPACE) { rc = fdt_increase_size(blob, 512); if (!rc) goto usb_modify_speed; } printf("Unable to set property %s:%s, err=%s\n", usb_dwc3_path[v], "maximum-speed", fdt_strerror(rc)); } else { printf("Modify %s:%s = %s\n", usb_dwc3_path[v], "maximum-speed", speed); } } else { printf("Can't found %s node\n", usb_dwc3_path[v]); } } /* Disable the CPU idle for A0 chip since the HW does not support it */ if (is_soc_rev(CHIP_REV_1_0)) { static const char * const nodes_path[] = { "/cpus/cpu@0", "/cpus/cpu@1", "/cpus/cpu@2", "/cpus/cpu@3", }; for (i = 0; i < ARRAY_SIZE(nodes_path); i++) { nodeoff = fdt_path_offset(blob, nodes_path[i]); if (nodeoff < 0) continue; /* Not found, skip it */ debug("Found %s node\n", nodes_path[i]); rc = fdt_delprop(blob, nodeoff, "cpu-idle-states"); if (rc == -FDT_ERR_NOTFOUND) continue; if (rc) { printf("Unable to update property %s:%s, err=%s\n", nodes_path[i], "status", fdt_strerror(rc)); return rc; } debug("Remove %s:%s\n", nodes_path[i], "cpu-idle-states"); } } if (is_imx8mql()) { disable_vpu_nodes(blob); if (check_dcss_fused()) { printf("DCSS is fused\n"); disable_dcss_nodes(blob); check_mipi_dsi_nodes(blob); } } if (is_imx8md()) disable_cpu_nodes(blob, 2); #elif defined(CONFIG_IMX8MM) if (is_imx8mml() || is_imx8mmdl() || is_imx8mmsl()) disable_vpu_nodes(blob); if (is_imx8mmd() || is_imx8mmdl()) disable_cpu_nodes(blob, 2); else if (is_imx8mms() || is_imx8mmsl()) disable_cpu_nodes(blob, 3); #elif defined(CONFIG_IMX8MN) if (is_imx8mnl() || is_imx8mndl() || is_imx8mnsl()) disable_gpu_nodes(blob); #ifdef CONFIG_IMX8MN_LOW_DRIVE_MODE else { int ldm_gpu = low_drive_gpu_freq(blob); if (ldm_gpu < 0) printf("Update GPU node assigned-clock-rates failed\n"); else printf("Update GPU node assigned-clock-rates ok\n"); } #endif if (is_imx8mnd() || is_imx8mndl() || is_imx8mnud()) disable_cpu_nodes(blob, 2); else if (is_imx8mns() || is_imx8mnsl() || is_imx8mnus()) disable_cpu_nodes(blob, 3); #elif defined(CONFIG_IMX8MP) if (is_imx8mpul()) { /* Disable GPU */ disable_gpu_nodes(blob); /* Disable DSI */ disable_dsi_lcdif_nodes(blob); /* Disable LVDS */ disable_lvds_lcdif_nodes(blob); } if (is_imx8mpul() || is_imx8mpl()) disable_vpu_nodes(blob); if (is_imx8mpul() || is_imx8mpl() || is_imx8mp6()) disable_npu_nodes(blob); if (is_imx8mpul() || is_imx8mpl()) disable_isp_nodes(blob); if (is_imx8mpul() || is_imx8mpl() || is_imx8mp6()) disable_dsp_nodes(blob); if (is_imx8mpd()) disable_cpu_nodes(blob, 2); #endif cleanup_nodes_for_efi(blob); return 0; } #endif #ifdef CONFIG_OF_BOARD_FIXUP #ifndef CONFIG_SPL_BUILD int board_fix_fdt(void *fdt) { if (is_imx8mpul()) { int i = 0; int nodeoff, ret; const char *status = "disabled"; static const char * const dsi_nodes[] = { "/soc@0/bus@32c00000/mipi_dsi@32e60000", "/soc@0/bus@32c00000/lcd-controller@32e80000", "/dsi-host" }; for (i = 0; i < ARRAY_SIZE(dsi_nodes); i++) { nodeoff = fdt_path_offset(fdt, dsi_nodes[i]); if (nodeoff > 0) { set_status: ret = fdt_setprop(fdt, nodeoff, "status", status, strlen(status) + 1); if (ret == -FDT_ERR_NOSPACE) { ret = fdt_increase_size(fdt, 512); if (!ret) goto set_status; } } } } return 0; } #endif #endif #if !CONFIG_IS_ENABLED(SYSRESET) void reset_cpu(void) { struct watchdog_regs *wdog = (struct watchdog_regs *)WDOG1_BASE_ADDR; /* Clear WDA to trigger WDOG_B immediately */ writew((SET_WCR_WT(1) | WCR_WDT | WCR_WDE | WCR_SRS), &wdog->wcr); while (1) { /* * spin for .5 seconds before reset */ } } #endif #if defined(CONFIG_ARCH_MISC_INIT) int arch_misc_init(void) { if (IS_ENABLED(CONFIG_FSL_CAAM)) { struct udevice *dev; int ret; ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(caam_jr), &dev); if (ret) printf("Failed to initialize caam_jr: %d\n", ret); } return 0; } #endif void imx_tmu_arch_init(void *reg_base) { if (is_imx8mm() || is_imx8mn()) { /* Load TCALIV and TASR from fuses */ struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[3]; struct fuse_bank3_regs *fuse = (struct fuse_bank3_regs *)bank->fuse_regs; u32 tca_rt, tca_hr, tca_en; u32 buf_vref, buf_slope; tca_rt = fuse->ana0 & 0xFF; tca_hr = (fuse->ana0 & 0xFF00) >> 8; tca_en = (fuse->ana0 & 0x2000000) >> 25; buf_vref = (fuse->ana0 & 0x1F00000) >> 20; buf_slope = (fuse->ana0 & 0xF0000) >> 16; writel(buf_vref | (buf_slope << 16), (ulong)reg_base + 0x28); writel((tca_en << 31) | (tca_hr << 16) | tca_rt, (ulong)reg_base + 0x30); } #ifdef CONFIG_IMX8MP /* Load TCALIV0/1/m40 and TRIM from fuses */ struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[38]; struct fuse_bank38_regs *fuse = (struct fuse_bank38_regs *)bank->fuse_regs; struct fuse_bank *bank2 = &ocotp->bank[39]; struct fuse_bank39_regs *fuse2 = (struct fuse_bank39_regs *)bank2->fuse_regs; u32 buf_vref, buf_slope, bjt_cur, vlsb, bgr; u32 reg; u32 tca40[2], tca25[2], tca105[2]; /* For blank sample */ if (!fuse->ana_trim2 && !fuse->ana_trim3 && !fuse->ana_trim4 && !fuse2->ana_trim5) { /* Use a default 25C binary codes */ tca25[0] = 1596; tca25[1] = 1596; writel(tca25[0], (ulong)reg_base + 0x30); writel(tca25[1], (ulong)reg_base + 0x34); return; } buf_vref = (fuse->ana_trim2 & 0xc0) >> 6; buf_slope = (fuse->ana_trim2 & 0xF00) >> 8; bjt_cur = (fuse->ana_trim2 & 0xF000) >> 12; bgr = (fuse->ana_trim2 & 0xF0000) >> 16; vlsb = (fuse->ana_trim2 & 0xF00000) >> 20; writel(buf_vref | (buf_slope << 16), (ulong)reg_base + 0x28); reg = (bgr << 28) | (bjt_cur << 20) | (vlsb << 12) | (1 << 7); writel(reg, (ulong)reg_base + 0x3c); tca40[0] = (fuse->ana_trim3 & 0xFFF0000) >> 16; tca25[0] = (fuse->ana_trim3 & 0xF0000000) >> 28; tca25[0] |= ((fuse->ana_trim4 & 0xFF) << 4); tca105[0] = (fuse->ana_trim4 & 0xFFF00) >> 8; tca40[1] = (fuse->ana_trim4 & 0xFFF00000) >> 20; tca25[1] = fuse2->ana_trim5 & 0xFFF; tca105[1] = (fuse2->ana_trim5 & 