// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2014-2015 Freescale Semiconductor * Copyright 2019 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_LAYERSCAPE_NS_ACCESS #include #endif #ifdef CONFIG_SYS_FSL_DDR #include #include #endif #ifdef CONFIG_CHAIN_OF_TRUST #include #endif #include #ifdef CONFIG_TFABOOT #include #endif #if defined(CONFIG_TFABOOT) || defined(CONFIG_GIC_V3_ITS) DECLARE_GLOBAL_DATA_PTR; #endif #ifdef CONFIG_GIC_V3_ITS #define PENDTABLE_MAX_SZ ALIGN(BIT(ITS_MAX_LPI_NRBITS), SZ_64K) #define PROPTABLE_MAX_SZ ALIGN(BIT(ITS_MAX_LPI_NRBITS) / 8, SZ_64K) #define GIC_LPI_SIZE ALIGN(cpu_numcores() * PENDTABLE_MAX_SZ + \ PROPTABLE_MAX_SZ, SZ_1M) static int fdt_add_resv_mem_gic_rd_tables(void *blob, u64 base, size_t size) { u32 phandle; int err; struct fdt_memory gic_rd_tables; gic_rd_tables.start = base; gic_rd_tables.end = base + size - 1; err = fdtdec_add_reserved_memory(blob, "gic-rd-tables", &gic_rd_tables, &phandle); if (err < 0) debug("%s: failed to add reserved memory: %d\n", __func__, err); return err; } int ls_gic_rd_tables_init(void *blob) { u64 gic_lpi_base; int ret; gic_lpi_base = ALIGN(gd->arch.resv_ram - GIC_LPI_SIZE, SZ_64K); ret = fdt_add_resv_mem_gic_rd_tables(blob, gic_lpi_base, GIC_LPI_SIZE); if (ret) return ret; ret = gic_lpi_tables_init(gic_lpi_base, cpu_numcores()); if (ret) debug("%s: failed to init gic-lpi-tables\n", __func__); return ret; } #endif bool soc_has_dp_ddr(void) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); u32 svr = gur_in32(&gur->svr); /* LS2085A, LS2088A, LS2048A has DP_DDR */ if ((SVR_SOC_VER(svr) == SVR_LS2085A) || (SVR_SOC_VER(svr) == SVR_LS2088A) || (SVR_SOC_VER(svr) == SVR_LS2048A)) return true; return false; } bool soc_has_aiop(void) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); u32 svr = gur_in32(&gur->svr); /* LS2085A has AIOP */ if (SVR_SOC_VER(svr) == SVR_LS2085A) return true; return false; } static inline void set_usb_txvreftune(u32 __iomem *scfg, u32 offset) { scfg_clrsetbits32(scfg + offset / 4, 0xF << 6, SCFG_USB_TXVREFTUNE << 6); } static void erratum_a009008(void) { #ifdef CONFIG_SYS_FSL_ERRATUM_A009008 u32 __iomem *scfg = (u32 __iomem *)SCFG_BASE; #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \ defined(CONFIG_ARCH_LS1012A) set_usb_txvreftune(scfg, SCFG_USB3PRM1CR_USB1); #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) set_usb_txvreftune(scfg, SCFG_USB3PRM1CR_USB2); set_usb_txvreftune(scfg, SCFG_USB3PRM1CR_USB3); #endif #elif defined(CONFIG_ARCH_LS2080A) set_usb_txvreftune(scfg, SCFG_USB3PRM1CR); #endif #endif /* CONFIG_SYS_FSL_ERRATUM_A009008 */ } static inline void set_usb_sqrxtune(u32 __iomem *scfg, u32 offset) { scfg_clrbits32(scfg + offset / 4, SCFG_USB_SQRXTUNE_MASK << 23); } static void erratum_a009798(void) { #ifdef CONFIG_SYS_FSL_ERRATUM_A009798 u32 __iomem *scfg = (u32 __iomem *)SCFG_BASE; #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \ defined(CONFIG_ARCH_LS1012A) set_usb_sqrxtune(scfg, SCFG_USB3PRM1CR_USB1); #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) set_usb_sqrxtune(scfg, SCFG_USB3PRM1CR_USB2); set_usb_sqrxtune(scfg, SCFG_USB3PRM1CR_USB3); #endif #elif defined(CONFIG_ARCH_LS2080A) set_usb_sqrxtune(scfg, SCFG_USB3PRM1CR); #endif #endif /* CONFIG_SYS_FSL_ERRATUM_A009798 */ } #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \ defined(CONFIG_ARCH_LS1012A) static inline void set_usb_pcstxswingfull(u32 __iomem *scfg, u32 offset) { scfg_clrsetbits32(scfg + offset / 4, 0x7F << 9, SCFG_USB_PCSTXSWINGFULL << 9); } #endif static void erratum_a008997(void) { #ifdef CONFIG_SYS_FSL_ERRATUM_A008997 #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \ defined(CONFIG_ARCH_LS1012A) u32 __iomem *scfg = (u32 __iomem *)SCFG_BASE; set_usb_pcstxswingfull(scfg, SCFG_USB3PRM2CR_USB1); #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) set_usb_pcstxswingfull(scfg, SCFG_USB3PRM2CR_USB2); set_usb_pcstxswingfull(scfg, SCFG_USB3PRM2CR_USB3); #endif #elif defined(CONFIG_ARCH_LS1028A) clrsetbits_le32(DCSR_BASE + DCSR_USB_IOCR1, 0x7F << 11, DCSR_USB_PCSTXSWINGFULL << 11); #endif #endif /* CONFIG_SYS_FSL_ERRATUM_A008997 */ } #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \ defined(CONFIG_ARCH_LS1012A) #define PROGRAM_USB_PHY_RX_OVRD_IN_HI(phy) \ out_be16((phy) + SCFG_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_1); \ out_be16((phy) + SCFG_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_2); \ out_be16((phy) + SCFG_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_3); \ out_be16((phy) + SCFG_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_4) #elif defined(CONFIG_ARCH_LS2080A) || defined(CONFIG_ARCH_LS1088A) || \ defined(CONFIG_ARCH_LS1028A) || defined(CONFIG_ARCH_LX2160A) #define PROGRAM_USB_PHY_RX_OVRD_IN_HI(phy) \ out_le16((phy) + DCSR_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_1); \ out_le16((phy) + DCSR_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_2); \ out_le16((phy) + DCSR_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_3); \ out_le16((phy) + DCSR_USB_PHY_RX_OVRD_IN_HI, USB_PHY_RX_EQ_VAL_4) #endif static void erratum_a009007(void) { #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) || \ defined(CONFIG_ARCH_LS1012A) void __iomem *usb_phy = (void __iomem *)SCFG_USB_PHY1; PROGRAM_USB_PHY_RX_OVRD_IN_HI(usb_phy); #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) usb_phy = (void __iomem *)SCFG_USB_PHY2; PROGRAM_USB_PHY_RX_OVRD_IN_HI(usb_phy); usb_phy = (void __iomem *)SCFG_USB_PHY3; PROGRAM_USB_PHY_RX_OVRD_IN_HI(usb_phy); #endif #elif defined(CONFIG_ARCH_LS2080A) || defined(CONFIG_ARCH_LS1088A) || \ defined(CONFIG_ARCH_LS1028A) void __iomem *dcsr = (void __iomem *)DCSR_BASE; PROGRAM_USB_PHY_RX_OVRD_IN_HI(dcsr + DCSR_USB_PHY1); PROGRAM_USB_PHY_RX_OVRD_IN_HI(dcsr + DCSR_USB_PHY2); #endif /* CONFIG_SYS_FSL_ERRATUM_A009007 */ } #if defined(CONFIG_FSL_LSCH3) static void erratum_a050106(void) { #if