// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2018 NXP
 */

#include <common.h>
#include <clk.h>
#include <cpu.h>
#include <dm.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/uclass.h>
#include <errno.h>
#include <asm/arch/sci/sci.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch-imx/cpu.h>
#include <asm/armv8/cpu.h>
#include <asm/armv8/mmu.h>
#include <asm/mach-imx/boot_mode.h>

DECLARE_GLOBAL_DATA_PTR;

#define BT_PASSOVER_TAG	0x504F
struct pass_over_info_t *get_pass_over_info(void)
{
	struct pass_over_info_t *p =
		(struct pass_over_info_t *)PASS_OVER_INFO_ADDR;

	if (p->barker != BT_PASSOVER_TAG ||
	    p->len != sizeof(struct pass_over_info_t))
		return NULL;

	return p;
}

int arch_cpu_init(void)
{
	struct pass_over_info_t *pass_over = get_pass_over_info();

	if (pass_over && pass_over->g_ap_mu == 0) {
		/*
		 * When ap_mu is 0, means the U-Boot booted
		 * from first container
		 */
		sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
	}

	return 0;
}

int arch_cpu_init_dm(void)
{
	struct udevice *devp;
	int node, ret;

	node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
	ret = device_bind_driver_to_node(gd->dm_root, "imx8_scu", "imx8_scu",
					 offset_to_ofnode(node), &devp);

	if (ret) {
		printf("could not find scu %d\n", ret);
		return ret;
	}

	ret = device_probe(devp);
	if (ret) {
		printf("scu probe failed %d\n", ret);
		return ret;
	}

	return 0;
}

int print_bootinfo(void)
{
	enum boot_device bt_dev = get_boot_device();

	puts("Boot:  ");
	switch (bt_dev) {
	case SD1_BOOT:
		puts("SD0\n");
		break;
	case SD2_BOOT:
		puts("SD1\n");
		break;
	case SD3_BOOT:
		puts("SD2\n");
		break;
	case MMC1_BOOT:
		puts("MMC0\n");
		break;
	case MMC2_BOOT:
		puts("MMC1\n");
		break;
	case MMC3_BOOT:
		puts("MMC2\n");
		break;
	case FLEXSPI_BOOT:
		puts("FLEXSPI\n");
		break;
	case SATA_BOOT:
		puts("SATA\n");
		break;
	case NAND_BOOT:
		puts("NAND\n");
		break;
	case USB_BOOT:
		puts("USB\n");
		break;
	default:
		printf("Unknown device %u\n", bt_dev);
		break;
	}

	return 0;
}

enum boot_device get_boot_device(void)
{
	enum boot_device boot_dev = SD1_BOOT;

	sc_rsrc_t dev_rsrc;

	sc_misc_get_boot_dev(-1, &dev_rsrc);

	switch (dev_rsrc) {
	case SC_R_SDHC_0:
		boot_dev = MMC1_BOOT;
		break;
	case SC_R_SDHC_1:
		boot_dev = SD2_BOOT;
		break;
	case SC_R_SDHC_2:
		boot_dev = SD3_BOOT;
		break;
	case SC_R_NAND:
		boot_dev = NAND_BOOT;
		break;
	case SC_R_FSPI_0:
		boot_dev = FLEXSPI_BOOT;
		break;
	case SC_R_SATA_0:
		boot_dev = SATA_BOOT;
		break;
	case SC_R_USB_0:
	case SC_R_USB_1:
	case SC_R_USB_2:
		boot_dev = USB_BOOT;
		break;
	default:
		break;
	}

	return boot_dev;
}

#ifdef CONFIG_ENV_IS_IN_MMC
__weak int board_mmc_get_env_dev(int devno)
{
	return CONFIG_SYS_MMC_ENV_DEV;
}

int mmc_get_env_dev(void)
{
	sc_rsrc_t dev_rsrc;
	int devno;

	sc_misc_get_boot_dev(-1, &dev_rsrc);

	switch (dev_rsrc) {
	case SC_R_SDHC_0:
		devno = 0;
		break;
	case SC_R_SDHC_1:
		devno = 1;
		break;
	case SC_R_SDHC_2:
		devno = 2;
		break;
	default:
		/* If not boot from sd/mmc, use default value */
		return CONFIG_SYS_MMC_ENV_DEV;
	}

	return board_mmc_get_env_dev(devno);
}
#endif

#define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */

static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
			    sc_faddr_t *addr_end)
{
	sc_faddr_t start, end;
	int ret;
	bool owned;

	owned = sc_rm_is_memreg_owned(-1, mr);
	if (owned) {
		ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
		if (ret) {
			printf("Memreg get info failed, %d\n", ret);
			return -EINVAL;
		}
		debug("0x%llx -- 0x%llx\n", start, end);
		*addr_start = start;
		*addr_end = end;

		return 0;
	}

	return -EINVAL;
}

phys_size_t get_effective_memsize(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end, end1;
	int err;

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;

	for (mr = 0; mr < 64; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			start = roundup(start, MEMSTART_ALIGNMENT);
			/* Too small memory region, not use it */
			if (start > end)
				continue;

