// SPDX-License-Identifier: GPL-2.0+ /* * Driver for Qualcomm QUP SPI controller * FIFO and Block modes supported, no DMA * mode support * * Copyright (c) 2020 Sartura Ltd. * * Author: Robert Marko <robert.marko@sartura.hr> * Author: Luka Kovacic <luka.kovacic@sartura.hr> * * Based on stock U-boot and Linux drivers */ #include <asm/gpio.h> #include <asm/io.h> #include <clk.h> #include <common.h> #include <dm.h> #include <errno.h> #include <linux/delay.h> #include <spi.h> #define QUP_CONFIG 0x0000 #define QUP_STATE 0x0004 #define QUP_IO_M_MODES 0x0008 #define QUP_SW_RESET 0x000c #define QUP_OPERATIONAL 0x0018 #define QUP_ERROR_FLAGS 0x001c #define QUP_ERROR_FLAGS_EN 0x0020 #define QUP_OPERATIONAL_MASK 0x0028 #define QUP_HW_VERSION 0x0030 #define QUP_MX_OUTPUT_CNT 0x0100 #define QUP_OUTPUT_FIFO 0x0110 #define QUP_MX_WRITE_CNT 0x0150 #define QUP_MX_INPUT_CNT 0x0200 #define QUP_MX_READ_CNT 0x0208 #define QUP_INPUT_FIFO 0x0218 #define SPI_CONFIG 0x0300 #define SPI_IO_CONTROL 0x0304 #define SPI_ERROR_FLAGS 0x0308 #define SPI_ERROR_FLAGS_EN 0x030c /* QUP_CONFIG fields */ #define QUP_CONFIG_SPI_MODE BIT(8) #define QUP_CONFIG_CLOCK_AUTO_GATE BIT(13) #define QUP_CONFIG_NO_INPUT BIT(7) #define QUP_CONFIG_NO_OUTPUT BIT(6) #define QUP_CONFIG_N 0x001f /* QUP_STATE fields */ #define QUP_STATE_VALID BIT(2) #define QUP_STATE_RESET 0 #define QUP_STATE_RUN 1 #define QUP_STATE_PAUSE 3 #define QUP_STATE_MASK 3 #define QUP_STATE_CLEAR 2 /* QUP_IO_M_MODES fields */ #define QUP_IO_M_PACK_EN BIT(15) #define QUP_IO_M_UNPACK_EN BIT(14) #define QUP_IO_M_INPUT_MODE_MASK_SHIFT 12 #define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT 10 #define QUP_IO_M_INPUT_MODE_MASK (3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT) #define QUP_IO_M_OUTPUT_MODE_MASK (3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT) #define QUP_IO_M_OUTPUT_BLOCK_SIZE(x) (((x) & (0x03 << 0)) >> 0) #define QUP_IO_M_OUTPUT_FIFO_SIZE(x) (((x) & (0x07 << 2)) >> 2) #define QUP_IO_M_INPUT_BLOCK_SIZE(x) (((x) & (0x03 << 5)) >> 5) #define QUP_IO_M_INPUT_FIFO_SIZE(x) (((x) & (0x07 << 7)) >> 7) #define QUP_IO_M_MODE_FIFO 0 #define QUP_IO_M_MODE_BLOCK 1 #define QUP_IO_M_MODE_DMOV 2 #define QUP_IO_M_MODE_BAM 3 /* QUP_OPERATIONAL fields */ #define QUP_OP_IN_BLOCK_READ_REQ BIT(13) #define QUP_OP_OUT_BLOCK_WRITE_REQ BIT(12) #define QUP_OP_MAX_INPUT_DONE_FLAG BIT(11) #define QUP_OP_MAX_OUTPUT_DONE_FLAG BIT(10) #define QUP_OP_IN_SERVICE_FLAG BIT(9) #define QUP_OP_OUT_SERVICE_FLAG BIT(8) #define QUP_OP_IN_FIFO_FULL BIT(7) #define QUP_OP_OUT_FIFO_FULL BIT(6) #define QUP_OP_IN_FIFO_NOT_EMPTY BIT(5) #define QUP_OP_OUT_FIFO_NOT_EMPTY BIT(4) /* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */ #define QUP_ERROR_OUTPUT_OVER_RUN BIT(5) #define QUP_ERROR_INPUT_UNDER_RUN BIT(4) #define QUP_ERROR_OUTPUT_UNDER_RUN BIT(3) #define QUP_ERROR_INPUT_OVER_RUN BIT(2) /* SPI_CONFIG fields */ #define SPI_CONFIG_HS_MODE BIT(10) #define SPI_CONFIG_INPUT_FIRST BIT(9) #define SPI_CONFIG_LOOPBACK BIT(8) /* SPI_IO_CONTROL fields */ #define SPI_IO_C_FORCE_CS BIT(11) #define SPI_IO_C_CLK_IDLE_HIGH BIT(10) #define SPI_IO_C_MX_CS_MODE