// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2013, Google Inc. */ #ifndef USE_HOSTCC #include #include #include #include #include #include #include #include #include #include #else #include "fdt_host.h" #include "mkimage.h" #include #include #endif #include #include /* Default public exponent for backward compatibility */ #define RSA_DEFAULT_PUBEXP 65537 /** * rsa_verify_padding() - Verify RSA message padding is valid * * Verify a RSA message's padding is consistent with PKCS1.5 * padding as described in the RSA PKCS#1 v2.1 standard. * * @msg: Padded message * @pad_len: Number of expected padding bytes * @algo: Checksum algo structure having information on DER encoding etc. * Return: 0 on success, != 0 on failure */ static int rsa_verify_padding(const uint8_t *msg, const int pad_len, struct checksum_algo *algo) { int ff_len; int ret; /* first byte must be 0x00 */ ret = *msg++; /* second byte must be 0x01 */ ret |= *msg++ ^ 0x01; /* next ff_len bytes must be 0xff */ ff_len = pad_len - algo->der_len - 3; ret |= *msg ^ 0xff; ret |= memcmp(msg, msg+1, ff_len-1); msg += ff_len; /* next byte must be 0x00 */ ret |= *msg++; /* next der_len bytes must match der_prefix */ ret |= memcmp(msg, algo->der_prefix, algo->der_len); return ret; } int padding_pkcs_15_verify(struct image_sign_info *info, const uint8_t *msg, int msg_len, const uint8_t *hash, int hash_len) { struct checksum_algo *checksum = info->checksum; int ret, pad_len = msg_len - checksum->checksum_len; /* Check pkcs1.5 padding bytes */ ret = rsa_verify_padding(msg, pad_len, checksum); if (ret) { debug("In RSAVerify(): Padding check failed!\n"); return -EINVAL; } /* Check hash */ if (memcmp((uint8_t *)msg + pad_len, hash, msg_len - pad_len)) { debug("In RSAVerify(): Hash check failed!\n"); return -EACCES; } return 0; } #ifndef USE_HOSTCC U_BOOT_PADDING_ALGO(pkcs_15) = { .name = "pkcs-1.5", .verify = padding_pkcs_15_verify, }; #endif #if CONFIG_IS_ENABLED(FIT_RSASSA_PSS) static void u32_i2osp(uint32_t val, uint8_t *buf) { buf[0] = (uint8_t)((val >> 24) & 0xff); buf[1] = (uint8_t)((val >> 16) & 0xff); buf[2] = (uint8_t)((val >> 8) & 0xff); buf[3] = (uint8_t)((val >> 0) & 0xff); } /** * mask_generation_function1() - generate an octet string * * Generate an octet string used to check rsa signature. * It use an input octet string and a hash function. * * @checksum: A Hash function * @seed: Specifies an input variable octet string * @seed_len: Size of the input octet string * @output: Specifies the output octet string * @output_len: Size of the output octet string * Return: 0 if the octet string was correctly generated, others on error */ static int mask_generation_function1(struct checksum_algo *checksum, const uint8_t *seed, int seed_len, uint8_t *output, int output_len) { struct image_region region[2]; int ret = 0, i, i_output = 0, region_count = 2; uint32_t counter = 0; uint8_t buf_counter[4], *tmp; int hash_len = checksum->checksum_len; memset(output, 0, output_len); region[0].data = seed; region[0].size = seed_len; region[1].data = &buf_counter[0]; region[1].size = 4; tmp = malloc(hash_len); if (!tmp) { debug("%s: can't allocate array tmp\n", __func__); ret = -ENOMEM; goto out; } while (i_output < output_len) { u32_i2osp(counter, &buf_counter[0]); ret = checksum->calculate(checksum->name, region, region_count, tmp); if (ret < 0) { debug("%s: Error in checksum calculation\n", __func__); goto out; } i = 0; while ((i_output < output_len) && (i < hash_len)) { output[i_output] = tmp[i]; i_output++; i++; } counter++; } out: free(tmp); return