			/* Find the memory region runs the U-Boot */
			if (start >= PHYS_SDRAM_1 && start <= end1 &&
			    (start <= CONFIG_SYS_TEXT_BASE &&
			    end >= CONFIG_SYS_TEXT_BASE)) {
				if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
				    PHYS_SDRAM_1_SIZE))
					return (end - PHYS_SDRAM_1 + 1);
				else
					return PHYS_SDRAM_1_SIZE;
			}
		}
	}

	return PHYS_SDRAM_1_SIZE;
}

int dram_init(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end, end1, end2;
	int err;

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
	for (mr = 0; mr < 64; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			start = roundup(start, MEMSTART_ALIGNMENT);
			/* Too small memory region, not use it */
			if (start > end)
				continue;

			if (start >= PHYS_SDRAM_1 && start <= end1) {
				if ((end + 1) <= end1)
					gd->ram_size += end - start + 1;
				else
					gd->ram_size += end1 - start;
			} else if (start >= PHYS_SDRAM_2 && start <= end2) {
				if ((end + 1) <= end2)
					gd->ram_size += end - start + 1;
				else
					gd->ram_size += end2 - start;
			}
		}
	}

	/* If error, set to the default value */
	if (!gd->ram_size) {
		gd->ram_size = PHYS_SDRAM_1_SIZE;
		gd->ram_size += PHYS_SDRAM_2_SIZE;
	}
	return 0;
}

static void dram_bank_sort(int current_bank)
{
	phys_addr_t start;
	phys_size_t size;

	while (current_bank > 0) {
		if (gd->bd->bi_dram[current_bank - 1].start >
		    gd->bd->bi_dram[current_bank].start) {
			start = gd->bd->bi_dram[current_bank - 1].start;
			size = gd->bd->bi_dram[current_bank - 1].size;

			gd->bd->bi_dram[current_bank - 1].start =
				gd->bd->bi_dram[current_bank].start;
			gd->bd->bi_dram[current_bank - 1].size =
				gd->bd->bi_dram[current_bank].size;

			gd->bd->bi_dram[current_bank].start = start;
			gd->bd->bi_dram[current_bank].size = size;
		}
		current_bank--;
	}
}

int dram_init_banksize(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end, end1, end2;
	int i = 0;
	int err;

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;

	for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			start = roundup(start, MEMSTART_ALIGNMENT);
			if (start > end) /* Small memory region, no use it */
				continue;

			if (start >= PHYS_SDRAM_1 && start <= end1) {
				gd->bd->bi_dram[i].start = start;

				if ((end + 1) <= end1)
					gd->bd->bi_dram[i].size =
						end - start + 1;
				else
					gd->bd->bi_dram[i].size = end1 - start;

				dram_bank_sort(i);
				i++;
			} else if (start >= PHYS_SDRAM_2 && start <= end2) {
				gd->bd->bi_dram[i].start = start;

				if ((end + 1) <= end2)
					gd->bd->bi_dram[i].size =
						end - start + 1;
				else
					gd->bd->bi_dram[i].size = end2 - start;

				dram_bank_sort(i);
				i++;
			}
		}
	}

	/* If error, set to the default value */
	if (!i) {
		gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
		gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
		gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
		gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
	}

	return 0;
}

static u64 get_block_attrs(sc_faddr_t addr_start)
{
	u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
		PTE_BLOCK_PXN | PTE_BLOCK_UXN;

	if ((addr_start >= PHYS_SDRAM_1 &&
	     addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
	    (addr_start >= PHYS_SDRAM_2 &&
	     addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
		return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);

	return attr;
}

static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
{
	sc_faddr_t end1, end2;

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;

	if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
		if ((addr_end + 1) > end1)
			return end1 - addr_start;
	} else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
		if ((addr_end + 1) > end2)
			return end2 - addr_start;
	}

	return (addr_end - addr_start + 1);
}

#define MAX_PTE_ENTRIES 512
#define MAX_MEM_MAP_REGIONS 16

static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
struct mm_region *mem_map = imx8_mem_map;

void enable_caches(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end;
	int err, i;

	/* Create map for registers access from 0x1c000000 to 0x80000000*/
	imx8_mem_map[0].virt = 0x1c000000UL;
	imx8_mem_map[0].phys = 0x1c000000UL;
	imx8_mem_map[0].size = 0x64000000UL;
	imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
			 PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;

	i = 1;
	for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			imx8_mem_map[i].virt = start;
			imx8_mem_map[i].phys = start;
			imx8_mem_map[i].size = get_block_size(start, end);
			imx8_mem_map[i].attrs = get_block_attrs(start);
			i++;
		}
	}

	if (i < MAX_MEM_MAP_REGIONS) {
		imx8_mem_map[i].size = 0;
		imx8_mem_map[i].attrs = 0;
	} else {
		puts("Error, need more MEM MAP REGIONS reserved\n");
		icache_enable();
		return;
	}

	for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
		debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
		      i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
		      imx8_mem_map[i].size, imx8_mem_map[i].attrs);
	}

	icache_enable();
	dcache_enable();
}

#ifndef CONFIG_SYS_DCACHE_OFF
u64 get_page_table_size(void)
{
	u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
	u64 size = 0;