defined(CONFIG_ARCH_LX2160A) void __iomem *dcsr = (void __iomem *)DCSR_BASE; PROGRAM_USB_PHY_RX_OVRD_IN_HI(dcsr + DCSR_USB_PHY1); PROGRAM_USB_PHY_RX_OVRD_IN_HI(dcsr + DCSR_USB_PHY2); #endif } /* * This erratum requires setting a value to eddrtqcr1 to * optimal the DDR performance. */ static void erratum_a008336(void) { #ifdef CONFIG_SYS_FSL_ERRATUM_A008336 u32 *eddrtqcr1; #ifdef CONFIG_SYS_FSL_DCSR_DDR_ADDR eddrtqcr1 = (void *)CONFIG_SYS_FSL_DCSR_DDR_ADDR + 0x800; if (fsl_ddr_get_version(0) == 0x50200) out_le32(eddrtqcr1, 0x63b30002); #endif #ifdef CONFIG_SYS_FSL_DCSR_DDR2_ADDR eddrtqcr1 = (void *)CONFIG_SYS_FSL_DCSR_DDR2_ADDR + 0x800; if (fsl_ddr_get_version(0) == 0x50200) out_le32(eddrtqcr1, 0x63b30002); #endif #endif } /* * This erratum requires a register write before being Memory * controller 3 being enabled. */ static void erratum_a008514(void) { #ifdef CONFIG_SYS_FSL_ERRATUM_A008514 u32 *eddrtqcr1; #ifdef CONFIG_SYS_FSL_DCSR_DDR3_ADDR eddrtqcr1 = (void *)CONFIG_SYS_FSL_DCSR_DDR3_ADDR + 0x800; out_le32(eddrtqcr1, 0x63b20002); #endif #endif } #ifdef CONFIG_SYS_FSL_ERRATUM_A009635 #define PLATFORM_CYCLE_ENV_VAR "a009635_interval_val" static unsigned long get_internval_val_mhz(void) { char *interval = env_get(PLATFORM_CYCLE_ENV_VAR); /* * interval is the number of platform cycles(MHz) between * wake up events generated by EPU. */ ulong interval_mhz = get_bus_freq(0) / (1000 * 1000); if (interval) interval_mhz = simple_strtoul(interval, NULL, 10); return interval_mhz; } void erratum_a009635(void) { u32 val; unsigned long interval_mhz = get_internval_val_mhz(); if (!interval_mhz) return; val = in_le32(DCSR_CGACRE5); writel(val | 0x00000200, DCSR_CGACRE5); val = in_le32(EPU_EPCMPR5); writel(interval_mhz, EPU_EPCMPR5); val = in_le32(EPU_EPCCR5); writel(val | 0x82820000, EPU_EPCCR5); val = in_le32(EPU_EPSMCR5); writel(val | 0x002f0000, EPU_EPSMCR5); val = in_le32(EPU_EPECR5); writel(val | 0x20000000, EPU_EPECR5); val = in_le32(EPU_EPGCR); writel(val | 0x80000000, EPU_EPGCR); } #endif /* CONFIG_SYS_FSL_ERRATUM_A009635 */ static void erratum_rcw_src(void) { #if defined(CONFIG_SPL) && defined(CONFIG_NAND_BOOT) u32 __iomem *dcfg_ccsr = (u32 __iomem *)DCFG_BASE; u32 __iomem *dcfg_dcsr = (u32 __iomem *)DCFG_DCSR_BASE; u32 val; val = in_le32(dcfg_ccsr + DCFG_PORSR1 / 4); val &= ~DCFG_PORSR1_RCW_SRC; val |= DCFG_PORSR1_RCW_SRC_NOR; out_le32(dcfg_dcsr + DCFG_DCSR_PORCR1 / 4, val); #endif } #define I2C_DEBUG_REG 0x6 #define I2C_GLITCH_EN 0x8 /* * This erratum requires setting glitch_en bit to enable * digital glitch filter to improve clock stability. */ #ifdef CONFIG_SYS_FSL_ERRATUM_A009203 static void erratum_a009203(void) { #ifdef CONFIG_SYS_I2C u8 __iomem *ptr; #ifdef I2C1_BASE_ADDR ptr = (u8 __iomem *)(I2C1_BASE_ADDR + I2C_DEBUG_REG); writeb(I2C_GLITCH_EN, ptr); #endif #ifdef I2C2_BASE_ADDR ptr = (u8 __iomem *)(I2C2_BASE_ADDR + I2C_DEBUG_REG); writeb(I2C_GLITCH_EN, ptr); #endif #ifdef I2C3_BASE_ADDR ptr = (u8 __iomem *)(I2C3_BASE_ADDR + I2C_DEBUG_REG); writeb(I2C_GLITCH_EN, ptr); #endif #ifdef I2C4_BASE_ADDR ptr = (u8 __iomem *)(I2C4_BASE_ADDR + I2C_DEBUG_REG); writeb(I2C_GLITCH_EN, ptr); #endif #endif } #endif void bypass_smmu(void) { u32 val; val = (in_le32(SMMU_SCR0) | SCR0_CLIENTPD_MASK) & ~(SCR0_USFCFG_MASK); out_le32(SMMU_SCR0, val); val = (in_le32(SMMU_NSCR0) | SCR0_CLIENTPD_MASK) & ~(SCR0_USFCFG_MASK); out_le32(SMMU_NSCR0, val); } void fsl_lsch3_early_init_f(void) { erratum_rcw_src(); #ifdef CONFIG_FSL_IFC init_early_memctl_regs(); /* tighten IFC timing */ #endif #ifdef CONFIG_SYS_FSL_ERRATUM_A009203 erratum_a009203(); #endif erratum_a008514(); erratum_a008336(); erratum_a009008(); erratum_a009798(); erratum_a008997(); erratum_a009007(); erratum_a050106(); #ifdef CONFIG_CHAIN_OF_TRUST /* In case of Secure Boot, the IBR configures the SMMU * to allow only Secure transactions. * SMMU must be reset in bypass mode. * Set the ClientPD bit and Clear the USFCFG Bit */ if (fsl_check_boot_mode_secure() == 1) bypass_smmu(); #endif #if defined(CONFIG_ARCH_LS1088A) || defined(CONFIG_ARCH_LS1028A) || \ defined(CONFIG_ARCH_LS2080A) || defined(CONFIG_ARCH_LX2160A) set_icids(); #endif } /* Get VDD in the unit mV from voltage ID */ int get_core_volt_from_fuse(void) { struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); int vdd; u32 fusesr; u8 vid; /* get the voltage ID from fuse status register */ fusesr = in_le32(&gur->dcfg_fusesr); debug("%s: fusesr = 0x%x\n", __func__, fusesr); vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_ALTVID_SHIFT) & FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK; if ((vid == 0) || (vid == FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK)) { vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_VID_SHIFT) & FSL_CHASSIS3_DCFG_FUSESR_VID_MASK; } debug("%s: VID = 0x%x\n", __func__, vid); switch (vid) { case 0x00: /* VID isn't supported */ vdd = -EINVAL; debug("%s: The VID feature is not supported\n", __func__); break; case 0x08: /* 0.9V silicon */ vdd = 900; break; case 0x10: /* 1.0V silicon */ vdd = 1000; break; default: /* Other core voltage */ vdd = -EINVAL; debug("%s: The VID(%x) isn't supported\n", __func__, vid); break; } debug("%s: The required minimum volt of CORE is %dmV\n", __func__, vdd); return vdd; } #elif defined(CONFIG_FSL_LSCH2) /* * This erratum requires setting a value to eddrtqcr1 to optimal * the DDR performance. The eddrtqcr1 register is in SCFG space * of LS1043A and the offset is 0x157_020c. */ #if defined(CONFIG_SYS_FSL_ERRATUM_A009660) \ && defined(CONFIG_SYS_FSL_ERRATUM_A008514) #error A009660 and A008514 can not be both enabled. #endif static void erratum_a009660(void) { #ifdef CONFIG_SYS_FSL_ERRATUM_A009660 u32 *eddrtqcr1 = (void *)CONFIG_SYS_FSL_SCFG_ADDR + 0x20c; out_be32(eddrtqcr1, 0x63b20042); #endif } static void erratum_a008850_early(void) { #ifdef CONFIG_SYS_FSL_ERRATUM_A008850 /* part 1 of 2 */ struct ccsr_cci400 __iomem *cci = (void *)(CONFIG_SYS_IMMR + CONFIG_SYS_CCI400_OFFSET); struct ccsr_ddr __iomem *ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR; /* Skip if running at lower exception level */ if (current_el() < 3) return; /* disables propagation of barrier transactions to DDRC from CCI400 */ out_le32(&cci->ctrl_ord, CCI400_CTRLORD_TERM_BARRIER); /* disable the re-ordering in DDRC */ ddr_out32(&ddr->eor, DDR_EOR_RD_REOD_DIS | DDR_EOR_WD_REOD_DIS); #endif } void erratum_a008850_post(void) { #ifdef CONFIG_SYS_FSL_ERRATUM_A008850 /* part 2 of 2 */ struct ccsr_cci400 __iomem *cci = (void *)(CONFIG_SYS_IMMR + CONFIG_SYS_CCI400_OFFSET); struct ccsr_ddr __iomem *ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR; u32 tmp; /* Skip if running at lower exception level */ if (current_el() < 3) return; /* enable propagation of barrier transactions to DDRC from CCI400 */ out_le32(&cci->ctrl_ord, CCI400_CTRLORD_EN_BARRIER); /* enable the re-ordering in DDRC */ tmp = ddr_in32(&ddr->eor); tmp &= ~(DDR_EOR_RD_REOD_DIS | DDR_EOR_WD_REOD_DIS); ddr_out32(&ddr->eor, tmp); #endif } #ifdef CONFIG_SYS_FSL_ERRATUM_A010315 void erratum_a010315(void) { int i; for (i = PCIE1; i <= PCIE4; i++) if (!is_serdes_configured(i)) { debug("PCIe%d: disabled all R/W permission!\n", i); set_pcie_ns_access(i, 0); } } #endif static void erratum_a010539(void) { #if defined(CONFIG_SYS_FSL_ERRATUM_A010539) && defined(CONFIG_QSPI_BOOT) struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); u32 porsr1; porsr1 = in_be32(&gur->porsr1); porsr1 &= ~FSL_CHASSIS2_CCSR_PORSR1_RCW_MASK; out_be32((void *)(CONFIG_SYS_DCSR_DCFG_ADDR + DCFG_DCSR_PORCR1), porsr1); out_be32((void *)(CONFIG_SYS_FSL_SCFG_ADDR + 0x1a8), 0xffffffff); #endif } /* Get VDD in the unit mV from voltage ID */ int get_core_volt_from_fuse(void) { struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); int vdd; u32 fusesr; u8 vid; fusesr = in_be32(&gur->dcfg_fusesr); debug("%s: fusesr = 0x%x\n", __func__, fusesr); vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_ALTVID_SHIFT) & FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK; if ((vid == 0) || (vid == FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK)) { vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_VID_SHIFT) & FSL_CHASSIS2_DCFG_FUSESR_VID_MASK; } debug("%s: VID = 0x%x\n", __func__, vid); switch (vid) { case 0x00: /* VID isn't supported */ vdd = -EINVAL; debug("%s: The VID feature is not supported\n", __func__); break; case 0x08: /* 0.9V silicon */ vdd = 900; break; case 0x10: /* 1.0V silicon */ vdd = 1000; break; default: /* Other core voltage */ vdd = -EINVAL; printf("%s: The VID(%x) isn't supported\n", __func__, vid); break; } debug("%s: The required minimum volt of CORE is %dmV\n", __func__, vdd); return vdd; } __weak int board_switch_core_volt(u32 vdd) { return 0; } static int setup_core_volt(u32 vdd) { return board_setup_core_volt(vdd); } #ifdef CONFIG_SYS_FSL_DDR static void