// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2009 * Marvell Semiconductor * Written-by: Prafulla Wadaskar * * (C) Copyright 2003 * Ingo Assmus * * based on - Driver for MV64360X ethernet ports * Copyright (C) 2002 rabeeh@galileo.co.il */ #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_KIRKWOOD) #include #elif defined(CONFIG_ARCH_ORION5X) #include #endif #include "mvgbe.h" DECLARE_GLOBAL_DATA_PTR; #ifndef CONFIG_MVGBE_PORTS # define CONFIG_MVGBE_PORTS {0, 0} #endif #define MV_PHY_ADR_REQUEST 0xee #define MVGBE_SMI_REG (((struct mvgbe_registers *)MVGBE0_BASE)->smi) #if defined(CONFIG_PHYLIB) || defined(CONFIG_MII) || defined(CONFIG_CMD_MII) static int smi_wait_ready(struct mvgbe_device *dmvgbe) { int ret; ret = wait_for_bit_le32(&MVGBE_SMI_REG, MVGBE_PHY_SMI_BUSY_MASK, false, MVGBE_PHY_SMI_TIMEOUT_MS, false); if (ret) { printf("Error: SMI busy timeout\n"); return ret; } return 0; } static int __mvgbe_mdio_read(struct mvgbe_device *dmvgbe, int phy_adr, int devad, int reg_ofs) { struct mvgbe_registers *regs = dmvgbe->regs; u32 smi_reg; u32 timeout; u16 data = 0; /* Phyadr read request */ if (phy_adr == MV_PHY_ADR_REQUEST && reg_ofs == MV_PHY_ADR_REQUEST) { /* */ data = (u16) (MVGBE_REG_RD(regs->phyadr) & PHYADR_MASK); return data; } /* check parameters */ if (phy_adr > PHYADR_MASK) { printf("Err..(%s) Invalid PHY address %d\n", __func__, phy_adr); return -EFAULT; } if (reg_ofs > PHYREG_MASK) { printf("Err..(%s) Invalid register offset %d\n", __func__, reg_ofs); return -EFAULT; } /* wait till the SMI is not busy */ if (smi_wait_ready(dmvgbe) < 0) return -EFAULT; /* fill the phy address and regiser offset and read opcode */ smi_reg = (phy_adr << MVGBE_PHY_SMI_DEV_ADDR_OFFS) | (reg_ofs << MVGBE_SMI_REG_ADDR_OFFS) | MVGBE_PHY_SMI_OPCODE_READ; /* write the smi register */ MVGBE_REG_WR(MVGBE_SMI_REG, smi_reg); /*wait till read value is ready */ timeout = MVGBE_PHY_SMI_TIMEOUT; do { /* read smi register */ smi_reg = MVGBE_REG_RD(MVGBE_SMI_REG); if (timeout-- == 0) { printf("Err..(%s) SMI read ready timeout\n", __func__); return -EFAULT; } } while (!(smi_reg & MVGBE_PHY_SMI_READ_VALID_MASK)); /* Wait for the data to update in the SMI register */ for (timeout = 0; timeout < MVGBE_PHY_SMI_TIMEOUT; timeout++) ; data = (u16) (MVGBE_REG_RD(MVGBE_SMI_REG) & MVGBE_PHY_SMI_DATA_MASK); debug("%s:(adr %d, off %d) value= %04x\n", __func__, phy_adr, reg_ofs, data); return data; } /* * smi_reg_read - miiphy_read callback function. * * Returns 16bit phy register value, or -EFAULT on error */ static int smi_reg_read(struct mii_dev *bus, int phy_adr, int devad, int reg_ofs) { #ifdef CONFIG_DM_ETH struct mvgbe_device *dmvgbe = bus->priv; #else struct eth_device *dev = eth_get_dev_by_name(bus->name); struct mvgbe_device *dmvgbe = to_mvgbe(dev); #endif return __mvgbe_mdio_read(dmvgbe, phy_adr, devad, reg_ofs); } static int __mvgbe_mdio_write(struct mvgbe_device *dmvgbe, int phy_adr, int devad, int reg_ofs, u16 data) { struct mvgbe_registers *regs = dmvgbe->regs; u32 smi_reg; /* Phyadr write request*/ if (phy_adr == MV_PHY_ADR_REQUEST && reg_ofs == MV_PHY_ADR_REQUEST) { MVGBE_REG_WR(regs->phyadr, data); return 0; } /* check parameters */ if (phy_adr > PHYADR_MASK) { printf("Err..