// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2017 Álvaro Fernández Rojas * * Derived from linux/drivers/spi/spi-bcm63xx-hsspi.c: * Copyright (C) 2000-2010 Broadcom Corporation * Copyright (C) 2012-2013 Jonas Gorski */ #include #include #include #include #include #include #include #include #include #include #define HSSPI_PP 0 /* * The maximum frequency for SPI synchronous mode is 30MHz for some chips and * 25MHz for some others. This depends on the chip layout and SPI signals * distance to the pad. We use the lower of these values to cover all relevant * chips. */ #define SPI_MAX_SYNC_CLOCK 25000000 /* SPI Control register */ #define SPI_CTL_REG 0x000 #define SPI_CTL_CS_POL_SHIFT 0 #define SPI_CTL_CS_POL_MASK (0xff << SPI_CTL_CS_POL_SHIFT) #define SPI_CTL_CLK_GATE_SHIFT 16 #define SPI_CTL_CLK_GATE_MASK (1 << SPI_CTL_CLK_GATE_SHIFT) #define SPI_CTL_CLK_POL_SHIFT 17 #define SPI_CTL_CLK_POL_MASK (1 << SPI_CTL_CLK_POL_SHIFT) /* SPI Interrupts registers */ #define SPI_IR_STAT_REG 0x008 #define SPI_IR_ST_MASK_REG 0x00c #define SPI_IR_MASK_REG 0x010 #define SPI_IR_CLEAR_ALL 0xff001f1f /* SPI Ping-Pong Command registers */ #define SPI_CMD_REG (0x080 + (0x40 * (HSSPI_PP)) + 0x00) #define SPI_CMD_OP_SHIFT 0 #define SPI_CMD_OP_START (0x1 << SPI_CMD_OP_SHIFT) #define SPI_CMD_PFL_SHIFT 8 #define SPI_CMD_PFL_MASK (0x7 << SPI_CMD_PFL_SHIFT) #define SPI_CMD_SLAVE_SHIFT 12 #define SPI_CMD_SLAVE_MASK (0x7 << SPI_CMD_SLAVE_SHIFT) /* SPI Ping-Pong Status registers */ #define SPI_STAT_REG (0x080 + (0x40 * (HSSPI_PP)) + 0x04) #define SPI_STAT_SRCBUSY_SHIFT 1 #define SPI_STAT_SRCBUSY_MASK (1 << SPI_STAT_SRCBUSY_SHIFT) /* SPI Profile Clock registers */ #define SPI_PFL_CLK_REG(x) (0x100 + (0x20 * (x)) + 0x00) #define SPI_PFL_CLK_FREQ_SHIFT 0 #define SPI_PFL_CLK_FREQ_MASK (0x3fff << SPI_PFL_CLK_FREQ_SHIFT) #define SPI_PFL_CLK_RSTLOOP_SHIFT 15 #define SPI_PFL_CLK_RSTLOOP_MASK (1 << SPI_PFL_CLK_RSTLOOP_SHIFT) /* SPI Profile Signal registers */ #define SPI_PFL_SIG_REG(x) (0x100 + (0x20 * (x)) + 0x04) #define SPI_PFL_SIG_LATCHRIS_SHIFT 12 #define SPI_PFL_SIG_LATCHRIS_MASK (1 << SPI_PFL_SIG_LATCHRIS_SHIFT) #define SPI_PFL_SIG_LAUNCHRIS_SHIFT 13 #define SPI_PFL_SIG_LAUNCHRIS_MASK (1 << SPI_PFL_SIG_LAUNCHRIS_SHIFT) #define SPI_PFL_SIG_ASYNCIN_SHIFT 16 #define SPI_PFL_SIG_ASYNCIN_MASK (1 << SPI_PFL_SIG_ASYNCIN_SHIFT) /* SPI Profile Mode registers */ #define SPI_PFL_MODE_REG(x) (0x100 + (0x20 * (x)) + 0x08) #define SPI_PFL_MODE_FILL_SHIFT 0 #define SPI_PFL_MODE_FILL_MASK (0xff << SPI_PFL_MODE_FILL_SHIFT) #define SPI_PFL_MODE_MDRDST_SHIFT 8 #define SPI_PFL_MODE_MDWRST_SHIFT 12 #define SPI_PFL_MODE_MDRDSZ_SHIFT 16 #define SPI_PFL_MODE_MDRDSZ_MASK (1 << SPI_PFL_MODE_MDRDSZ_SHIFT) #define SPI_PFL_MODE_MDWRSZ_SHIFT 18 #define SPI_PFL_MODE_MDWRSZ_MASK (1 << SPI_PFL_MODE_MDWRSZ_SHIFT) #define SPI_PFL_MODE_3WIRE_SHIFT 20 #define SPI_PFL_MODE_3WIRE_MASK (1 << SPI_PFL_MODE_3WIRE_SHIFT) #define SPI_PFL_MODE_PREPCNT_SHIFT 24 #define SPI_PFL_MODE_PREPCNT_MASK (4 << SPI_PFL_MODE_PREPCNT_SHIFT) /* SPI Ping-Pong FIFO registers */ #define HSSPI_FIFO_SIZE 0x200 #define HSSPI_FIFO_BASE (0x200 + \ (HSSPI_FIFO_SIZE * HSSPI_PP)) /* SPI Ping-Pong FIFO OP register */ #define HSSPI_FIFO_OP_SIZE 0x2 #define HSSPI_FIFO_OP_REG (HSSPI_FIFO_BASE + 0x00) #define HSSPI_FIFO_OP_BYTES_SHIFT 0 #define HSSPI_FIFO_OP_BYTES_MASK (0x3ff << HSSPI_FIFO_OP_BYTES_SHIFT) #define HSSPI_FIFO_OP_MBIT_SHIFT 11 #define HSSPI_FIFO_OP_MBIT_MASK (1 << HSSPI_FIFO_OP_MBIT_SHIFT) #define HSSPI_FIFO_OP_CODE_SHIFT 13 #define HSSPI_FIFO_OP_READ_WRITE (1 << HSSPI_FIFO_OP_CODE_SHIFT) #define HSSPI_FIFO_OP_CODE_W (2 << HSSPI_FIFO_OP_CODE_SHIFT) #define HSSPI_FIFO_OP_CODE_R (3 << HSSPI_FIFO_OP_CODE_SHIFT) #define HSSPI_MAX_DATA_SIZE (HSSPI_FIFO_SIZE - HSSPI_FIFO_OP_SIZE) #define HSSPI_MAX_PREPEND_SIZE 15 #define HSSPI_XFER_MODE_PREPEND 0 #define HSSPI_XFER_MODE_DUMMYCS 1 struct bcm63xx_hsspi_priv { void __iomem *regs; ulong clk_rate; uint8_t num_cs; uint8_t cs_pols; uint speed; uint xfer_mode; uint32_t prepend_cnt; uint8_t prepend_buf[HSSPI_MAX_PREPEND_SIZE]; }; static int bcm63xx_hsspi_cs_info(struct udevice *bus, uint cs, struct spi_cs_info *info) { struct bcm63xx_hsspi_priv *priv = dev_get_priv(bus); if (cs >= priv->num_cs) { printf("no cs %u\n", cs); return -EINVAL; } return 0; } static int bcm63xx_hsspi_set_mode(struct udevice *bus, uint mode) { struct bcm63xx_hsspi_priv *priv = dev_get_priv(bus); /* clock polarity */ if (mode & SPI_CPOL) setbits_32(priv->regs + SPI_CTL_REG, SPI_CTL_CLK_POL_MASK); else clrbits_32(priv->regs + SPI_CTL_REG, SPI_CTL_CLK_POL_MASK); return 0; } static int bcm63xx_hsspi_set_speed(struct udevice *bus, uint speed) { struct bcm63xx_hsspi_priv *priv = dev_get_priv(bus); priv->speed = speed; return 0; } static void bcm63xx_hsspi_activate_cs(struct bcm63xx_hsspi_priv *priv, struct dm_spi_slave_plat *plat) { uint32_t clr, set; uint speed = priv->speed; if (priv->xfer_mode == HSSPI_XFER_MODE_DUMMYCS && speed > SPI_MAX_SYNC_CLOCK) { speed = SPI_MAX_SYNC_CLOCK; debug("Force to dummy cs mode. Reduce the speed to %dHz\n", speed); } /* profile clock */ set = DIV_ROUND_UP(priv->clk_rate, speed); set = DIV_ROUND_UP(2048, set); set &= SPI_PFL_CLK_FREQ_MASK; set |= SPI_PFL_CLK_RSTLOOP_MASK; writel(set, priv->regs + SPI_PFL_CLK_REG(plat->cs)); /* profile signal */ set = 0; clr = SPI_PFL_SIG_LAUNCHRIS_MASK | SPI_PFL_SIG_LATCHRIS_MASK | SPI_PFL_SIG_ASYNCIN_MASK; /* latch/launch config */ if (plat->mode & SPI_CPHA) set |= SPI_PFL_SIG_LAUNCHRIS_MASK; else set |= SPI_PFL_SIG_LATCHRIS_MASK; /* async clk */ if (speed > SPI_MAX_SYNC_CLOCK) set |= SPI_PFL_SIG_ASYNCIN_MASK; clrsetbits_32(priv->regs + SPI_PFL_SIG_REG(plat->cs), clr, set); /* global control */ set = 0; clr = 0; if (priv->xfer_mode == HSSPI_XFER_MODE_PREPEND) { if (priv->cs_pols & BIT(plat->cs)) set |= BIT(plat->cs); else clr |= BIT(plat->cs); } else { /* invert cs polarity */ if (priv->cs_pols & BIT(plat->cs)) clr |= BIT(plat->cs); else set |= BIT(plat->cs); /* invert dummy cs polarity */ if (priv->cs_pols & BIT(!plat->cs)) clr |= BIT(!plat->cs); else set |= BIT(!plat->cs); } clrsetbits_32(priv->regs + SPI_CTL_REG, clr, set); } static void bcm63xx_hsspi_deactivate_cs(struct bcm63xx_hsspi_priv *priv) { /* restore cs polarities */ clrsetbits_32(priv->regs + SPI_CTL_REG, SPI_CTL_CS_POL_MASK, priv->cs_pols); } /* * BCM63xx HSSPI driver doesn't allow keeping CS active between transfers * because they are controlled by HW. * However, it provides a mechanism to prepend write transfers prior to read * transfers (with a maximum prepend of 15 bytes), which is usually enough for * SPI-connected flashes since reading requires prepending a write transfer of * 5 bytes. On the other hand it also provides a way to invert each CS * polarity, not only between transfers like the older BCM63xx SPI driver, but * also the rest of the time. * * Instead of using the prepend mechanism, this implementation inverts the * polarity of both the desired CS and another dummy CS when the bus is * claimed. This way, the dummy CS is restored to its inactive value when * transfers are issued and the desired CS is preserved in its active value * all the time. This hack is also used in the upstream linux driver and * allows keeping CS active between transfers even if the HW doesn't give * this possibility. * * This workaround only works when the dummy CS (usually CS1 when the actual * CS is 0) pinmuxed to SPI chip select function if SPI clock is faster than * SPI_MAX_SYNC_CLOCK. In old broadcom chip, CS1 pin is default to chip select * function. But this is not the case for new chips. To make this function * always work, it should be called with maximum clock of SPI_MAX_SYNC_CLOCK. */ static int bcm63xx_hsspi_xfer_dummy_cs(struct udevice *dev, unsigned int data_bytes, const void *dout, void *din, unsigned long flags) { struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev->parent); struct dm_spi_slave_plat *plat = dev_get_parent_plat(dev); size_t step_size = HSSPI_FIFO_SIZE; uint16_t opcode = 0; uint32_t val = SPI_PFL_MODE_FILL_MASK; const uint8_t *tx = dout; uint8_t *rx = din; if (flags & SPI_XFER_BEGIN) bcm63xx_hsspi_activate_cs(priv, plat); /* fifo operation */ if (tx && rx) opcode = HSSPI_FIFO_OP_READ_WRITE; else if (rx) opcode = HSSPI_FIFO_OP_CODE_R; else if (tx) opcode = HSSPI_FIFO_OP_CODE_W; if (opcode != HSSPI_FIFO_OP_CODE_R) step_size -= HSSPI_FIFO_OP_SIZE; /* dual mode */ if ((opcode == HSSPI_FIFO_OP_CODE_R && (plat->mode & SPI_RX_DUAL)) || (opcode == HSSPI_FIFO_OP_CODE_W && (plat->mode & SPI_TX_DUAL))) { opcode |= HSSPI_FIFO_OP_MBIT_MASK; /* profile mode */ if (plat->mode & SPI_RX_DUAL) val |= SPI_PFL_MODE_MDRDSZ_MASK; if (plat->mode & SPI_TX_DUAL) val |= SPI_PFL_MODE_MDWRSZ_MASK; } if (plat->mode & SPI_3WIRE) val |= SPI_PFL_MODE_3WIRE_MASK; writel(val, priv->regs + SPI_PFL_MODE_REG(plat->cs)); /* transfer loop */ while (data_bytes > 0) { size_t curr_step = min(step_size, (size_t)data_bytes); int ret; /* copy tx data */ if (tx) { memcpy_toio(priv->regs + HSSPI_FIFO_BASE + HSSPI_FIFO_OP_SIZE, tx, curr_step); tx += curr_step; } /* set fifo operation */ writew(cpu_to_be16(opcode | (curr_step & HSSPI_FIFO_OP_BYTES_MASK)), priv->regs + HSSPI_FIFO_OP_REG); /* issue the transfer */ val = SPI_CMD_OP_START; val |= (plat->cs << SPI_CMD_PFL_SHIFT) & SPI_CMD_PFL_MASK; val |= (!plat->cs << SPI_CMD_SLAVE_SHIFT) & SPI_CMD_SLAVE_MASK; writel(val, priv->regs + SPI_CMD_REG); /* wait for completion */ ret = wait_for_bit_32(priv->regs + SPI_STAT_REG, SPI_STAT_SRCBUSY_MASK, false, 1000, false); if (ret) { printf("interrupt timeout\n"); return ret; } /* copy rx data */ if (rx) { memcpy_fromio(rx, priv->regs + HSSPI_FIFO_BASE, curr_step); rx += curr_step; } data_bytes -= curr_step; } if (flags & SPI_XFER_END) bcm63xx_hsspi_deactivate_cs(priv); return 0; } static int bcm63xx_prepare_prepend_transfer(struct bcm63xx_hsspi_priv *priv, unsigned int data_bytes, const void *dout, void *din, unsigned long flags) { /* * only support multiple half duplex write transfer + optional * full duplex read/write at the end. */ if (flags & SPI_XFER_BEGIN) { /* clear prepends */ priv->prepend_cnt = 0; } if (din) { /* buffering reads not possible for prepend mode */ if (!(flags & SPI_XFER_END)) { debug("unable to buffer reads\n"); return HSSPI_XFER_MODE_DUMMYCS; } /* check rx size */ if (data_bytes > HSSPI_MAX_DATA_SIZE) { debug("max rx bytes exceeded\n"); return HSSPI_XFER_MODE_DUMMYCS; } } if (dout) { /* check tx size */ if (flags & SPI_XFER_END) { if (priv->prepend_cnt + data_bytes > HSSPI_MAX_DATA_SIZE) { debug("max tx bytes exceeded\n"); return HSSPI_XFER_MODE_DUMMYCS; } } else { if (priv->prepend_cnt + data_bytes > HSSPI_MAX_PREPEND_SIZE) { debug("max prepend bytes exceeded\n"); return HSSPI_XFER_MODE_DUMMYCS; } /* * buffer transfer data in the prepend buf in case we have to fall * back to dummy cs mode. */ memcpy(&priv->prepend_buf[priv->prepend_cnt], dout, data_bytes); priv->prepend_cnt += data_bytes; } } return HSSPI_XFER_MODE_PREPEND; } static int bcm63xx_hsspi_xfer_prepend(struct udevice *dev, unsigned int data_bytes, const void *dout, void *din, unsigned long