ret; } static int compute_hash_prime(struct checksum_algo *checksum, const uint8_t *pad, int pad_len, const uint8_t *hash, int hash_len, const uint8_t *salt, int salt_len, uint8_t *hprime) { struct image_region region[3]; int ret, region_count = 3; region[0].data = pad; region[0].size = pad_len; region[1].data = hash; region[1].size = hash_len; region[2].data = salt; region[2].size = salt_len; ret = checksum->calculate(checksum->name, region, region_count, hprime); if (ret < 0) { debug("%s: Error in checksum calculation\n", __func__); goto out; } out: return ret; } /* * padding_pss_verify() - verify the pss padding of a signature * * Works with any salt length * * msg is a concatenation of : masked_db + h + 0xbc * Once unmasked, db is a concatenation of : [0x00]* + 0x01 + salt * Length of 0-padding at begin of db depends on salt length. * * @info: Specifies key and FIT information * @msg: byte array of message, len equal to msg_len * @msg_len: Message length * @hash: Pointer to the expected hash * @hash_len: Length of the hash * * Return: 0 if padding is correct, non-zero otherwise */ int padding_pss_verify(struct image_sign_info *info, const uint8_t *msg, int msg_len, const uint8_t *hash, int hash_len) { const uint8_t *masked_db = NULL; uint8_t *db_mask = NULL; uint8_t *db = NULL; int db_len = msg_len - hash_len - 1; const uint8_t *h = NULL; uint8_t *hprime = NULL; int h_len = hash_len; uint8_t *db_nopad = NULL, *salt = NULL; int db_padlen, salt_len; uint8_t pad_zero[8] = { 0 }; int ret, i, leftmost_bits = 1; uint8_t leftmost_mask; struct checksum_algo *checksum = info->checksum; if (db_len <= 0) return -EINVAL; /* first, allocate everything */ db_mask = malloc(db_len); db = malloc(db_len); hprime = malloc(hash_len); if (!db_mask || !db || !hprime) { printf("%s: can't allocate some buffer\n", __func__); ret = -ENOMEM; goto out; } /* step 4: check if the last byte is 0xbc */ if (msg[msg_len - 1] != 0xbc) { printf("%s: invalid pss padding (0xbc is missing)\n", __func__); ret = -EINVAL; goto out; } /* step 5 */ masked_db = &msg[0]; h = &msg[db_len]; /* step 6 */ leftmost_mask = (0xff >> (8 - leftmost_bits)) << (8 - leftmost_bits); if (masked_db[0] & leftmost_mask) { printf("%s: invalid pss padding ", __func__); printf("(leftmost bit of maskedDB not zero)\n"); ret = -EINVAL; goto out; } /* step 7 */ mask_generation_function1(checksum, h, h_len, db_mask, db_len); /* step 8 */ for (i = 0; i < db_len; i++) db[i] = masked_db[i] ^ db_mask[i]; /* step 9 */ db[0] &= 0xff >> leftmost_bits; /* step 10 */ db_padlen = 0; while (db[db_padlen] == 0x00 && db_padlen < (db_len - 1)) db_padlen++; db_nopad = &db[db_padlen]; if (db_nopad[0] != 0x01) { printf("%s: invalid pss padding ", __func__); printf("(leftmost byte of db after 0-padding isn't 0x01)\n"); ret = EINVAL; goto out; } /* step 11 */ salt_len = db_len - db_padlen - 1; salt = &db_nopad[1]; /* step 12 & 13 */ compute_hash_prime(checksum, pad_zero, 8, hash, hash_len, salt, salt_len, hprime); /* step 14 */ ret = memcmp(h, hprime, hash_len); out: free(hprime); free(db); free(db_mask); return ret; } #ifndef USE_HOSTCC U_BOOT_PADDING_ALGO(pss) = { .name = "pss", .verify = padding_pss_verify, }; #endif #endif /** * rsa_verify_key() - Verify a signature against some data using RSA Key * * Verify a RSA PKCS1.5 signature against an expected hash using * the RSA Key properties in prop structure. * * @info: Specifies key and FIT information * @prop: Specifies key * @sig: Signature * @sig_len: Number of bytes in signature * @hash: Pointer to the expected hash * @key_len: Number of bytes in rsa key * Return: 0 if verified, -ve on error */ static int rsa_verify_key(struct image_sign_info *info, struct key_prop *prop, const uint8_t *sig, const uint32_t sig_len, const uint8_t *hash, const uint32_t key_len) { int ret; #if !defined(USE_HOSTCC) struct udevice *mod_exp_dev; #endif struct checksum_algo *checksum = info->checksum; struct padding_algo *padding = info->padding; int hash_len; if (!prop || !sig || !hash || !checksum || !padding) return -EIO; if (sig_len != (prop->num_bits / 8)) { debug("Signature is of incorrect length %d\n", sig_len); return -EINVAL; } debug("Checksum algorithm: %s", checksum->name); /* Sanity check for stack size */ if (sig_len > RSA_MAX_SIG_BITS / 8) { debug("Signature length %u exceeds maximum %d\n", sig_len, RSA_MAX_SIG_BITS / 8); return -EINVAL; } uint8_t buf[sig_len]; hash_len = checksum->checksum_len; #if !defined(USE_HOSTCC) ret = uclass_get_device(UCLASS_MOD_EXP, 0, &mod_exp_dev); if (ret) { printf("RSA: Can't find Modular Exp implementation\n"); return -EINVAL; } ret = rsa_mod_exp(mod_exp_dev, sig, sig_len, prop, buf); #else ret = rsa_mod_exp_sw(sig, sig_len, prop, buf); #endif if (ret) { debug("Error in Modular exponentation\n"); return ret; } ret = padding->verify(info, buf, key_len, hash, hash_len); if (ret) { debug("In RSAVerify(): padding check failed!\n"); return ret; } return 0; } /** * rsa_verify_with_pkey() - Verify a signature against some data using * only modulus and exponent as RSA key properties. * @info: Specifies key information * @hash: Pointer to the expected hash * @sig: Signature * @sig_len: Number of bytes in signature * * Parse a RSA public key blob in DER format pointed to in @info and fill * a key_prop structure with properties of the key. Then verify a RSA PKCS1.5 * signature against an expected hash using the calculated properties. * * Return 0 if verified, -ve on error */ int rsa_verify_with_pkey(struct image_sign_info *info, const void *hash, uint8_t *sig, uint sig_len) { struct key_prop *prop; int ret; if (!CONFIG_IS_ENABLED(RSA_VERIFY_WITH_PKEY)) return -EACCES; /* Public key is self-described to fill key_prop */ ret = rsa_gen_key_prop(info->key, info->keylen, &prop); if (ret) { debug("Generating necessary parameter for decoding failed\n"); return ret; } ret = rsa_verify_key(info, prop, sig, sig_len, hash, info->crypto->key_len); rsa_free_key_prop(prop); return ret; } #if CONFIG_IS_ENABLED(FIT_SIGNATURE) /** * rsa_verify_with_keynode() - Verify a signature against some data using * information in node with prperties of RSA Key like modulus, exponent etc. * * Parse sign-node and fill a key_prop structure with properties of the * key. Verify a RSA PKCS1.5 signature against an expected hash using * the properties parsed * * @info: Specifies key and FIT information * @hash: Pointer to the expected hash * @sig: Signature * @sig_len: Number of bytes in signature * @node: Node having the RSA Key properties * Return: 0 if verified, -ve on error */ static int rsa_verify_with_keynode(struct image_sign_info *info, const void *hash, uint8_t *sig, uint sig_len, int node) { const void *blob = info->fdt_blob; struct key_prop prop; int length; int ret = 0; const char *algo; if (node < 0) { debug("%s: Skipping invalid node", __func__); return -EBADF; } algo = fdt_getprop(blob, node, "algo", NULL); if (strcmp(info->name, algo)) { debug("%s: Wrong algo: have %s, expected %s", __func__, info->name, algo); return -EFAULT; } prop.num_bits = fdtdec_get_int(blob, node, "rsa,num-bits", 