(%s) Invalid phy address\n", __func__); return -EINVAL; } if (reg_ofs > PHYREG_MASK) { printf("Err..(%s) Invalid register offset\n", __func__); return -EFAULT; } /* wait till the SMI is not busy */ if (smi_wait_ready(dmvgbe) < 0) return -EFAULT; /* fill the phy addr and reg offset and write opcode and data */ smi_reg = (data << MVGBE_PHY_SMI_DATA_OFFS); smi_reg |= (phy_adr << MVGBE_PHY_SMI_DEV_ADDR_OFFS) | (reg_ofs << MVGBE_SMI_REG_ADDR_OFFS); smi_reg &= ~MVGBE_PHY_SMI_OPCODE_READ; /* write the smi register */ MVGBE_REG_WR(MVGBE_SMI_REG, smi_reg); return 0; } /* * smi_reg_write - miiphy_write callback function. * * Returns 0 if write succeed, -EFAULT on error */ static int smi_reg_write(struct mii_dev *bus, int phy_adr, int devad, int reg_ofs, u16 data) { #ifdef CONFIG_DM_ETH struct mvgbe_device *dmvgbe = bus->priv; #else struct eth_device *dev = eth_get_dev_by_name(bus->name); struct mvgbe_device *dmvgbe = to_mvgbe(dev); #endif return __mvgbe_mdio_write(dmvgbe, phy_adr, devad, reg_ofs, data); } #endif /* Stop and checks all queues */ static void stop_queue(u32 * qreg) { u32 reg_data; reg_data = readl(qreg); if (reg_data & 0xFF) { /* Issue stop command for active channels only */ writel((reg_data << 8), qreg); /* Wait for all queue activity to terminate. */ do { /* * Check port cause register that all queues * are stopped */ reg_data = readl(qreg); } while (reg_data & 0xFF); } } /* * set_access_control - Config address decode parameters for Ethernet unit * * This function configures the address decode parameters for the Gigabit * Ethernet Controller according the given parameters struct. * * @regs Register struct pointer. * @param Address decode parameter struct. */ static void set_access_control(struct mvgbe_registers *regs, struct mvgbe_winparam *param) { u32 access_prot_reg; /* Set access control register */ access_prot_reg = MVGBE_REG_RD(regs->epap); /* clear window permission */ access_prot_reg &= (~(3 << (param->win * 2))); access_prot_reg |= (param->access_ctrl << (param->win * 2)); MVGBE_REG_WR(regs->epap, access_prot_reg); /* Set window Size reg (SR) */ MVGBE_REG_WR(regs->barsz[param->win].size, (((param->size / 0x10000) - 1) << 16)); /* Set window Base address reg (BA) */ MVGBE_REG_WR(regs->barsz[param->win].bar, (param->target | param->attrib | param->base_addr)); /* High address remap reg (HARR) */ if (param->win < 4) MVGBE_REG_WR(regs->ha_remap[param->win], param->high_addr); /* Base address enable reg (BARER) */ if (param->enable == 1) MVGBE_REG_BITS_RESET(regs->bare, (1 << param->win)); else MVGBE_REG_BITS_SET(regs->bare, (1 << param->win)); } static void set_dram_access(struct mvgbe_registers *regs) { struct mvgbe_winparam win_param; int i; for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { /* Set access parameters for DRAM bank i */ win_param.win = i; /* Use Ethernet window i */ /* Window target - DDR */ win_param.target = MVGBE_TARGET_DRAM; /* Enable full access */ win_param.access_ctrl = EWIN_ACCESS_FULL; win_param.high_addr = 0; /* Get bank base and size */ win_param.base_addr = gd->bd->bi_dram[i].start; win_param.size = gd->bd->bi_dram[i].size; if (win_param.size == 0) win_param.enable = 0; else win_param.enable = 1; /* Enable the access */ /* Enable DRAM bank */ switch (i) { case 0: win_param.attrib = EBAR_DRAM_CS0; break; case 1: win_param.attrib = EBAR_DRAM_CS1; break; case 2: win_param.attrib = EBAR_DRAM_CS2; break; case 3: win_param.attrib = EBAR_DRAM_CS3; break; default: /* invalid bank, disable access */ win_param.enable = 0; win_param.attrib = 0; break; } /* Set the access control for address window(EPAPR) RD/WR */ set_access_control(regs, &win_param); } } /* * port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables * * Go through all the DA filter tables (Unicast, Special Multicast & Other * Multicast) and set each entry to 0. */ static void port_init_mac_tables(struct mvgbe_registers *regs) { int table_index; /* Clear DA filter unicast table (Ex_dFUT) */ for (table_index = 0; table_index < 4; ++table_index) MVGBE_REG_WR(regs->dfut[table_index], 0); for (table_index = 0; table_index < 64; ++table_index) { /* Clear DA filter special multicast table (Ex_dFSMT) */ MVGBE_REG_WR(regs->dfsmt[table_index], 0); /* Clear DA filter other multicast table (Ex_dFOMT) */ MVGBE_REG_WR(regs->dfomt[table_index], 0); } } /* * port_uc_addr - This function Set the port unicast address table * * This function locates the proper entry in the Unicast table for the * specified MAC nibble and sets its properties according to function * parameters. * This function add/removes MAC addresses from the port unicast address * table. * * @uc_nibble Unicast MAC Address last nibble. * @option 0 = Add, 1 = remove address. * * RETURN: 1 if output succeeded. 0 if option parameter is invalid. */ static int port_uc_addr(struct mvgbe_registers *regs, u8 uc_nibble, int option) { u32 unicast_reg; u32 tbl_offset; u32 reg_offset; /* Locate the Unicast table entry */ uc_nibble = (0xf & uc_nibble); /* Register offset from unicast table base */ tbl_offset = (uc_nibble / 4); /* Entry offset within the above register */ reg_offset = uc_nibble % 4; switch (option) { case REJECT_MAC_ADDR: /* * Clear accepts frame bit at specified unicast * DA table entry */ unicast_reg = MVGBE_REG_RD(regs->dfut[tbl_offset]); unicast_reg &= (0xFF << (8 * reg_offset)); MVGBE_REG_WR(regs->dfut[tbl_offset], unicast_reg); break; case ACCEPT_MAC_ADDR: /* Set accepts frame bit at unicast DA filter table entry */ unicast_reg = MVGBE_REG_RD(regs->dfut[tbl_offset]); unicast_reg &= (0xFF << (8 * reg_offset)); unicast_reg |= ((0x01 | (RXUQ << 1)) << (8 * reg_offset)); MVGBE_REG_WR(regs->dfut[tbl_offset], unicast_reg); break; default: return 0; } return 1; } /* * port_uc_addr_set - This function Set the port Unicast address. */ static void port_uc_addr_set(struct mvgbe_device *dmvgbe, u8 *p_addr) { struct mvgbe_registers *regs = dmvgbe->regs; u32 mac_h; u32 mac_l; mac_l = (p_addr[4] << 8) | (p_addr[5]); mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) | (p_addr[3] << 0); MVGBE_REG_WR(regs->macal, mac_l); MVGBE_REG_WR(regs->macah, mac_h); /* Accept frames of this address */ port_uc_addr(regs, p_addr[5], ACCEPT_MAC_ADDR); } /* * mvgbe_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory. */ static void mvgbe_init_rx_desc_ring(struct mvgbe_device *dmvgbe) { struct mvgbe_rxdesc *p_rx_desc; int i; /* initialize the Rx descriptors ring */ p_rx_desc = dmvgbe->p_rxdesc; for (i = 0; i < RINGSZ; i++) { p_rx_desc->cmd_sts = MVGBE_BUFFER_OWNED_BY_DMA | MVGBE_RX_EN_INTERRUPT; p_rx_desc->buf_size = PKTSIZE_ALIGN; p_rx_desc->byte_cnt = 0; p_rx_desc->buf_ptr = dmvgbe->p_rxbuf + i * PKTSIZE_ALIGN; if (i == (RINGSZ - 1)) p_rx_desc->nxtdesc_p = dmvgbe->p_rxdesc; else { p_rx_desc->nxtdesc_p = (struct mvgbe_rxdesc *) ((u32) p_rx_desc + MV_RXQ_DESC_ALIGNED_SIZE); p_rx_desc = p_rx_desc->nxtdesc_p; } } dmvgbe->p_rxdesc_curr = dmvgbe->p_rxdesc; } static int __mvgbe_init(struct mvgbe_device *dmvgbe, u8 *enetaddr, const char *name) { struct mvgbe_registers *regs = dmvgbe->regs; #if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII)) && \ !defined(CONFIG_PHYLIB) && \ !defined(CONFIG_DM_ETH) && \ defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) int i; #endif /* setup RX rings */ mvgbe_init_rx_desc_ring(dmvgbe); /* Clear the ethernet port interrupts */ MVGBE_REG_WR(regs->ic, 0); MVGBE_REG_WR(regs->ice, 0); /* Unmask RX buffer and TX end interrupt */ MVGBE_REG_WR(regs->pim, INT_CAUSE_UNMASK_ALL); /* Unmask phy and link status changes interrupts */ MVGBE_REG_WR(regs->peim, INT_CAUSE_UNMASK_ALL_EXT); set_dram_access(regs); port_init_mac_tables(regs); port_uc_addr_set(dmvgbe, enetaddr); /* Assign port configuration and command. */ MVGBE_REG_WR(regs->pxc, PRT_CFG_VAL); MVGBE_REG_WR(regs->pxcx, PORT_CFG_EXTEND_VALUE); MVGBE_REG_WR(regs->psc0, PORT_SERIAL_CONTROL_VALUE); /* Assign port SDMA configuration */ MVGBE_REG_WR(regs->sdc, PORT_SDMA_CFG_VALUE); MVGBE_REG_WR(regs->tqx[0].qxttbc, QTKNBKT_DEF_VAL); MVGBE_REG_WR(regs->tqx[0].tqxtbc, (QMTBS_DEF_VAL << 16) | QTKNRT_DEF_VAL); /* Turn off the port/RXUQ bandwidth limitation */ MVGBE_REG_WR(regs->pmtu, 0); /* Set maximum receive buffer to 9700 bytes */ MVGBE_REG_WR(regs->psc0, MVGBE_MAX_RX_PACKET_9700BYTE | (MVGBE_REG_RD(regs->psc0) & MRU_MASK)); /* Enable port initially */ MVGBE_REG_BITS_SET(regs->psc0, MVGBE_SERIAL_PORT_EN); /* * Set ethernet MTU for leaky bucket mechanism to 0 - this will * disable the leaky bucket mechanism . */ MVGBE_REG_WR(regs->pmtu, 0); /* Assignment of Rx CRDB of given RXUQ */ MVGBE_REG_WR(regs->rxcdp[RXUQ], (u32) dmvgbe->p_rxdesc_curr); /* ensure previous write is done before enabling Rx DMA */ isb(); /* Enable port Rx. */ MVGBE_REG_WR(regs->rqc, (1 << RXUQ)); #if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII)) && \ !defined(CONFIG_PHYLIB) && \ !defined(CONFIG_DM_ETH) && \ defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) /* Wait up to 5s for the link status */ for (i = 0; i < 