// SPDX-License-Identifier: GPL-2.0+ /* * Functional tests for UCLASS_FFA class * * Copyright 2023 Arm Limited and/or its affiliates * * Authors: * Abdellatif El Khlifi */ #include #include #include #include #include #include #include #include #include #include /* NVMXIP devices described in the device tree */ #define SANDBOX_NVMXIP_DEVICES 2 /* reference device tree data for the probed devices */ static struct nvmxip_plat nvmqspi_refdata[SANDBOX_NVMXIP_DEVICES] = { {0x08000000, 9, 4096}, {0x08200000, 9, 2048} }; #define NVMXIP_BLK_START_PATTERN 0x1122334455667788ULL #define NVMXIP_BLK_END_PATTERN 0xa1a2a3a4a5a6a7a8ULL /** * dm_nvmxip_flash_sanity() - check flash data * @uts: test state * @device_idx: the NVMXIP device index * @buffer: the user buffer where the blocks data is copied to * * Mode 1: When buffer is NULL, initialize the flash with pattern data at the start * and at the end of each block. This pattern data will be used to check data consistency * when verifying the data read. * Mode 2: When the user buffer is provided in the argument (not NULL), compare the data * of the start and the end of each block in the user buffer with the expected pattern data. * Return an error when the check fails. * * Return: * * 0 on success. Otherwise, failure */ static int dm_nvmxip_flash_sanity(struct unit_test_state *uts, u8 device_idx, void *buffer) { int i; u64 *ptr; u8 *base; unsigned long blksz; blksz = BIT(nvmqspi_refdata[device_idx].lba_shift); if (!buffer) { /* Mode 1: point at the flash start address. Pattern data will be written */ base = map_sysmem(nvmqspi_refdata[device_idx].phys_base, 0); } else { /* Mode 2: point at the user buffer containing the data read and to be verified */ base = buffer; } for (i = 0; i < nvmqspi_refdata[device_idx].lba ; i++) { ptr = (u64 *)(base + i * blksz); /* write an 8 bytes pattern at the start of the current block */ if (!buffer) *ptr = NVMXIP_BLK_START_PATTERN; else ut_asserteq_64(NVMXIP_BLK_START_PATTERN, *ptr); ptr = (u64 *)((u8 *)ptr + blksz - sizeof(u64)); /* write an 8 bytes pattern at the end of the current block */ if (!buffer) *ptr = NVMXIP_BLK_END_PATTERN; else ut_asserteq_64(NVMXIP_BLK_END_PATTERN, *ptr); } if (!buffer) unmap_sysmem(base); return 0; } /** * dm_test_nvmxip() - check flash data * @uts: test state * Return: * * CMD_RET_SUCCESS on success. Otherwise, failure */ static int dm_test_nvmxip(struct unit_test_state *uts) { struct nvmxip_plat *plat_data = NULL; struct udevice *dev = NULL, *bdev = NULL; u8 device_idx; void *buffer = NULL; unsigned long flashsz; sandbox_set_enable_memio(true); /* set the flash content first for both devices */ dm_nvmxip_flash_sanity(uts, 0, NULL); dm_nvmxip_flash_sanity(uts, 1, NULL); /* probing all NVM XIP QSPI devices */ for (device_idx = 0, uclass_first_device(UCLASS_NVMXIP, &dev); dev; uclass_next_device(&dev), device_idx++) { plat_data = dev_get_plat(dev); /* device tree entries checks */ ut_assertok(nvmqspi_refdata[device_idx].phys_base != plat_data->phys_base); ut_assertok(nvmqspi_refdata[device_idx].lba_shift != plat_data->lba_shift); ut_assertok(nvmqspi_refdata[device_idx].lba != plat_data->lba); /* before reading all the flash blocks, let's calculate the flash size */ flashsz = plat_data->lba << plat_data->lba_shift; /* allocate the user buffer where to copy the blocks data to */ buffer = calloc(flashsz, 1); ut_assertok(!buffer); /* the block device is the child of the parent device probed with DT */ ut_assertok(device_find_first_child(dev, &bdev)); /* reading all the flash blocks */ ut_asserteq(plat_data->lba, blk_read(bdev, 0, plat_data->lba, buffer)); /* compare the data read from flash with the expected data */ dm_nvmxip_flash_sanity(uts, device_idx, buffer); free(buffer); } ut_assertok(device_idx != SANDBOX_NVMXIP_DEVICES); return CMD_RET_SUCCESS; } DM_TEST(dm_test_nvmxip, UT_TESTF_SCAN_FDT | UT_TESTF_CONSOLE_REC);