flags) { struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev->parent); struct dm_spi_slave_plat *plat = dev_get_parent_plat(dev); uint16_t opcode = 0; uint32_t val, offset; int ret; if (flags & SPI_XFER_END) { offset = HSSPI_FIFO_BASE + HSSPI_FIFO_OP_SIZE; if (priv->prepend_cnt) { /* copy prepend data */ memcpy_toio(priv->regs + offset, priv->prepend_buf, priv->prepend_cnt); } if (dout && data_bytes) { /* copy tx data */ offset += priv->prepend_cnt; memcpy_toio(priv->regs + offset, dout, data_bytes); } bcm63xx_hsspi_activate_cs(priv, plat); if (dout && !din) { /* all half-duplex write. merge to single write */ data_bytes += priv->prepend_cnt; opcode = HSSPI_FIFO_OP_CODE_W; priv->prepend_cnt = 0; } else if (!dout && din) { /* half-duplex read with prepend write */ opcode = HSSPI_FIFO_OP_CODE_R; } else { /* full duplex read/write */ opcode = HSSPI_FIFO_OP_READ_WRITE; } /* profile mode */ val = SPI_PFL_MODE_FILL_MASK; if (plat->mode & SPI_3WIRE) val |= SPI_PFL_MODE_3WIRE_MASK; /* dual mode */ if ((opcode == HSSPI_FIFO_OP_CODE_R && (plat->mode & SPI_RX_DUAL)) || (opcode == HSSPI_FIFO_OP_CODE_W && (plat->mode & SPI_TX_DUAL))) { opcode |= HSSPI_FIFO_OP_MBIT_MASK; if (plat->mode & SPI_RX_DUAL) { val |= SPI_PFL_MODE_MDRDSZ_MASK; val |= priv->prepend_cnt << SPI_PFL_MODE_MDRDST_SHIFT; } if (plat->mode & SPI_TX_DUAL) { val |= SPI_PFL_MODE_MDWRSZ_MASK; val |= priv->prepend_cnt << SPI_PFL_MODE_MDWRST_SHIFT; } } val |= (priv->prepend_cnt << SPI_PFL_MODE_PREPCNT_SHIFT); writel(val, priv->regs + SPI_PFL_MODE_REG(plat->cs)); /* set fifo operation */ val = opcode | (data_bytes & HSSPI_FIFO_OP_BYTES_MASK); writew(cpu_to_be16(val), priv->regs + HSSPI_FIFO_OP_REG); /* issue the transfer */ val = SPI_CMD_OP_START; val |= (plat->cs << SPI_CMD_PFL_SHIFT) & SPI_CMD_PFL_MASK; val |= (plat->cs << SPI_CMD_SLAVE_SHIFT) & SPI_CMD_SLAVE_MASK; writel(val, priv->regs + SPI_CMD_REG); /* wait for completion */ ret = wait_for_bit_32(priv->regs + SPI_STAT_REG, SPI_STAT_SRCBUSY_MASK, false, 1000, false); if (ret) { bcm63xx_hsspi_deactivate_cs(priv); printf("spi polling timeout\n"); return ret; } /* copy rx data */ if (din) memcpy_fromio(din, priv->regs + HSSPI_FIFO_BASE, data_bytes); bcm63xx_hsspi_deactivate_cs(priv); } return 0; } static int bcm63xx_hsspi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev->parent); int ret; u32 data_bytes = bitlen >> 3; if (priv->xfer_mode == HSSPI_XFER_MODE_PREPEND) { priv->xfer_mode = bcm63xx_prepare_prepend_transfer(priv, data_bytes, dout, din, flags); } /* if not prependable, fall back to dummy cs mode with safe clock */ if (priv->xfer_mode == HSSPI_XFER_MODE_DUMMYCS) { /* For pending prepend data from previous transfers, send it first */ if (priv->prepend_cnt) { bcm63xx_hsspi_xfer_dummy_cs(dev, priv->prepend_cnt, priv->prepend_buf, NULL, (flags & ~SPI_XFER_END) | SPI_XFER_BEGIN); priv->prepend_cnt = 0; } ret = bcm63xx_hsspi_xfer_dummy_cs(dev, data_bytes, dout, din, flags); } else { ret = bcm63xx_hsspi_xfer_prepend(dev, data_bytes, dout, din, flags); } if (flags & SPI_XFER_END) priv->xfer_mode = HSSPI_XFER_MODE_PREPEND; return ret; } static const struct dm_spi_ops bcm63xx_hsspi_ops = { .cs_info = bcm63xx_hsspi_cs_info, .set_mode = bcm63xx_hsspi_set_mode, .set_speed = bcm63xx_hsspi_set_speed, .xfer = bcm63xx_hsspi_xfer, }; static const struct udevice_id bcm63xx_hsspi_ids[] = { { .compatible = "brcm,bcm6328-hsspi", }, { .compatible = "brcm,bcmbca-hsspi-v1.0", }, { /* sentinel */ } }; static int bcm63xx_hsspi_child_pre_probe(struct udevice *dev) { struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev->parent); struct dm_spi_slave_plat *plat = dev_get_parent_plat(dev); struct spi_slave *slave = dev_get_parent_priv(dev); /* check cs */ if (plat->cs >= priv->num_cs) { printf("no cs %u\n", plat->cs); return -ENODEV; } /* cs polarity */ if (plat->mode & SPI_CS_HIGH) priv->cs_pols |= BIT(plat->cs); else priv->cs_pols &= ~BIT(plat->cs); /* * set the max read/write size to make sure each xfer are within the * prepend limit */ slave->max_read_size = HSSPI_MAX_DATA_SIZE; slave->max_write_size = HSSPI_MAX_DATA_SIZE; return 0; } static int bcm63xx_hsspi_probe(struct udevice *dev) { struct bcm63xx_hsspi_priv *priv = dev_get_priv(dev); struct reset_ctl rst_ctl; struct clk clk; int ret; priv->regs = dev_remap_addr(dev); if (!priv->regs) return -EINVAL; priv->num_cs = dev_read_u32_default(dev, "num-cs", 8); /* enable clock */ ret = clk_get_by_name(dev, "hsspi", &clk); if (ret < 0) return ret; ret = clk_enable(&clk); if (ret < 0 && ret != -ENOSYS) return ret; clk_free(&clk); /* get clock rate */ ret = clk_get_by_name(dev, "pll", &clk); if (ret < 0 && ret != -ENOSYS) return ret; priv->clk_rate = clk_get_rate(&clk); clk_free(&clk); /* perform reset */ ret = reset_get_by_index(dev, 0, &rst_ctl); if (ret >= 0) { ret = reset_deassert(&rst_ctl); if (ret < 0) return ret; } ret = reset_free(&rst_ctl); if (ret < 0) return ret; /* initialize hardware */ writel(0, priv->regs + SPI_IR_MASK_REG); /* clear pending interrupts */ writel(SPI_IR_CLEAR_ALL, priv->regs + SPI_IR_STAT_REG); /* enable clk gate */ setbits_32(priv->regs + SPI_CTL_REG, SPI_CTL_CLK_GATE_MASK); /* read default cs polarities */ priv->cs_pols = readl(priv->regs + SPI_CTL_REG) & SPI_CTL_CS_POL_MASK; /* default in prepend mode */ priv->xfer_mode = HSSPI_XFER_MODE_PREPEND; return 0; } U_BOOT_DRIVER(bcm63xx_hsspi) = { .name = "bcm63xx_hsspi", .id = UCLASS_SPI, .of_match = bcm63xx_hsspi_ids, .ops = &bcm63xx_hsspi_ops, .priv_auto = sizeof(struct bcm63xx_hsspi_priv), .child_pre_probe = bcm63xx_hsspi_child_pre_probe, .probe = bcm63xx_hsspi_probe, };