0); prop.n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0); prop.public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length); if (!prop.public_exponent || length < sizeof(uint64_t)) prop.public_exponent = NULL; prop.exp_len = sizeof(uint64_t); prop.modulus = fdt_getprop(blob, node, "rsa,modulus", NULL); prop.rr = fdt_getprop(blob, node, "rsa,r-squared", NULL); if (!prop.num_bits || !prop.modulus || !prop.rr) { debug("%s: Missing RSA key info", __func__); return -EFAULT; } ret = rsa_verify_key(info, &prop, sig, sig_len, hash, info->crypto->key_len); return ret; } #else static int rsa_verify_with_keynode(struct image_sign_info *info, const void *hash, uint8_t *sig, uint sig_len, int node) { return -EACCES; } #endif int rsa_verify_hash(struct image_sign_info *info, const uint8_t *hash, uint8_t *sig, uint sig_len) { int ret = -EACCES; /* * Since host tools, like mkimage, make use of openssl library for * RSA encryption, rsa_verify_with_pkey()/rsa_gen_key_prop() are * of no use and should not be compiled in. */ if (!tools_build() && CONFIG_IS_ENABLED(RSA_VERIFY_WITH_PKEY) && !info->fdt_blob) { /* don't rely on fdt properties */ ret = rsa_verify_with_pkey(info, hash, sig, sig_len); if (ret) debug("%s: rsa_verify_with_pkey() failed\n", __func__); return ret; } if (CONFIG_IS_ENABLED(FIT_SIGNATURE)) { const void *blob = info->fdt_blob; int ndepth, noffset; int sig_node, node; char name[100]; sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME); if (sig_node < 0) { debug("%s: No signature node found\n", __func__); return -ENOENT; } /* See if we must use a particular key */ if (info->required_keynode != -1) { ret = rsa_verify_with_keynode(info, hash, sig, sig_len, info->required_keynode); if (ret) debug("%s: Failed to verify required_keynode\n", __func__); return ret; } /* Look for a key that matches our hint */ snprintf(name, sizeof(name), "key-%s", info->keyname); node = fdt_subnode_offset(blob, sig_node, name); ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node); if (!ret) return ret; debug("%s: Could not verify key '%s', trying all\n", __func__, name); /* No luck, so try each of the keys in turn */ for (ndepth = 0, noffset = fdt_next_node(blob, sig_node, &ndepth); (noffset >= 0) && (ndepth > 0); noffset = fdt_next_node(blob, noffset, &ndepth)) { if (ndepth == 1 && noffset != node) { ret = rsa_verify_with_keynode(info, hash, sig, sig_len, noffset); if (!ret) break; } } } debug("%s: Failed to verify by any means\n", __func__); return ret; } int rsa_verify(struct image_sign_info *info, const struct image_region region[], int region_count, uint8_t *sig, uint sig_len) { /* Reserve memory for maximum checksum-length */ uint8_t hash[info->crypto->key_len]; int ret; /* * Verify that the checksum-length does not exceed the * rsa-signature-length */ if (info->checksum->checksum_len > info->crypto->key_len) { debug("%s: invalid checksum-algorithm %s for %s\n", __func__, info->checksum->name, info->crypto->name); return -EINVAL; } /* Calculate checksum with checksum-algorithm */ ret = info->checksum->calculate(info->checksum->name, region, region_count, hash); if (ret < 0) { debug("%s: Error in checksum calculation\n", __func__); return -EINVAL; } return rsa_verify_hash(info, hash, sig, sig_len); } #ifndef USE_HOSTCC U_BOOT_CRYPTO_ALGO(rsa2048) = { .name = "rsa2048", .key_len = RSA2048_BYTES, .verify = rsa_verify, }; U_BOOT_CRYPTO_ALGO(rsa3072) = { .name = "rsa3072", .key_len = RSA3072_BYTES, .verify = rsa_verify, }; U_BOOT_CRYPTO_ALGO(rsa4096) = { .name = "rsa4096", .key_len = RSA4096_BYTES, .verify = rsa_verify, }; #endif