0xFFF000) >> 12; /* use 25c for 1p calibration */ writel(tca25[0] | (tca105[0] << 16), (ulong)reg_base + 0x30); writel(tca25[1] | (tca105[1] << 16), (ulong)reg_base + 0x34); writel(tca40[0] | (tca40[1] << 16), (ulong)reg_base + 0x38); #endif } #if defined(CONFIG_SPL_BUILD) #if defined(CONFIG_IMX8MQ) || defined(CONFIG_IMX8MM) || defined(CONFIG_IMX8MN) bool serror_need_skip = true; void do_error(struct pt_regs *pt_regs) { /* * If stack is still in ROM reserved OCRAM not switch to SPL, * it is the ROM SError */ ulong sp; asm volatile("mov %0, sp" : "=r"(sp) : ); if (serror_need_skip && sp < 0x910000 && sp >= 0x900000) { /* Check for ERR050342, imx8mq HDCP enabled parts */ if (is_imx8mq() && !(readl(OCOTP_BASE_ADDR + 0x450) & 0x08000000)) { serror_need_skip = false; return; /* Do nothing skip the SError in ROM */ } /* Check for ERR050350, field return mode for imx8mq, mm and mn */ if (readl(OCOTP_BASE_ADDR + 0x630) & 0x1) { serror_need_skip = false; return; /* Do nothing skip the SError in ROM */ } } efi_restore_gd(); printf("\"Error\" handler, esr 0x%08lx\n", pt_regs->esr); show_regs(pt_regs); panic("Resetting CPU ...\n"); } #endif #endif #if defined(CONFIG_IMX8MN) || defined(CONFIG_IMX8MP) enum env_location arch_env_get_location(enum env_operation op, int prio) { enum boot_device dev = get_boot_device(); if (prio) return ENVL_UNKNOWN; switch (dev) { case USB_BOOT: if (IS_ENABLED(CONFIG_ENV_IS_IN_SPI_FLASH)) return ENVL_SPI_FLASH; if (IS_ENABLED(CONFIG_ENV_IS_IN_NAND)) return ENVL_NAND; if (IS_ENABLED(CONFIG_ENV_IS_IN_MMC)) return ENVL_MMC; if (IS_ENABLED(CONFIG_ENV_IS_NOWHERE)) return ENVL_NOWHERE; return ENVL_UNKNOWN; case QSPI_BOOT: case SPI_NOR_BOOT: if (IS_ENABLED(CONFIG_ENV_IS_IN_SPI_FLASH)) return ENVL_SPI_FLASH; return ENVL_NOWHERE; case NAND_BOOT: if (IS_ENABLED(CONFIG_ENV_IS_IN_NAND)) return ENVL_NAND; return ENVL_NOWHERE; case SD1_BOOT: case SD2_BOOT: case SD3_BOOT: case MMC1_BOOT: case MMC2_BOOT: case MMC3_BOOT: if (IS_ENABLED(CONFIG_ENV_IS_IN_MMC)) return ENVL_MMC; else if (IS_ENABLED(CONFIG_ENV_IS_IN_EXT4)) return ENVL_EXT4; else if (IS_ENABLED(CONFIG_ENV_IS_IN_FAT)) return ENVL_FAT; return ENVL_NOWHERE; default: return ENVL_NOWHERE; } } #endif #ifdef CONFIG_IMX_BOOTAUX const struct rproc_att hostmap[] = { /* aux core , host core, size */ { 0x00000000, 0x007e0000, 0x00020000 }, /* OCRAM_S */ { 0x00180000, 0x00180000, 0x00008000 }, /* OCRAM */ { 0x00900000, 0x00900000, 0x00020000 }, /* OCRAM */ { 0x00920000, 0x00920000, 0x00020000 }, /* QSPI Code - alias */ { 0x08000000, 0x08000000, 0x08000000 }, /* DDR (Code) - alias */ { 0x10000000, 0x80000000, 0x0FFE0000 }, /* TCML */ { 0x1FFE0000, 0x007E0000, 0x00040000 }, /* OCRAM_S */ { 0x20180000, 0x00180000, 0x00008000 }, /* OCRAM */ { 0x20200000, 0x00900000, 0x00040000 }, /* DDR (Data) */ { 0x40000000, 0x40000000, 0x80000000 }, { /* sentinel */ } }; #endif