BIT(8) #define SPI_IO_C_CS_N_POLARITY_0 BIT(4) #define SPI_IO_C_CS_SELECT(x) (((x) & 3) << 2) #define SPI_IO_C_CS_SELECT_MASK 0x000c #define SPI_IO_C_TRISTATE_CS BIT(1) #define SPI_IO_C_NO_TRI_STATE BIT(0) /* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */ #define SPI_ERROR_CLK_OVER_RUN BIT(1) #define SPI_ERROR_CLK_UNDER_RUN BIT(0) #define SPI_NUM_CHIPSELECTS 4 #define SPI_DELAY_THRESHOLD 1 #define SPI_DELAY_RETRY 10 #define SPI_RESET_STATE 0 #define SPI_RUN_STATE 1 #define SPI_CORE_RESET 0 #define SPI_CORE_RUNNING 1 #define DUMMY_DATA_VAL 0 #define TIMEOUT_CNT 100 #define QUP_STATE_VALID_BIT 2 #define QUP_CONFIG_MINI_CORE_MSK (0x0F << 8) #define QUP_CONFIG_MINI_CORE_SPI BIT(8) #define QUP_CONF_INPUT_MSK BIT(7) #define QUP_CONF_INPUT_ENA (0 << 7) #define QUP_CONF_NO_INPUT BIT(7) #define QUP_CONF_OUTPUT_MSK BIT(6) #define QUP_CONF_OUTPUT_ENA (0 << 6) #define QUP_CONF_NO_OUTPUT BIT(6) #define QUP_STATE_RUN_STATE 0x1 #define QUP_STATE_RESET_STATE 0x0 #define QUP_STATE_PAUSE_STATE 0x3 #define SPI_BIT_WORD_MSK 0x1F #define SPI_8_BIT_WORD 0x07 #define LOOP_BACK_MSK BIT(8) #define NO_LOOP_BACK (0 << 8) #define SLAVE_OPERATION_MSK BIT(5) #define SLAVE_OPERATION (0 << 5) #define CLK_ALWAYS_ON (0 << 9) #define MX_CS_MODE BIT(8) #define CS_POLARITY_MASK BIT(4) #define NO_TRI_STATE BIT(0) #define FORCE_CS_MSK BIT(11) #define FORCE_CS_EN BIT(11) #define FORCE_CS_DIS (0 << 11) #define OUTPUT_BIT_SHIFT_MSK BIT(16) #define OUTPUT_BIT_SHIFT_EN BIT(16) #define INPUT_BLOCK_MODE_MSK (0x03 << 12) #define INPUT_BLOCK_MODE (0x01 << 12) #define OUTPUT_BLOCK_MODE_MSK (0x03 << 10) #define OUTPUT_BLOCK_MODE (0x01 << 10) #define INPUT_BAM_MODE (0x3 << 12) #define OUTPUT_BAM_MODE (0x3 << 10) #define PACK_EN (0x1 << 15) #define UNPACK_EN (0x1 << 14) #define PACK_EN_MSK (0x1 << 15) #define UNPACK_EN_MSK (0x1 << 14) #define OUTPUT_SERVICE_MSK (0x1 << 8) #define INPUT_SERVICE_MSK (0x1 << 9) #define OUTPUT_SERVICE_DIS (0x1 << 8) #define INPUT_SERVICE_DIS (0x1 << 9) #define BLSP0_SPI_DEASSERT_WAIT_REG 0x0310 #define QUP_DATA_AVAILABLE_FOR_READ BIT(5) #define SPI_INPUT_BLOCK_SIZE 4 #define SPI_OUTPUT_BLOCK_SIZE 4 #define SPI_BITLEN_MSK 0x07 #define MAX_COUNT_SIZE 0xffff struct qup_spi_priv { phys_addr_t base; struct clk clk; u32 num_cs; struct gpio_desc cs_gpios[SPI_NUM_CHIPSELECTS]; bool cs_high; u32 core_state; }; static int qup_spi_set_cs(struct udevice *dev, unsigned int cs, bool enable) { struct qup_spi_priv *priv = dev_get_priv(dev); debug("%s: cs=%d enable=%d\n", __func__, cs, enable); if (cs >= SPI_NUM_CHIPSELECTS) return -ENODEV; if (!dm_gpio_is_valid(&priv->cs_gpios[cs])) return -EINVAL; if (priv->cs_high) enable = !enable; return dm_gpio_set_value(&priv->cs_gpios[cs], enable ? 1 : 0); } /* * Function to write data to OUTPUT FIFO */ static void qup_spi_write_byte(struct udevice *dev, unsigned char data) { struct udevice *bus = dev_get_parent(dev); struct qup_spi_priv *priv = dev_get_priv(bus); /* Wait for space in the FIFO */ while ((readl(priv->base + QUP_OPERATIONAL) & QUP_OP_OUT_FIFO_FULL)) udelay(1); /* Write the byte of data */ writel(data, priv->base + QUP_OUTPUT_FIFO); } /* * Function to read data from Input FIFO */ static unsigned char qup_spi_read_byte(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct qup_spi_priv *priv = dev_get_priv(bus); /* Wait for Data in FIFO */ while (!