5; i++) { u16 phyadr; miiphy_read(name, MV_PHY_ADR_REQUEST, MV_PHY_ADR_REQUEST, &phyadr); /* Return if we get link up */ if (miiphy_link(name, phyadr)) return 0; udelay(1000000); } printf("No link on %s\n", name); return -1; #endif return 0; } #ifndef CONFIG_DM_ETH static int mvgbe_init(struct eth_device *dev) { struct mvgbe_device *dmvgbe = to_mvgbe(dev); return __mvgbe_init(dmvgbe, dmvgbe->dev.enetaddr, dmvgbe->dev.name); } #endif static void __mvgbe_halt(struct mvgbe_device *dmvgbe) { struct mvgbe_registers *regs = dmvgbe->regs; /* Disable all gigE address decoder */ MVGBE_REG_WR(regs->bare, 0x3f); stop_queue(®s->tqc); stop_queue(®s->rqc); /* Disable port */ MVGBE_REG_BITS_RESET(regs->psc0, MVGBE_SERIAL_PORT_EN); /* Set port is not reset */ MVGBE_REG_BITS_RESET(regs->psc1, 1 << 4); #ifdef CONFIG_SYS_MII_MODE /* Set MMI interface up */ MVGBE_REG_BITS_RESET(regs->psc1, 1 << 3); #endif /* Disable & mask ethernet port interrupts */ MVGBE_REG_WR(regs->ic, 0); MVGBE_REG_WR(regs->ice, 0); MVGBE_REG_WR(regs->pim, 0); MVGBE_REG_WR(regs->peim, 0); } #ifndef CONFIG_DM_ETH static int mvgbe_halt(struct eth_device *dev) { struct mvgbe_device *dmvgbe = to_mvgbe(dev); __mvgbe_halt(dmvgbe); return 0; } #endif #ifdef CONFIG_DM_ETH static int mvgbe_write_hwaddr(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); port_uc_addr_set(dev_get_priv(dev), pdata->enetaddr); return 0; } #else static int mvgbe_write_hwaddr(struct eth_device *dev) { struct mvgbe_device *dmvgbe = to_mvgbe(dev); /* Programs net device MAC address after initialization */ port_uc_addr_set(dmvgbe, dmvgbe->dev.enetaddr); return 0; } #endif static int __mvgbe_send(struct mvgbe_device *dmvgbe, void *dataptr, int datasize) { struct mvgbe_registers *regs = dmvgbe->regs; struct mvgbe_txdesc *p_txdesc = dmvgbe->p_txdesc; void *p = (void *)dataptr; u32 cmd_sts; u32 txuq0_reg_addr; /* Copy buffer if it's misaligned */ if ((u32) dataptr & 0x07) { if (datasize > PKTSIZE_ALIGN) { printf("Non-aligned data too large (%d)\n", datasize); return -1; } memcpy(dmvgbe->p_aligned_txbuf, p, datasize); p = dmvgbe->p_aligned_txbuf; } p_txdesc->cmd_sts = MVGBE_ZERO_PADDING | MVGBE_GEN_CRC; p_txdesc->cmd_sts |= MVGBE_TX_FIRST_DESC | MVGBE_TX_LAST_DESC; p_txdesc->cmd_sts |= MVGBE_BUFFER_OWNED_BY_DMA; p_txdesc->cmd_sts |= MVGBE_TX_EN_INTERRUPT; p_txdesc->buf_ptr = (u8 *) p; p_txdesc->byte_cnt = datasize; /* Set this tc desc as zeroth TXUQ */ txuq0_reg_addr = (u32)®s->tcqdp[TXUQ]; writel((u32) p_txdesc, txuq0_reg_addr); /* ensure tx desc writes above are performed before we start Tx DMA */ isb(); /* Apply send command using zeroth TXUQ */ MVGBE_REG_WR(regs->tqc, (1 << TXUQ)); /* * wait for packet xmit completion */ cmd_sts = readl(&p_txdesc->cmd_sts); while (cmd_sts & MVGBE_BUFFER_OWNED_BY_DMA) { /* return fail if error is detected */ if ((cmd_sts & (MVGBE_ERROR_SUMMARY | MVGBE_TX_LAST_FRAME)) == (MVGBE_ERROR_SUMMARY | MVGBE_TX_LAST_FRAME) && cmd_sts & (MVGBE_UR_ERROR | MVGBE_RL_ERROR)) { printf("Err..