// SPDX-License-Identifier: GPL-2.0+ /* * i2c driver for Freescale i.MX series * * (c) 2007 Pengutronix, Sascha Hauer * (c) 2011 Marek Vasut * Copyright 2020 NXP * * Based on i2c-imx.c from linux kernel: * Copyright (C) 2005 Torsten Koschorrek * Copyright (C) 2005 Matthias Blaschke * Copyright (C) 2007 RightHand Technologies, Inc. * Copyright (C) 2008 Darius Augulis * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define I2C_QUIRK_FLAG (1 << 0) #define IMX_I2C_REGSHIFT 2 #define VF610_I2C_REGSHIFT 0 #define I2C_EARLY_INIT_INDEX 0 #ifdef CFG_SYS_I2C_IFDR_DIV #define I2C_IFDR_DIV_CONSERVATIVE CFG_SYS_I2C_IFDR_DIV #else #define I2C_IFDR_DIV_CONSERVATIVE 0x7e #endif /* Register index */ #define IADR 0 #define IFDR 1 #define I2CR 2 #define I2SR 3 #define I2DR 4 #define I2CR_IIEN (1 << 6) #define I2CR_MSTA (1 << 5) #define I2CR_MTX (1 << 4) #define I2CR_TX_NO_AK (1 << 3) #define I2CR_RSTA (1 << 2) #define I2SR_ICF (1 << 7) #define I2SR_IBB (1 << 5) #define I2SR_IAL (1 << 4) #define I2SR_IIF (1 << 1) #define I2SR_RX_NO_AK (1 << 0) #ifdef I2C_QUIRK_REG #define I2CR_IEN (0 << 7) #define I2CR_IDIS (1 << 7) #define I2SR_IIF_CLEAR (1 << 1) #else #define I2CR_IEN (1 << 7) #define I2CR_IDIS (0 << 7) #define I2SR_IIF_CLEAR (0 << 1) #endif #ifdef I2C_QUIRK_REG static u16 i2c_clk_div[60][2] = { { 20, 0x00 }, { 22, 0x01 }, { 24, 0x02 }, { 26, 0x03 }, { 28, 0x04 }, { 30, 0x05 }, { 32, 0x09 }, { 34, 0x06 }, { 36, 0x0A }, { 40, 0x07 }, { 44, 0x0C }, { 48, 0x0D }, { 52, 0x43 }, { 56, 0x0E }, { 60, 0x45 }, { 64, 0x12 }, { 68, 0x0F }, { 72, 0x13 }, { 80, 0x14 }, { 88, 0x15 }, { 96, 0x19 }, { 104, 0x16 }, { 112, 0x1A }, { 128, 0x17 }, { 136, 0x4F }, { 144, 0x1C }, { 160, 0x1D }, { 176, 0x55 }, { 192, 0x1E }, { 208, 0x56 }, { 224, 0x22 }, { 228, 0x24 }, { 240, 0x1F }, { 256, 0x23 }, { 288, 0x5C }, { 320, 0x25 }, { 384, 0x26 }, { 448, 0x2A }, { 480, 0x27 }, { 512, 0x2B }, { 576, 0x2C }, { 640, 0x2D }, { 768, 0x31 }, { 896, 0x32 }, { 960, 0x2F }, { 1024, 0x33 }, { 1152, 0x34 }, { 1280, 0x35 }, { 1536, 0x36 }, { 1792, 0x3A }, { 1920, 0x37 }, { 2048, 0x3B }, { 2304, 0x3C }, { 2560, 0x3D }, { 3072, 0x3E }, { 3584, 0x7A }, { 3840, 0x3F }, { 4096, 0x7B }, { 5120, 0x7D }, { 6144, 0x7E }, }; #else static u16 i2c_clk_div[50][2] = { { 22, 0x20 }, { 24, 0x21 }, { 26, 0x22 }, { 28, 0x23 }, { 30, 0x00 }, { 32, 0x24 }, { 36, 0x25 }, { 40, 0x26 }, { 42, 0x03 }, { 44, 0x27 }, { 48, 0x28 }, { 52, 0x05 }, { 56, 0x29 }, { 60, 0x06 }, { 64, 0x2A }, { 72, 0x2B }, { 80, 0x2C }, { 88, 0x09 }, { 96, 0x2D }, { 104, 0x0A }, { 112, 0x2E }, { 128, 0x2F }, { 144, 