// SPDX-License-Identifier: GPL-2.0 /* * From coreboot src/southbridge/intel/bd82x6x/mrccache.c * * Copyright (C) 2014 Google Inc. * Copyright (C) 2015 Bin Meng */ #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; static uint mrc_block_size(uint data_size) { uint mrc_size = sizeof(struct mrc_data_container) + data_size; return ALIGN(mrc_size, MRC_DATA_ALIGN); } static struct mrc_data_container *next_mrc_block( struct mrc_data_container *cache) { /* MRC data blocks are aligned within the region */ u8 *region_ptr = (u8 *)cache; region_ptr += mrc_block_size(cache->data_size); return (struct mrc_data_container *)region_ptr; } static int is_mrc_cache(struct mrc_data_container *cache) { return cache && (cache->signature == MRC_DATA_SIGNATURE); } struct mrc_data_container *mrccache_find_current(struct mrc_region *entry) { struct mrc_data_container *cache, *next; ulong base_addr, end_addr; uint id; base_addr = entry->base + entry->offset; end_addr = base_addr + entry->length; cache = NULL; /* Search for the last filled entry in the region */ for (id = 0, next = (struct mrc_data_container *)base_addr; is_mrc_cache(next); id++) { cache = next; next = next_mrc_block(next); if ((ulong)next >= end_addr) break; } if (id-- == 0) { debug("%s: No valid MRC cache found.\n", __func__); return NULL; } /* Verify checksum */ if (cache->checksum != compute_ip_checksum(cache->data, cache->data_size)) { printf("%s: MRC cache checksum mismatch\n", __func__); return NULL; } debug("%s: picked entry %u from cache block\n", __func__, id); return cache; } /** * find_next_mrc_cache() - get next cache entry * * This moves to the next cache entry in the region, making sure it has enough * space to hold data of size @data_size. * * @entry: MRC cache flash area * @cache: Entry to start from * @data_size: Required data size of the new entry. Note that we assume that * all cache entries are the same size * * @return next cache entry if found, NULL if we got to the end */ static struct mrc_data_container *find_next_mrc_cache(struct mrc_region *entry, struct mrc_data_container *prev, int data_size) { struct mrc_data_container *cache; ulong base_addr, end_addr; base_addr = entry->base + entry->offset; end_addr = base_addr + entry->length; /* * We assume that all cache entries are the same size, but let's use * data_size here for clarity. */ cache = next_mrc_block(prev); if ((ulong)cache + mrc_block_size(data_size) > end_addr) { /* Crossed the boundary */ cache = NULL; debug("%s: no available entries found\n", __func__); } else { debug("%s: picked next entry from cache block at %p\n", __func__, cache); } return cache; } /** * mrccache_update() - update the MRC cache with a new record * * This writes a new record to the end of the MRC cache region. If the new * record is the same as the latest record then the write is skipped * * @sf: SPI flash to write to * @entry: Position and size of MRC cache in SPI flash * @cur: Record to write * @return 0 if updated, -EEXIST if the record is the same as the latest * record, -EINVAL if the record is not valid, other error if SPI write failed */ static int mrccache_update(struct udevice *sf, struct mrc_region *entry, struct mrc_data_container *cur) { struct mrc_data_container *cache; ulong offset; ulong base_addr; int ret; if (!is_mrc_cache(cur)) { debug("%s: Cache data not valid\n", __func__); return -EINVAL; } /* Find the last used block */ base_addr = entry->base + entry->offset; debug("Updating MRC cache data\n"); cache = mrccache_find_current(entry); if (cache && (cache->data_size == cur->data_size) && (!memcmp(cache, cur, cache->data_size + sizeof(*cur)))) { debug("MRC data in flash is up to date. No update\n"); return -EEXIST; } /* Move to the next block, which will be the first unused block */ if (cache) cache = find_next_mrc_cache(entry, cache, cur->data_size); /* * If we have got to the end, erase the entire mrc-cache area and