(%s) in xmit packet\n", __func__); return -1; } cmd_sts = readl(&p_txdesc->cmd_sts); }; return 0; } #ifndef CONFIG_DM_ETH static int mvgbe_send(struct eth_device *dev, void *dataptr, int datasize) { struct mvgbe_device *dmvgbe = to_mvgbe(dev); return __mvgbe_send(dmvgbe, dataptr, datasize); } #endif static int __mvgbe_recv(struct mvgbe_device *dmvgbe, uchar **packetp) { struct mvgbe_rxdesc *p_rxdesc_curr = dmvgbe->p_rxdesc_curr; u32 cmd_sts; u32 timeout = 0; u32 rxdesc_curr_addr; unsigned char *data; int rx_bytes = 0; *packetp = NULL; /* wait untill rx packet available or timeout */ do { if (timeout < MVGBE_PHY_SMI_TIMEOUT) timeout++; else { debug("%s time out...\n", __func__); return -1; } } while (readl(&p_rxdesc_curr->cmd_sts) & MVGBE_BUFFER_OWNED_BY_DMA); if (p_rxdesc_curr->byte_cnt != 0) { debug("%s: Received %d byte Packet @ 0x%x (cmd_sts= %08x)\n", __func__, (u32) p_rxdesc_curr->byte_cnt, (u32) p_rxdesc_curr->buf_ptr, (u32) p_rxdesc_curr->cmd_sts); } /* * In case received a packet without first/last bits on * OR the error summary bit is on, * the packets needs to be dropeed. */ cmd_sts = readl(&p_rxdesc_curr->cmd_sts); if ((cmd_sts & (MVGBE_RX_FIRST_DESC | MVGBE_RX_LAST_DESC)) != (MVGBE_RX_FIRST_DESC | MVGBE_RX_LAST_DESC)) { printf("Err..(%s) Dropping packet spread on" " multiple descriptors\n", __func__); } else if (cmd_sts & MVGBE_ERROR_SUMMARY) { printf("Err..(%s) Dropping packet with errors\n", __func__); } else { /* !!! call higher layer processing */ debug("%s: Sending Received packet to" " upper layer (net_process_received_packet)\n", __func__); data = (p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET); rx_bytes = (int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET); *packetp = data; } /* * free these descriptors and point next in the ring */ p_rxdesc_curr->cmd_sts = MVGBE_BUFFER_OWNED_BY_DMA | MVGBE_RX_EN_INTERRUPT; p_rxdesc_curr->buf_size = PKTSIZE_ALIGN; p_rxdesc_curr->byte_cnt = 0; rxdesc_curr_addr = (u32)&dmvgbe->p_rxdesc_curr; writel((unsigned)p_rxdesc_curr->nxtdesc_p, rxdesc_curr_addr); return rx_bytes; } #ifndef CONFIG_DM_ETH static int mvgbe_recv(struct eth_device *dev) { struct mvgbe_device *dmvgbe = to_mvgbe(dev); uchar *packet; int ret; ret = __mvgbe_recv(dmvgbe, &packet); if (ret < 0) return ret; net_process_received_packet(packet, ret); return 0; } #endif #if defined(CONFIG_PHYLIB) || defined(CONFIG_DM_ETH) #if defined(CONFIG_DM_ETH) static struct phy_device *__mvgbe_phy_init(struct udevice *dev, struct mii_dev *bus, phy_interface_t phy_interface, int phyid) #else static struct phy_device *__mvgbe_phy_init(struct eth_device *dev, struct mii_dev *bus, phy_interface_t phy_interface, int phyid) #endif { struct phy_device *phydev; /* Set phy address of the port */ miiphy_write(dev->name, MV_PHY_ADR_REQUEST, MV_PHY_ADR_REQUEST, phyid); phydev = phy_connect(bus, phyid, dev, phy_interface); if (!phydev) { printf("phy_connect failed\n"); return NULL; } phy_config(phydev); phy_startup(phydev); return phydev; } #endif /* CONFIG_PHYLIB || CONFIG_DM_ETH */ #if defined(CONFIG_PHYLIB) && !defined(CONFIG_DM_ETH) int mvgbe_phylib_init(struct