ddr_enable_0v9_volt(bool en) { struct ccsr_ddr __iomem *ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR; u32 tmp; tmp = ddr_in32(&ddr->ddr_cdr1); if (en) tmp |= DDR_CDR1_V0PT9_EN; else tmp &= ~DDR_CDR1_V0PT9_EN; ddr_out32(&ddr->ddr_cdr1, tmp); } #endif int setup_chip_volt(void) { int vdd; vdd = get_core_volt_from_fuse(); /* Nothing to do for silicons doesn't support VID */ if (vdd < 0) return vdd; if (setup_core_volt(vdd)) printf("%s: Switch core VDD to %dmV failed\n", __func__, vdd); #ifdef CONFIG_SYS_HAS_SERDES if (setup_serdes_volt(vdd)) printf("%s: Switch SVDD to %dmV failed\n", __func__, vdd); #endif #ifdef CONFIG_SYS_FSL_DDR if (vdd == 900) ddr_enable_0v9_volt(true); #endif return 0; } #ifdef CONFIG_FSL_PFE void init_pfe_scfg_dcfg_regs(void) { struct ccsr_scfg *scfg = (struct ccsr_scfg *)CONFIG_SYS_FSL_SCFG_ADDR; u32 ecccr2; out_be32(&scfg->pfeasbcr, in_be32(&scfg->pfeasbcr) | SCFG_PFEASBCR_AWCACHE0); out_be32(&scfg->pfebsbcr, in_be32(&scfg->pfebsbcr) | SCFG_PFEASBCR_AWCACHE0); /* CCI-400 QoS settings for PFE */ out_be32(&scfg->wr_qos1, (unsigned int)(SCFG_WR_QOS1_PFE1_QOS | SCFG_WR_QOS1_PFE2_QOS)); out_be32(&scfg->rd_qos1, (unsigned int)(SCFG_RD_QOS1_PFE1_QOS | SCFG_RD_QOS1_PFE2_QOS)); ecccr2 = in_be32(CONFIG_SYS_DCSR_DCFG_ADDR + DCFG_DCSR_ECCCR2); out_be32((void *)CONFIG_SYS_DCSR_DCFG_ADDR + DCFG_DCSR_ECCCR2, ecccr2 | (unsigned int)DISABLE_PFE_ECC); } #endif void fsl_lsch2_early_init_f(void) { struct ccsr_cci400 *cci = (struct ccsr_cci400 *)(CONFIG_SYS_IMMR + CONFIG_SYS_CCI400_OFFSET); struct ccsr_scfg *scfg = (struct ccsr_scfg *)CONFIG_SYS_FSL_SCFG_ADDR; #if defined(CONFIG_FSL_QSPI) && defined(CONFIG_TFABOOT) enum boot_src src; #endif #ifdef CONFIG_LAYERSCAPE_NS_ACCESS enable_layerscape_ns_access(); #endif #ifdef CONFIG_FSL_IFC init_early_memctl_regs(); /* tighten IFC timing */ #endif #if defined(CONFIG_FSL_QSPI) && defined(CONFIG_TFABOOT) src = get_boot_src(); if (src != BOOT_SOURCE_QSPI_NOR) out_be32(&scfg->qspi_cfg, SCFG_QSPI_CLKSEL); #else #if defined(CONFIG_FSL_QSPI) && !defined(CONFIG_QSPI_BOOT) out_be32(&scfg->qspi_cfg, SCFG_QSPI_CLKSEL); #endif #endif /* Make SEC reads and writes snoopable */ #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) setbits_be32(&scfg->snpcnfgcr, SCFG_SNPCNFGCR_SECRDSNP | SCFG_SNPCNFGCR_SECWRSNP | SCFG_SNPCNFGCR_USB1RDSNP | SCFG_SNPCNFGCR_USB1WRSNP | SCFG_SNPCNFGCR_USB2RDSNP | SCFG_SNPCNFGCR_USB2WRSNP | SCFG_SNPCNFGCR_USB3RDSNP | SCFG_SNPCNFGCR_USB3WRSNP | SCFG_SNPCNFGCR_SATARDSNP | SCFG_SNPCNFGCR_SATAWRSNP); #elif defined(CONFIG_ARCH_LS1012A) setbits_be32(&scfg->snpcnfgcr, SCFG_SNPCNFGCR_SECRDSNP | SCFG_SNPCNFGCR_SECWRSNP | SCFG_SNPCNFGCR_USB1RDSNP | SCFG_SNPCNFGCR_USB1WRSNP | SCFG_SNPCNFGCR_SATARDSNP | SCFG_SNPCNFGCR_SATAWRSNP); #else setbits_be32(&scfg->snpcnfgcr, SCFG_SNPCNFGCR_SECRDSNP | SCFG_SNPCNFGCR_SECWRSNP | SCFG_SNPCNFGCR_SATARDSNP | SCFG_SNPCNFGCR_SATAWRSNP); #endif /* * Enable snoop requests and DVM message requests for * Slave insterface