(readl(priv->base + QUP_OPERATIONAL) & QUP_DATA_AVAILABLE_FOR_READ)) { printf("Stuck at FIFO data wait\n"); udelay(1); } /* Read a byte of data */ return readl(priv->base + QUP_INPUT_FIFO) & 0xff; } /* * Function to check wheather Input or Output FIFO * has data to be serviced */ static int qup_spi_check_fifo_status(struct udevice *dev, u32 reg_addr) { struct udevice *bus = dev_get_parent(dev); struct qup_spi_priv *priv = dev_get_priv(bus); unsigned int count = TIMEOUT_CNT; unsigned int status_flag; unsigned int val; do { val = readl(priv->base + reg_addr); count--; if (count == 0) return -ETIMEDOUT; status_flag = ((val & QUP_OP_OUT_SERVICE_FLAG) | (val & QUP_OP_IN_SERVICE_FLAG)); } while (!status_flag); return 0; } /* * Function to configure Input and Output enable/disable */ static void qup_spi_enable_io_config(struct udevice *dev, u32 write_cnt, u32 read_cnt) { struct udevice *bus = dev_get_parent(dev); struct qup_spi_priv *priv = dev_get_priv(bus); if (write_cnt) { clrsetbits_le32(priv->base + QUP_CONFIG, QUP_CONF_OUTPUT_MSK, QUP_CONF_OUTPUT_ENA); } else { clrsetbits_le32(priv->base + QUP_CONFIG, QUP_CONF_OUTPUT_MSK, QUP_CONF_NO_OUTPUT); } if (read_cnt) { clrsetbits_le32(priv->base + QUP_CONFIG, QUP_CONF_INPUT_MSK, QUP_CONF_INPUT_ENA); } else { clrsetbits_le32(priv->base + QUP_CONFIG, QUP_CONF_INPUT_MSK, QUP_CONF_NO_INPUT); } } static int check_bit_state(struct udevice *dev, u32 reg_addr, int bit_num, int val, int us_delay) { struct udevice *bus = dev_get_parent(dev); struct qup_spi_priv *priv = dev_get_priv(bus); unsigned int count = TIMEOUT_CNT; unsigned int bit_val = ((readl(priv->base + reg_addr) >> bit_num) & 0x01); while (bit_val != val) { count--; if (count == 0) return -ETIMEDOUT; udelay(us_delay); bit_val = ((readl(priv->base + reg_addr) >> bit_num) & 0x01); } return 0; } /* * Check whether QUPn State is valid */ static int check_qup_state_valid(struct udevice *dev) { return check_bit_state(dev, QUP_STATE, QUP_STATE_VALID, 1, 1); } /* * Configure QUPn Core state */ static int qup_spi_config_spi_state(struct udevice *dev, unsigned int state) { struct udevice *bus = dev_get_parent(dev); struct qup_spi_priv *priv = dev_get_priv(bus); u32 val; int ret; ret = check_qup_state_valid(dev); if (ret != 0) return ret; switch (state) { case SPI_RUN_STATE: /* Set the state to RUN */ val = ((readl(priv->base + QUP_STATE) & ~QUP_STATE_MASK) | QUP_STATE_RUN); writel(val, priv->base + QUP_STATE); ret = check_qup_state_valid(dev); if (ret != 0) return ret; priv->core_state = SPI_CORE_RUNNING; break; case SPI_RESET_STATE: /* Set the state to RESET */ val = ((readl(priv->base + QUP_STATE) & ~QUP_STATE_MASK) | QUP_STATE_RESET); writel(val, priv->base + QUP_STATE); ret = check_qup_state_valid(dev); if (ret != 0) return ret; priv->core_state = SPI_CORE_RESET; break; default: printf("Unsupported QUP SPI state: %d\n", state); ret = -EINVAL; break; } return ret; } /* * Function to read bytes number of data from the Input FIFO */ static int __qup_spi_blsp_spi_read(struct udevice *dev, u8 *data_buffer, unsigned int bytes) { struct udevice *bus = dev_get_parent(dev); struct qup_spi_priv *priv = dev_get_priv(bus); u32 val; unsigned int i; unsigned int read_bytes = bytes; unsigned int fifo_count; int ret = 0; int state_config; /* Configure no of bytes to read */ state_config = qup_spi_config_spi_state(dev, SPI_RESET_STATE); if (state_config) return state_config; /* Configure input and output enable */ qup_spi_enable_io_config(dev, 0, read_bytes); writel(bytes, priv->base + QUP_MX_INPUT_CNT); state_config = qup_spi_config_spi_state(dev, SPI_RUN_STATE); if (state_config) return state_config; while (read_bytes) { ret = qup_spi_check_fifo_status(dev, QUP_OPERATIONAL); if (ret != 0) goto out; val = readl(priv->base + QUP_OPERATIONAL); if (val & QUP_OP_IN_SERVICE_FLAG) { /* * acknowledge to hw that software will * read input data */ val &= QUP_OP_IN_SERVICE_FLAG; writel(val, priv->base + QUP_OPERATIONAL); fifo_count = ((read_bytes > SPI_INPUT_BLOCK_SIZE) ? SPI_INPUT_BLOCK_SIZE : read_bytes); for (i = 0; i < fifo_count; i++) { *data_buffer = qup_spi_read_byte(dev); data_buffer++; read_bytes--; } } } out: /* * Put the SPI Core back in the Reset State * to end the transfer */ (void)qup_spi_config_spi_state(dev, SPI_RESET_STATE); return ret; } static int qup_spi_blsp_spi_read(struct udevice *dev, u8 *data_buffer, unsigned int bytes) { int length, ret; while (bytes) { length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE; ret = __qup_spi_blsp_spi_read(dev, data_buffer, length); if (ret != 0) return ret; data_buffer += length; bytes -= length; } return 0; } /* * Function to write data to the Output FIFO */ static int __qup_blsp_spi_write(struct udevice *dev, const u8 *cmd_buffer, unsigned int bytes) { struct udevice *bus = dev_get_parent(dev); struct qup_spi_priv *priv = dev_get_priv(bus); u32 val; unsigned int i; unsigned int write_len = bytes; unsigned int read_len = bytes; unsigned int fifo_count; int ret = 0; int state_config; state_config = qup_spi_config_spi_state(dev, SPI_RESET_STATE); if (state_config) return state_config; writel(bytes, priv->base + QUP_MX_OUTPUT_CNT); writel(bytes, priv->base + QUP_MX_INPUT_CNT); state_config = qup_spi_config_spi_state(dev, SPI_RUN_STATE); if (state_config) return state_config; /* Configure input and output enable */ qup_spi_enable_io_config(dev, write_len, read_len); /* * read_len considered to ensure that we read the dummy data for the * write we performed. This is needed to ensure with WR-RD transaction * to get the actual data on the subsequent read cycle that happens */ while (write_len || read_len) { ret = qup_spi_check_fifo_status(dev, QUP_OPERATIONAL); if (ret != 0) goto out; val = readl(priv->base + QUP_OPERATIONAL); if (val & QUP_OP_OUT_SERVICE_FLAG) { /* * acknowledge to hw that software will write * expected output data */ val &= QUP_OP_OUT_SERVICE_FLAG; writel(val, priv->base + QUP_OPERATIONAL); if (write_len > SPI_OUTPUT_BLOCK_SIZE) fifo_count = SPI_OUTPUT_BLOCK_SIZE; else fifo_count = write_len; for (i = 0; i < fifo_count; i++) { /* Write actual data to output FIFO */ qup_spi_write_byte(dev, *cmd_buffer); cmd_buffer++; write_len--; } } if (val & QUP_OP_IN_SERVICE_FLAG) { /* * acknowledge to hw that software * will read input data */ val &= QUP_OP_IN_SERVICE_FLAG; writel(val, priv->base + QUP_OPERATIONAL); if (read_len > SPI_INPUT_BLOCK_SIZE) fifo_count = SPI_INPUT_BLOCK_SIZE; else fifo_count = read_len; for (i = 0; i < fifo_count; i++) { /* Read dummy data for the data written */ (void)qup_spi_read_byte(dev); /* Decrement the write count after reading the * dummy data from the device. This is to make * sure we read dummy data before we write the * data to fifo */ read_len--; } } } out: /* * Put the SPI Core back in the Reset State * to end the transfer */ (void)qup_spi_config_spi_state(dev, SPI_RESET_STATE); return ret; } static int qup_spi_blsp_spi_write(struct udevice *dev, const u8 *cmd_buffer, unsigned int bytes) { int length, ret; while (bytes) { length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE; ret = __qup_blsp_spi_write(dev, cmd_buffer, length); if (ret != 0) return ret; cmd_buffer += length; bytes -= length; } return 0; } static int qup_spi_set_speed(struct udevice *dev, uint speed) { return 0; } static int qup_spi_set_mode(struct udevice *dev, uint mode) { struct qup_spi_priv *priv = dev_get_priv(dev); unsigned int clk_idle_state; unsigned int input_first_mode; u32 val; switch (mode) { case SPI_MODE_0: clk_idle_state = 0; input_first_mode = SPI_CONFIG_INPUT_FIRST; break; case SPI_MODE_1: clk_idle_state = 0; input_first_mode = 0; break; case SPI_MODE_2: clk_idle_state = 1; input_first_mode = SPI_CONFIG_INPUT_FIRST; break; case SPI_MODE_3: clk_idle_state = 1; input_first_mode = 0; break; default: printf("Unsupported spi mode: %d\n", mode); return -EINVAL; } if (mode & SPI_CS_HIGH) priv->cs_high = true; else priv->cs_high = false; val = readl(priv->base + SPI_CONFIG); val |= input_first_mode; writel(val, priv->base + SPI_CONFIG); val = readl(priv->base + SPI_IO_CONTROL); if (clk_idle_state) val |= SPI_IO_C_CLK_IDLE_HIGH; else val &= ~SPI_IO_C_CLK_IDLE_HIGH; writel(val, priv->base + SPI_IO_CONTROL); return 0; } static void qup_spi_reset(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct qup_spi_priv *priv = dev_get_priv(bus); /* Driver may not be probed yet */ if (!priv) return; writel(0x1, priv->base + QUP_SW_RESET); udelay(5); } static int qup_spi_hw_init(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct qup_spi_priv *priv = dev_get_priv(bus); int ret; /* QUPn module configuration */ qup_spi_reset(dev); /* Set the QUPn state */ ret = qup_spi_config_spi_state(dev, SPI_RESET_STATE); if (ret) return ret; /* * Configure Mini core to SPI core with Input Output enabled, * SPI master, N = 8 bits */ clrsetbits_le32(priv->base + QUP_CONFIG, (QUP_CONFIG_MINI_CORE_MSK | QUP_CONF_INPUT_MSK | QUP_CONF_OUTPUT_MSK | SPI_BIT_WORD_MSK), (QUP_CONFIG_MINI_CORE_SPI | QUP_CONF_INPUT_ENA | QUP_CONF_OUTPUT_ENA | SPI_8_BIT_WORD)); /* * Configure