eth_device *dev, int phyid) { struct mii_dev *bus; struct phy_device *phydev; int ret; bus = mdio_alloc(); if (!bus) { printf("mdio_alloc failed\n"); return -ENOMEM; } bus->read = smi_reg_read; bus->write = smi_reg_write; strcpy(bus->name, dev->name); ret = mdio_register(bus); if (ret) { printf("mdio_register failed\n"); free(bus); return -ENOMEM; } phydev = __mvgbe_phy_init(dev, bus, PHY_INTERFACE_MODE_RGMII, phyid); if (!phydev) return -ENODEV; return 0; } #endif static int mvgbe_alloc_buffers(struct mvgbe_device *dmvgbe) { dmvgbe->p_rxdesc = memalign(PKTALIGN, MV_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1); if (!dmvgbe->p_rxdesc) goto error1; dmvgbe->p_rxbuf = memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1); if (!dmvgbe->p_rxbuf) goto error2; dmvgbe->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN); if (!dmvgbe->p_aligned_txbuf) goto error3; dmvgbe->p_txdesc = memalign(PKTALIGN, sizeof(struct mvgbe_txdesc) + 1); if (!dmvgbe->p_txdesc) goto error4; return 0; error4: free(dmvgbe->p_aligned_txbuf); error3: free(dmvgbe->p_rxbuf); error2: free(dmvgbe->p_rxdesc); error1: return -ENOMEM; } #ifndef CONFIG_DM_ETH int mvgbe_initialize(bd_t *bis) { struct mvgbe_device *dmvgbe; struct eth_device *dev; int devnum; int ret; u8 used_ports[MAX_MVGBE_DEVS] = CONFIG_MVGBE_PORTS; for (devnum = 0; devnum < MAX_MVGBE_DEVS; devnum++) { /*skip if port is configured not to use */ if (used_ports[devnum] == 0) continue; dmvgbe = malloc(sizeof(struct mvgbe_device)); if (!dmvgbe) return -ENOMEM; memset(dmvgbe, 0, sizeof(struct mvgbe_device)); ret = mvgbe_alloc_buffers(dmvgbe); if (ret) { printf("Err.. %s Failed to allocate memory\n", __func__); free(dmvgbe); return ret; } dev = &dmvgbe->dev; /* must be less than sizeof(dev->name) */ sprintf(dev->name, "egiga%d", devnum); switch (devnum) { case 0: dmvgbe->regs = (void *)MVGBE0_BASE; break; #if defined(MVGBE1_BASE) case 1: dmvgbe->regs = (void *)MVGBE1_BASE; break; #endif default: /* this should never happen */ printf("Err..(%s) Invalid device number %d\n", __func__, devnum); return -1; } dev->init = (void *)mvgbe_init; dev->halt = (void *)mvgbe_halt; dev->send = (void *)mvgbe_send; dev->recv = (void *)mvgbe_recv; dev->write_hwaddr = (void *)mvgbe_write_hwaddr; eth_register(dev); #if defined(CONFIG_PHYLIB) mvgbe_phylib_init(dev, PHY_BASE_ADR + devnum); #elif defined(CONFIG_MII) || defined(CONFIG_CMD_MII) int retval; struct mii_dev *mdiodev = mdio_alloc(); if (!mdiodev) return -ENOMEM; strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN); mdiodev->read = smi_reg_read; mdiodev->write = smi_reg_write; retval = mdio_register(mdiodev); if (retval < 0) return retval; /* Set phy address of the port */ miiphy_write(dev->name, MV_PHY_ADR_REQUEST, MV_PHY_ADR_REQUEST, PHY_BASE_ADR + devnum); #endif } return 0; } #endif #ifdef CONFIG_DM_ETH static int mvgbe_port_is_fixed_link(struct mvgbe_device *dmvgbe) { return dmvgbe->phyaddr > PHY_MAX_ADDR; } static int mvgbe_start(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct mvgbe_device *dmvgbe = dev_get_priv(dev); int ret; ret = __mvgbe_init(dmvgbe, pdata->enetaddr, dev->name); if (ret) return ret; if (!mvgbe_port_is_fixed_link(dmvgbe)) { dmvgbe->phydev = __mvgbe_phy_init(dev, dmvgbe->bus, dmvgbe->phy_interface, dmvgbe->phyaddr); if (!dmvgbe->phydev) return -ENODEV; } return 0; } static int mvgbe_send(struct udevice *dev, void *packet, int length) { struct mvgbe_device *dmvgbe = dev_get_priv(dev); return __mvgbe_send(dmvgbe, packet, length); } static int mvgbe_recv(struct udevice *dev, int flags, uchar **packetp) { struct mvgbe_device *dmvgbe = dev_get_priv(dev); return __mvgbe_recv(dmvgbe, packetp); } static void mvgbe_stop(struct udevice *dev) { struct mvgbe_device *dmvgbe = dev_get_priv(dev); __mvgbe_halt(dmvgbe); } static int mvgbe_probe(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct mvgbe_device *dmvgbe = dev_get_priv(dev); struct mii_dev *bus; int ret; ret = mvgbe_alloc_buffers(dmvgbe); if (ret) return ret; dmvgbe->regs = (void __iomem *)pdata->iobase; bus = mdio_alloc(); if (!bus) { printf("Failed to allocate MDIO bus\n"); return -ENOMEM; } bus->read = smi_reg_read; bus->write = smi_reg_write; snprintf(bus->name, sizeof(bus->name), dev->name); bus->priv = dmvgbe; dmvgbe->bus = bus; ret = mdio_register(bus); if (ret < 0) return ret; return 0; } static const struct eth_ops mvgbe_ops = { .start = mvgbe_start, .send = mvgbe_send, .recv = mvgbe_recv, .stop = mvgbe_stop, .write_hwaddr = mvgbe_write_hwaddr, }; static int mvgbe_ofdata_to_platdata(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct mvgbe_device *dmvgbe = dev_get_priv(dev); void *blob = (void *)gd->fdt_blob; int node = dev_of_offset(dev); const char *phy_mode; int fl_node; int pnode; unsigned long addr; pdata->iobase = devfdt_get_addr(dev); pdata->phy_interface = -1; pnode = fdt_node_offset_by_compatible(blob, node, "marvell,kirkwood-eth-port"); /* Get phy-mode / phy_interface from DT */ phy_mode = fdt_getprop(gd->fdt_blob, pnode, "phy-mode", NULL); if (phy_mode) pdata->phy_interface = phy_get_interface_by_name(phy_mode); else pdata->phy_interface = PHY_INTERFACE_MODE_GMII; dmvgbe->phy_interface = pdata->phy_interface; /* fetch 'fixed-link' property */ fl_node = fdt_subnode_offset(blob, pnode, "fixed-link"); if (fl_node != -FDT_ERR_NOTFOUND) { /* set phy_addr to invalid value for fixed link */ dmvgbe->phyaddr = PHY_MAX_ADDR + 1; dmvgbe->duplex = fdtdec_get_bool(blob, fl_node, "full-duplex"); dmvgbe->speed = fdtdec_get_int(blob, fl_node, "speed", 0); } else { /* Now read phyaddr from DT */ addr = fdtdec_lookup_phandle(blob, pnode, "phy-handle"); if (addr > 0) dmvgbe->phyaddr = fdtdec_get_int(blob, addr, "reg", 0); } return 0; } static const struct udevice_id mvgbe_ids[] = { { .compatible = "marvell,kirkwood-eth" }, { } }; U_BOOT_DRIVER(mvgbe) = { .name = "mvgbe", .id = UCLASS_ETH, .of_match = mvgbe_ids, .ofdata_to_platdata = mvgbe_ofdata_to_platdata, .probe = mvgbe_probe, .ops = &mvgbe_ops, .priv_auto_alloc_size = sizeof(struct mvgbe_device), .platdata_auto_alloc_size = sizeof(struct eth_pdata), }; #endif /* CONFIG_DM_ETH */