	/*
	 * For each memory region, the max table size:
	 * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
	 */
	size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;

	/*
	 * We need to duplicate our page table once to have an emergency pt to
	 * resort to when splitting page tables later on
	 */
	size *= 2;

	/*
	 * We may need to split page tables later on if dcache settings change,
	 * so reserve up to 4 (random pick) page tables for that.
	 */
	size += one_pt * 4;

	return size;
}
#endif

#define FUSE_MAC0_WORD0 708
#define FUSE_MAC0_WORD1 709
#define FUSE_MAC1_WORD0 710
#define FUSE_MAC1_WORD1 711

void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
	u32 word[2], val[2] = {};
	int i, ret;

	if (dev_id == 0) {
		word[0] = FUSE_MAC0_WORD0;
		word[1] = FUSE_MAC0_WORD1;
	} else {
		word[0] = FUSE_MAC1_WORD0;
		word[1] = FUSE_MAC1_WORD1;
	}

	for (i = 0; i < 2; i++) {
		ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
		if (ret < 0)
			goto err;
	}

	mac[0] = val[0];
	mac[1] = val[0] >> 8;
	mac[2] = val[0] >> 16;
	mac[3] = val[0] >> 24;
	mac[4] = val[1];
	mac[5] = val[1] >> 8;

	debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
	      __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
	return;
err:
	printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
}

#if CONFIG_IS_ENABLED(CPU)
struct cpu_imx_platdata {
	const char *name;
	const char *rev;
	const char *type;
	u32 cpurev;
	u32 freq_mhz;
};

u32 get_cpu_rev(void)
{
	u32 id = 0, rev = 0;
	int ret;

	ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
	if (ret)
		return 0;

	rev = (id >> 5)  & 0xf;
	id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */

	return (id << 12) | rev;
}

const char *get_imx8_type(u32 imxtype)
{
	switch (imxtype) {
	case MXC_CPU_IMX8QXP:
	case MXC_CPU_IMX8QXP_A0:
		return "QXP";
	default:
		return "??";
	}
}

const char *get_imx8_rev(u32 rev)
{
	switch (rev) {
	case CHIP_REV_A:
		return "A";
	case CHIP_REV_B:
		return "B";
	default:
		return "?";
	}
}

const char *get_core_name(void)
{
	if (is_cortex_a35())
		return "A35";
	else if (is_cortex_a53())
		return "A53";
	else if (is_cortex_a72())
		return "A72";
	else
		return "?";
}

int cpu_imx_get_desc(struct udevice *dev, char *buf, int size)
{
	struct cpu_imx_platdata *plat = dev_get_platdata(dev);

	if (size < 100)
		return -ENOSPC;

	snprintf(buf, size, "CPU:   Freescale i.MX8%s Rev%s %s at %u MHz\n",
		 plat->type, plat->rev, plat->name, plat->freq_mhz);

	return 0;
}

static int cpu_imx_get_info(struct udevice *dev, struct cpu_info *info)
{
	struct cpu_imx_platdata *plat = dev_get_platdata(dev);

	info->cpu_freq = plat->freq_mhz * 1000;
	info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU);
	return 0;
}

static int cpu_imx_get_count(struct udevice *dev)
{
	return 4;
}

static int cpu_imx_get_vendor(struct udevice *dev,  char *buf, int size)
{
	snprintf(buf, size, "NXP");
	return 0;
}

static const struct cpu_ops cpu_imx8_ops = {
	.get_desc	= cpu_imx_get_desc,
	.get_info	= cpu_imx_get_info,
	.get_count	= cpu_imx_get_count,
	.get_vendor	= cpu_imx_get_vendor,
};

static const struct udevice_id cpu_imx8_ids[] = {
	{ .compatible = "arm,cortex-a35" },
	{ }
};

static int imx8_cpu_probe(struct udevice *dev)
{
	struct cpu_imx_platdata *plat = dev_get_platdata(dev);
	struct clk cpu_clk;
	u32 cpurev;
	int ret;

	cpurev = get_cpu_rev();
	plat->cpurev = cpurev;
	plat->name = get_core_name();
	plat->rev = get_imx8_rev(cpurev & 0xFFF);
	plat->type = get_imx8_type((cpurev & 0xFF000) >> 12);

	ret = clk_get_by_index(dev, 0, &cpu_clk);
	if (ret) {
		debug("%s: Failed to get CPU clk: %d\n", __func__, ret);
		return 0;
	}

	plat->freq_mhz = clk_get_rate(&cpu_clk) / 1000000;
	return 0;
}

U_BOOT_DRIVER(cpu_imx8_drv) = {
	.name		= "imx8x_cpu",
	.id		= UCLASS_CPU,
	.of_match	= cpu_imx8_ids,
	.ops		= &cpu_imx8_ops,
	.probe		= imx8_cpu_probe,
	.platdata_auto_alloc_size = sizeof(struct cpu_imx_platdata),
	.flags		= DM_FLAG_PRE_RELOC,
};
#endif