0x0C }, { 160, 0x30 }, { 192, 0x31 }, { 224, 0x32 }, { 240, 0x0F }, { 256, 0x33 }, { 288, 0x10 }, { 320, 0x34 }, { 384, 0x35 }, { 448, 0x36 }, { 480, 0x13 }, { 512, 0x37 }, { 576, 0x14 }, { 640, 0x38 }, { 768, 0x39 }, { 896, 0x3A }, { 960, 0x17 }, { 1024, 0x3B }, { 1152, 0x18 }, { 1280, 0x3C }, { 1536, 0x3D }, { 1792, 0x3E }, { 1920, 0x1B }, { 2048, 0x3F }, { 2304, 0x1C }, { 2560, 0x1D }, { 3072, 0x1E }, { 3840, 0x1F } }; #endif /* * Calculate and set proper clock divider */ static uint8_t i2c_imx_get_clk(struct mxc_i2c_bus *i2c_bus, unsigned int rate) { unsigned int i2c_clk_rate; unsigned int div; u8 clk_div; #if defined(CONFIG_MX31) struct clock_control_regs *sc_regs = (struct clock_control_regs *)CCM_BASE; /* start the required I2C clock */ writel(readl(&sc_regs->cgr0) | (3 << CONFIG_SYS_I2C_CLK_OFFSET), &sc_regs->cgr0); #endif /* Divider value calculation */ #if CONFIG_IS_ENABLED(CLK) i2c_clk_rate = clk_get_rate(&i2c_bus->per_clk); #else i2c_clk_rate = mxc_get_clock(MXC_I2C_CLK); #endif div = (i2c_clk_rate + rate - 1) / rate; if (div < i2c_clk_div[0][0]) clk_div = 0; else if (div > i2c_clk_div[ARRAY_SIZE(i2c_clk_div) - 1][0]) clk_div = ARRAY_SIZE(i2c_clk_div) - 1; else for (clk_div = 0; i2c_clk_div[clk_div][0] < div; clk_div++) ; /* Store divider value */ return clk_div; } /* * Set I2C Bus speed */ static int bus_i2c_set_bus_speed(struct mxc_i2c_bus *i2c_bus, int speed) { ulong base = i2c_bus->base; bool quirk = i2c_bus->driver_data & I2C_QUIRK_FLAG ? true : false; u8 clk_idx = i2c_imx_get_clk(i2c_bus, speed); u8 idx = i2c_clk_div[clk_idx][1]; int reg_shift = quirk ? VF610_I2C_REGSHIFT : IMX_I2C_REGSHIFT; if (!base) return -EINVAL; /* Store divider value */ writeb(idx, base + (IFDR << reg_shift)); /* Reset module */ writeb(I2CR_IDIS, base + (I2CR << reg_shift)); writeb(0, base + (I2SR << reg_shift)); return 0; } #define ST_BUS_IDLE (0 | (I2SR_IBB << 8)) #define ST_BUS_BUSY (I2SR_IBB | (I2SR_IBB << 8)) #define ST_IIF (I2SR_IIF | (I2SR_IIF << 8)) static int wait_for_sr_state(struct mxc_i2c_bus *i2c_bus, unsigned state) { unsigned sr; ulong elapsed; bool quirk = i2c_bus->driver_data & I2C_QUIRK_FLAG ? true : false; int reg_shift = quirk ? VF610_I2C_REGSHIFT : IMX_I2C_REGSHIFT; ulong base = i2c_bus->base; ulong start_time = get_timer(0); for (;;) { sr = readb(base + (I2SR << reg_shift)); if (sr & I2SR_IAL) { if (quirk) writeb(sr | I2SR_IAL, base + (I2SR << reg_shift)); else writeb(sr & ~I2SR_IAL, base + (I2SR << reg_shift)); printf("%s: Arbitration lost sr=%x cr=%x state=%x\n", __func__, sr, readb(base + (I2CR << reg_shift)), state); return -ERESTART; } if ((sr & (state >> 8)) == (unsigned char)state) return sr; schedule(); elapsed = get_timer(start_time); if (elapsed > (CONFIG_SYS_HZ / 10)) /* .1 seconds */ break; } printf("%s: failed sr=%x cr=%x state=%x\n", __func__, sr, readb(base + (I2CR << reg_shift)), state); return -ETIMEDOUT; } static int tx_byte(struct mxc_i2c_bus *i2c_bus, u8 byte) { int ret; int reg_shift = i2c_bus->driver_data & I2C_QUIRK_FLAG ? VF610_I2C_REGSHIFT : IMX_I2C_REGSHIFT; ulong base = i2c_bus->base; writeb(I2SR_IIF_CLEAR, base + (I2SR << reg_shift)); writeb(byte, base + (I2DR << reg_shift)); ret = wait_for_sr_state(i2c_bus, ST_IIF); if (ret < 0) return ret; if (ret & I2SR_RX_NO_AK) return -EREMOTEIO; return 0; } /* * Stub implementations for outer i2c slave operations. */ void __i2c_force_reset_slave(void) { } void i2c_force_reset_slave(void) __attribute__((weak, alias("__i2c_force_reset_slave"))); /* * Stop I2C transaction */ static void i2c_imx_stop(struct mxc_i2c_bus *i2c_bus) { int ret; int reg_shift = i2c_bus->driver_data & I2C_QUIRK_FLAG ? VF610_I2C_REGSHIFT : IMX_I2C_REGSHIFT; ulong base = i2c_bus->base; unsigned int temp = readb(base + (I2CR << reg_shift)); temp &= ~(I2CR_MSTA | I2CR_MTX); writeb(temp, base + (I2CR << reg_shift)); ret = wait_for_sr_state(i2c_bus, ST_BUS_IDLE); if (ret < 0) printf("%s:trigger stop failed\n", __func__); } /* * Send start signal, chip address and * write register address */ static int i2c_init_transfer_(struct mxc_i2c_bus *i2c_bus, u8 chip, u32 addr, int alen) { unsigned int temp; int ret; bool quirk = i2c_bus->driver_data & I2C_QUIRK_FLAG ? true : false; ulong base = i2c_bus->base; int reg_shift = quirk ? VF610_I2C_REGSHIFT : IMX_I2C_REGSHIFT; /* Reset i2c slave */ i2c_force_reset_slave(); /* Enable I2C controller */ if (quirk) ret = readb(base + (I2CR << reg_shift)) & I2CR_IDIS; else ret = !(readb(base + (I2CR << reg_shift)) & I2CR_IEN); if (ret) { writeb(I2CR_IEN, base + (I2CR << reg_shift)); /* Wait for controller to be stable */ udelay(50); } if (readb(base + (IADR << reg_shift)) == (chip << 1)) writeb((chip << 1) ^ 2, base + (IADR << reg_shift)); writeb(I2SR_IIF_CLEAR, base + (I2SR << reg_shift)); ret = wait_for_sr_state(i2c_bus, ST_BUS_IDLE); if (ret < 0) return ret; /* Start I2C transaction */ temp = readb(base + (I2CR << reg_shift)); temp |= I2CR_MSTA; writeb(temp, base + (I2CR << reg_shift)); ret = wait_for_sr_state(i2c_bus, ST_BUS_BUSY); if (ret < 0) return ret; temp |= I2CR_MTX | I2CR_TX_NO_AK; writeb(temp, base + (I2CR << reg_shift)); if (alen >= 