S4 (A53 core cluster) */ if (current_el() == 3) { out_le32(&cci->slave[4].snoop_ctrl, CCI400_DVM_MESSAGE_REQ_EN | CCI400_SNOOP_REQ_EN); } /* * Program Central Security Unit (CSU) to grant access * permission for USB 2.0 controller */ #if defined(CONFIG_ARCH_LS1012A) && defined(CONFIG_USB_EHCI_FSL) if (current_el() == 3) set_devices_ns_access(CSU_CSLX_USB_2, CSU_ALL_RW); #endif /* Erratum */ erratum_a008850_early(); /* part 1 of 2 */ erratum_a009660(); erratum_a010539(); erratum_a009008(); erratum_a009798(); erratum_a008997(); erratum_a009007(); #if defined(CONFIG_ARCH_LS1043A) || defined(CONFIG_ARCH_LS1046A) set_icids(); #endif } #endif #ifdef CONFIG_FSPI_AHB_EN_4BYTE int fspi_ahb_init(void) { /* Enable 4bytes address support and fast read */ u32 *fspi_lut, lut_key, *fspi_key; fspi_key = (void *)SYS_NXP_FSPI_ADDR + SYS_NXP_FSPI_LUTKEY_BASE_ADDR; fspi_lut = (void *)SYS_NXP_FSPI_ADDR + SYS_NXP_FSPI_LUT_BASE_ADDR; lut_key = in_be32(fspi_key); if (lut_key == SYS_NXP_FSPI_LUTKEY) { /* That means the register is BE */ out_be32(fspi_key, SYS_NXP_FSPI_LUTKEY); /* Unlock the lut table */ out_be32(fspi_key + 1, SYS_NXP_FSPI_LUTCR_UNLOCK); /* Create READ LUT */ out_be32(fspi_lut, 0x0820040c); out_be32(fspi_lut + 1, 0x24003008); out_be32(fspi_lut + 2, 0x00000000); /* Lock the lut table */ out_be32(fspi_key, SYS_NXP_FSPI_LUTKEY); out_be32(fspi_key + 1, SYS_NXP_FSPI_LUTCR_LOCK); } else { /* That means the register is LE */ out_le32(fspi_key, SYS_NXP_FSPI_LUTKEY); /* Unlock the lut table */ out_le32(fspi_key + 1, SYS_NXP_FSPI_LUTCR_UNLOCK); /* Create READ LUT */ out_le32(fspi_lut, 0x0820040c); out_le32(fspi_lut + 1, 0x24003008); out_le32(fspi_lut + 2, 0x00000000); /* Lock the lut table */ out_le32(fspi_key, SYS_NXP_FSPI_LUTKEY); out_le32(fspi_key + 1, SYS_NXP_FSPI_LUTCR_LOCK); } return 0; } #endif #ifdef CONFIG_QSPI_AHB_INIT /* Enable 4bytes address support and fast read */ int qspi_ahb_init(void) { u32 *qspi_lut, lut_key, *qspi_key; qspi_key = (void *)SYS_FSL_QSPI_ADDR + 0x300; qspi_lut = (void *)SYS_FSL_QSPI_ADDR + 0x310; lut_key = in_be32(qspi_key); if (lut_key == 0x5af05af0) { /* That means the register is BE */ out_be32(qspi_key, 0x5af05af0); /* Unlock the lut table */ out_be32(qspi_key + 1, 0x00000002); out_be32(qspi_lut, 0x0820040c); out_be32(qspi_lut + 1, 0x1c080c08); out_be32(qspi_lut + 2, 0x00002400); /* Lock the lut table */ out_be32(qspi_key, 0x5af05af0); out_be32(qspi_key + 1, 0x00000001); } else { /* That means the register is LE */ out_le32(qspi_key, 0x5af05af0); /* Unlock the lut table */ out_le32(qspi_key + 1, 0x00000002); out_le32(qspi_lut, 0x0820040c); out_le32(qspi_lut + 1, 0x1c080c08); out_le32(qspi_lut + 2, 0x00002400); /* Lock the lut table */ out_le32(qspi_key, 0x5af05af0); out_le32(qspi_key + 1, 0x00000001); } return 0; } #endif #ifdef CONFIG_TFABOOT #define MAX_BOOTCMD_SIZE 512 int fsl_setenv_bootcmd(void) { int ret; enum boot_src src = get_boot_src(); char bootcmd_str[MAX_BOOTCMD_SIZE]; switch (src) { #ifdef IFC_NOR_BOOTCOMMAND case BOOT_SOURCE_IFC_NOR: sprintf(bootcmd_str, IFC_NOR_BOOTCOMMAND); break; #endif #ifdef QSPI_NOR_BOOTCOMMAND case BOOT_SOURCE_QSPI_NOR: sprintf(bootcmd_str, QSPI_NOR_BOOTCOMMAND); break; #endif #ifdef XSPI_NOR_BOOTCOMMAND case BOOT_SOURCE_XSPI_NOR: sprintf(bootcmd_str, XSPI_NOR_BOOTCOMMAND); break; #endif #ifdef IFC_NAND_BOOTCOMMAND case BOOT_SOURCE_IFC_NAND: sprintf(bootcmd_str, IFC_NAND_BOOTCOMMAND); break; #endif #ifdef QSPI_NAND_BOOTCOMMAND case BOOT_SOURCE_QSPI_NAND: sprintf(bootcmd_str, QSPI_NAND_BOOTCOMMAND); break; #endif #ifdef XSPI_NAND_BOOTCOMMAND case BOOT_SOURCE_XSPI_NAND: sprintf(bootcmd_str, XSPI_NAND_BOOTCOMMAND); break; #endif #ifdef SD_BOOTCOMMAND case BOOT_SOURCE_SD_MMC: sprintf(bootcmd_str, SD_BOOTCOMMAND); break; #endif #ifdef SD2_BOOTCOMMAND case BOOT_SOURCE_SD_MMC2: sprintf(bootcmd_str, SD2_BOOTCOMMAND); break; #endif default: #ifdef QSPI_NOR_BOOTCOMMAND sprintf(bootcmd_str, QSPI_NOR_BOOTCOMMAND); #endif break; } ret = env_set("bootcmd", bootcmd_str); if (ret) { printf("Failed to set bootcmd: ret = %d\n", ret); return ret; } return 0; } int fsl_setenv_mcinitcmd(void) { int ret = 0; enum boot_src src = get_boot_src(); switch (src) { #ifdef IFC_MC_INIT_CMD case BOOT_SOURCE_IFC_NAND: case BOOT_SOURCE_IFC_NOR: ret = env_set("mcinitcmd", IFC_MC_INIT_CMD); break; #endif #ifdef QSPI_MC_INIT_CMD case BOOT_SOURCE_QSPI_NAND: case BOOT_SOURCE_QSPI_NOR: ret = env_set("mcinitcmd", QSPI_MC_INIT_CMD); break; #endif #ifdef XSPI_MC_INIT_CMD case BOOT_SOURCE_XSPI_NAND: case BOOT_SOURCE_XSPI_NOR: ret = env_set("mcinitcmd", XSPI_MC_INIT_CMD); break; #endif #ifdef SD_MC_INIT_CMD case BOOT_SOURCE_SD_MMC: ret = env_set("mcinitcmd", SD_MC_INIT_CMD); break; #endif #ifdef SD2_MC_INIT_CMD case BOOT_SOURCE_SD_MMC2: ret = env_set("mcinitcmd", SD2_MC_INIT_CMD); break; #endif default: #ifdef QSPI_MC_INIT_CMD ret = env_set("mcinitcmd", QSPI_MC_INIT_CMD); #endif break; } if (ret) { printf("Failed to set mcinitcmd: ret = %d\n", ret); return ret; } return 0; } #endif #ifdef CONFIG_BOARD_LATE_INIT __weak int fsl_board_late_init(void) { return 0; } int board_late_init(void) { #ifdef CONFIG_CHAIN_OF_TRUST fsl_setenv_chain_of_trust(); #endif #ifdef CONFIG_TFABOOT /* * check if gd->env_addr is default_environment; then setenv bootcmd * and mcinitcmd. */ #ifdef CONFIG_SYS_RELOC_GD_ENV_ADDR if (gd->env_addr == (ulong)&default_environment[0]) { #else if (gd->env_addr + gd->reloc_off == (ulong)&default_environment[0]) { #endif fsl_setenv_bootcmd(); fsl_setenv_mcinitcmd(); } /* * If the boot mode is secure, default environment is not present then * setenv command needs to be run by default */ #ifdef CONFIG_CHAIN_OF_TRUST if ((fsl_check_boot_mode_secure() == 1)) { fsl_setenv_bootcmd(); fsl_setenv_mcinitcmd(); } #endif #endif #ifdef CONFIG_QSPI_AHB_INIT qspi_ahb_init(); #endif #ifdef CONFIG_FSPI_AHB_EN_4BYTE fspi_ahb_init(); #endif return fsl_board_late_init(); } #endif