start * again at block 0. */ if (!cache) { debug("Erasing the MRC cache region of %x bytes at %x\n", entry->length, entry->offset); ret = spi_flash_erase_dm(sf, entry->offset, entry->length); if (ret) { debug("Failed to erase flash region\n"); return ret; } cache = (struct mrc_data_container *)base_addr; } /* Write the data out */ offset = (ulong)cache - base_addr + entry->offset; debug("Write MRC cache update to flash at %lx\n", offset); ret = spi_flash_write_dm(sf, offset, cur->data_size + sizeof(*cur), cur); if (ret) { debug("Failed to write to SPI flash\n"); return log_msg_ret("Cannot update mrccache", ret); } return 0; } static void mrccache_setup(struct mrc_output *mrc, void *data) { struct mrc_data_container *cache = data; u16 checksum; cache->signature = MRC_DATA_SIGNATURE; cache->data_size = mrc->len; checksum = compute_ip_checksum(mrc->buf, cache->data_size); debug("Saving %d bytes for MRC output data, checksum %04x\n", cache->data_size, checksum); cache->checksum = checksum; cache->reserved = 0; memcpy(cache->data, mrc->buf, cache->data_size); mrc->cache = cache; } int mrccache_reserve(void) { int i; for (i = 0; i < MRC_TYPE_COUNT; i++) { struct mrc_output *mrc = &gd->arch.mrc[i]; if (!mrc->len) continue; /* adjust stack pointer to store pure cache data plus header */ gd->start_addr_sp -= (mrc->len + MRC_DATA_HEADER_SIZE); mrccache_setup(mrc, (void *)gd->start_addr_sp); gd->start_addr_sp &= ~0xf; } return 0; } int mrccache_get_region(enum mrc_type_t type, struct udevice **devp, struct mrc_region *entry) { struct udevice *dev; ofnode mrc_node; ulong map_base; uint map_size; uint offset; u32 reg[2]; int ret; /* * Find the flash chip within the SPI controller node. Avoid probing * the device here since it may put it into a strange state where the * memory map cannot be read. */ ret = uclass_find_first_device(UCLASS_SPI_FLASH, &dev); if (ret) return log_msg_ret("Cannot find SPI flash\n", ret); ret = dm_spi_get_mmap(dev, &map_base, &map_size, &offset); if (!ret) { entry->base = map_base; } else { ret = dev_read_u32_array(dev, "memory-map", reg, 2); if (ret) return log_msg_ret("Cannot find memory map\n", ret); entry->base = reg[0]; } /* Find the place where we put the MRC cache */ mrc_node = dev_read_subnode(dev, type == MRC_TYPE_NORMAL ? "rw-mrc-cache" : "rw-var-mrc-cache"); if (!ofnode_valid(mrc_node)) return log_msg_ret("Cannot find node", -EPERM); ret = ofnode_read_u32_array(mrc_node, "reg", reg, 2); if (ret) return log_msg_ret("Cannot find address", ret); entry->offset = reg[0]; entry->length = reg[1]; if (devp) *devp = dev; debug("MRC cache type %d in '%s', offset %x, len %x, base %x\n", type, dev->name, entry->offset, entry->length, entry->base); return 0; } static int mrccache_save_type(enum mrc_type_t type) { struct mrc_data_container *cache; struct mrc_output *mrc; struct mrc_region entry; struct udevice *sf; int ret; mrc = &gd->arch.mrc[type]; if (!mrc->len) return 0; log_debug("Saving %#x bytes of MRC output data type %d to SPI flash\n", mrc->len, type); ret = mrccache_get_region(type, &sf, &entry); if (ret) return log_msg_ret("Cannot get region", ret); ret = device_probe(sf); if (ret) return log_msg_ret("Cannot probe device", ret); cache = mrc->cache; ret = mrccache_update(sf, &entry, cache); if (!ret) debug("Saved MRC data with checksum %04x\n", cache->checksum); else if (ret == -EEXIST) debug("MRC data is the same as last time, skipping save\n"); return 0; } int mrccache_save(void) { int i; for (i = 0; i < MRC_TYPE_COUNT; i++) { int ret; ret = mrccache_save_type(i); if (ret) return ret; } return 0; } int mrccache_spl_save(void) { int i; for (i = 0; i < MRC_TYPE_COUNT; i++) { struct mrc_output *mrc = &gd->arch.mrc[i]; void *data; int size; size = mrc->len + MRC_DATA_HEADER_SIZE; data = malloc(size); if (!data) return log_msg_ret("Allocate MRC cache block", -ENOMEM); mrccache_setup(mrc, data); } return mrccache_save(); }