Input first SPI protocol, * SPI master mode and no loopback */ clrsetbits_le32(priv->base + SPI_CONFIG, (LOOP_BACK_MSK | SLAVE_OPERATION_MSK), (NO_LOOP_BACK | SLAVE_OPERATION)); /* * Configure SPI IO Control Register * CLK_ALWAYS_ON = 0 * MX_CS_MODE = 0 * NO_TRI_STATE = 1 */ writel((CLK_ALWAYS_ON | NO_TRI_STATE), priv->base + SPI_IO_CONTROL); /* * Configure SPI IO Modes. * OUTPUT_BIT_SHIFT_EN = 1 * INPUT_MODE = Block Mode * OUTPUT MODE = Block Mode */ clrsetbits_le32(priv->base + QUP_IO_M_MODES, (OUTPUT_BIT_SHIFT_MSK | INPUT_BLOCK_MODE_MSK | OUTPUT_BLOCK_MODE_MSK), (OUTPUT_BIT_SHIFT_EN | INPUT_BLOCK_MODE | OUTPUT_BLOCK_MODE)); /* Disable Error mask */ writel(0, priv->base + SPI_ERROR_FLAGS_EN); writel(0, priv->base + QUP_ERROR_FLAGS_EN); writel(0, priv->base + BLSP0_SPI_DEASSERT_WAIT_REG); return ret; } static int qup_spi_claim_bus(struct udevice *dev) { int ret; ret = qup_spi_hw_init(dev); if (ret) return -EIO; return 0; } static int qup_spi_release_bus(struct udevice *dev) { /* Reset the SPI hardware */ qup_spi_reset(dev); return 0; } static int qup_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev_get_parent(dev); struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); unsigned int len; const u8 *txp = dout; u8 *rxp = din; int ret = 0; if (bitlen & SPI_BITLEN_MSK) { printf("Invalid bit length\n"); return -EINVAL; } len = bitlen >> 3; if (flags & SPI_XFER_BEGIN) { ret = qup_spi_hw_init(dev); if (ret != 0) return ret; ret = qup_spi_set_cs(bus, slave_plat->cs, false); if (ret != 0) return ret; } if (dout != NULL) { ret = qup_spi_blsp_spi_write(dev, txp, len); if (ret != 0) return ret; } if (din != NULL) { ret = qup_spi_blsp_spi_read(dev, rxp, len); if (ret != 0) return ret; } if (flags & SPI_XFER_END) { ret = qup_spi_set_cs(bus, slave_plat->cs, true); if (ret != 0) return ret; } return ret; } static int qup_spi_probe(struct udevice *dev) { struct qup_spi_priv *priv = dev_get_priv(dev); int ret; priv->base = dev_read_addr(dev); if (priv->base == FDT_ADDR_T_NONE) return -EINVAL; ret = clk_get_by_index(dev, 0, &priv->clk); if (ret) return ret; ret = clk_enable(&priv->clk); if (ret < 0) return ret; priv->num_cs = dev_read_u32_default(dev, "num-cs", 1); ret = gpio_request_list_by_name(dev, "cs-gpios", priv->cs_gpios, priv->num_cs, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE); if (ret < 0) { printf("Can't get %s cs gpios: %d\n", dev->name, ret); return -EINVAL; } return 0; } static const struct dm_spi_ops qup_spi_ops = { .claim_bus = qup_spi_claim_bus, .release_bus = qup_spi_release_bus, .xfer = qup_spi_xfer, .set_speed = qup_spi_set_speed, .set_mode = qup_spi_set_mode, /* * cs_info is not needed, since we require all chip selects to be * in the device tree explicitly */ }; static const struct udevice_id qup_spi_ids[] = { { .compatible = "qcom,spi-qup-v1.1.1", }, { .compatible = "qcom,spi-qup-v2.1.1", }, { .compatible = "qcom,spi-qup-v2.2.1", }, { } }; U_BOOT_DRIVER(spi_qup) = { .name = "spi_qup", .id = UCLASS_SPI, .of_match = qup_spi_ids, .ops = &qup_spi_ops, .priv_auto = sizeof(struct qup_spi_priv), .probe = qup_spi_probe, };