0) { /* write slave address */ ret = tx_byte(i2c_bus, chip << 1); if (ret < 0) return ret; while (alen--) { ret = tx_byte(i2c_bus, (addr >> (alen * 8)) & 0xff); if (ret < 0) return ret; } } return 0; } #if !defined(I2C2_BASE_ADDR) #define I2C2_BASE_ADDR 0 #endif #if !defined(I2C3_BASE_ADDR) #define I2C3_BASE_ADDR 0 #endif #if !defined(I2C4_BASE_ADDR) #define I2C4_BASE_ADDR 0 #endif #if !defined(I2C5_BASE_ADDR) #define I2C5_BASE_ADDR 0 #endif #if !defined(I2C6_BASE_ADDR) #define I2C6_BASE_ADDR 0 #endif #if !defined(I2C7_BASE_ADDR) #define I2C7_BASE_ADDR 0 #endif #if !defined(I2C8_BASE_ADDR) #define I2C8_BASE_ADDR 0 #endif static struct mxc_i2c_bus mxc_i2c_buses[] = { #if defined(CONFIG_ARCH_LS1021A) || defined(CONFIG_VF610) || \ defined(CONFIG_FSL_LAYERSCAPE) { 0, I2C1_BASE_ADDR, I2C_QUIRK_FLAG }, { 1, I2C2_BASE_ADDR, I2C_QUIRK_FLAG }, { 2, I2C3_BASE_ADDR, I2C_QUIRK_FLAG }, { 3, I2C4_BASE_ADDR, I2C_QUIRK_FLAG }, { 4, I2C5_BASE_ADDR, I2C_QUIRK_FLAG }, { 5, I2C6_BASE_ADDR, I2C_QUIRK_FLAG }, { 6, I2C7_BASE_ADDR, I2C_QUIRK_FLAG }, { 7, I2C8_BASE_ADDR, I2C_QUIRK_FLAG }, #else { 0, I2C1_BASE_ADDR, 0 }, { 1, I2C2_BASE_ADDR, 0 }, { 2, I2C3_BASE_ADDR, 0 }, { 3, I2C4_BASE_ADDR, 0 }, { 4, I2C5_BASE_ADDR, 0 }, { 5, I2C6_BASE_ADDR, 0 }, { 6, I2C7_BASE_ADDR, 0 }, { 7, I2C8_BASE_ADDR, 0 }, #endif }; #if !CONFIG_IS_ENABLED(DM_I2C) int i2c_idle_bus(struct mxc_i2c_bus *i2c_bus) { if (i2c_bus && i2c_bus->idle_bus_fn) return i2c_bus->idle_bus_fn(i2c_bus->idle_bus_data); return 0; } #else /* * See Linux Documentation/devicetree/bindings/i2c/i2c-imx.txt * " * scl-gpios: specify the gpio related to SCL pin * sda-gpios: specify the gpio related to SDA pin * add pinctrl to configure i2c pins to gpio function for i2c * bus recovery, call it "gpio" state * " * * The i2c_idle_bus is an implementation following Linux Kernel. */ int i2c_idle_bus(struct mxc_i2c_bus *i2c_bus) { struct udevice *bus = i2c_bus->bus; struct dm_i2c_bus *i2c = dev_get_uclass_priv(bus); struct gpio_desc *scl_gpio = &i2c_bus->scl_gpio; struct gpio_desc *sda_gpio = &i2c_bus->sda_gpio; int sda, scl, idle_sclks; int i, ret = 0; ulong elapsed, start_time; if (pinctrl_select_state(bus, "gpio")) { dev_dbg(bus, "Can not to switch to use gpio pinmux\n"); /* * GPIO pinctrl for i2c force idle is not a must, * but it is strongly recommended to be used. * Because it can help you to recover from bad * i2c bus state. Do not return failure, because * it is not a must. */ return 0; } dm_gpio_set_dir_flags(scl_gpio, GPIOD_IS_IN); dm_gpio_set_dir_flags(sda_gpio, GPIOD_IS_IN); scl = dm_gpio_get_value(scl_gpio); sda = dm_gpio_get_value(sda_gpio); if ((sda & scl) == 1) goto exit; /* Bus is idle already */ /* * In most cases it is just enough to generate 8 + 1 SCLK * clocks to recover I2C slave device from 'stuck' state * (when for example SW reset was performed, in the middle of * I2C transmission). * * However, there are devices which send data in packets of * N bytes (N > 1). In such case we do need N * 8 + 1 SCLK * clocks. */ idle_sclks = 8 + 1; if (i2c->max_transaction_bytes > 0) idle_sclks = i2c->max_transaction_bytes * 8 + 1; /* Send high and low on the SCL line */ for (i = 0; i < idle_sclks; i++) { dm_gpio_set_dir_flags(scl_gpio, GPIOD_IS_OUT); dm_gpio_set_value(scl_gpio, 0); udelay(50); dm_gpio_set_dir_flags(scl_gpio, GPIOD_IS_IN); udelay(50); } start_time = get_timer(0); for (;;) { dm_gpio_set_dir_flags(scl_gpio, GPIOD_IS_IN); dm_gpio_set_dir_flags(sda_gpio, GPIOD_IS_IN); scl = dm_gpio_get_value(scl_gpio); sda = dm_gpio_get_value(sda_gpio); if ((sda & scl) == 1) break; schedule(); elapsed = get_timer(start_time); if (elapsed > (CONFIG_SYS_HZ / 5)) { /* .2 seconds */ ret = -EBUSY; printf("%s: failed to clear bus, sda=%d scl=%d\n", __func__, sda, scl); break; } } exit: pinctrl_select_state(bus, "default"); return ret; } #endif /* * Early init I2C for prepare read the clk through I2C. */ void i2c_early_init_f(void) { ulong base = mxc_i2c_buses[I2C_EARLY_INIT_INDEX].base; bool quirk = mxc_i2c_buses[I2C_EARLY_INIT_INDEX].driver_data & I2C_QUIRK_FLAG ? true : false; int reg_shift = quirk ? VF610_I2C_REGSHIFT : IMX_I2C_REGSHIFT; /* Set I2C divider value */ writeb(I2C_IFDR_DIV_CONSERVATIVE, base + (IFDR << reg_shift)); /* Reset module */ writeb(I2CR_IDIS, base + (I2CR << reg_shift)); writeb(0, base + (I2SR << reg_shift)); /* Enable I2C */ writeb(I2CR_IEN, base + (I2CR << reg_shift)); } static int i2c_init_transfer(struct mxc_i2c_bus *i2c_bus, u8 chip, u32 addr, int alen) { int retry; int ret; int reg_shift = i2c_bus->driver_data & I2C_QUIRK_FLAG ? VF610_I2C_REGSHIFT : IMX_I2C_REGSHIFT; if (!i2c_bus->base) return -EINVAL; for (retry = 0; retry < 3; retry++) { ret = i2c_init_transfer_(i2c_bus, chip, addr, alen); if (ret >= 0) return 0; i2c_imx_stop(i2c_bus); if (ret == -EREMOTEIO) return ret; printf("%s: failed for chip 0x%x retry=%d\n", __func__, chip, retry); if (ret != -ERESTART) /* Disable controller */ writeb(I2CR_IDIS, i2c_bus->base + (I2CR << reg_shift)); udelay(100); if (i2c_idle_bus(i2c_bus) < 0) break; } printf("%s: give up i2c_regs=0x%lx\n", __func__, i2c_bus->base); return ret; } static int i2c_write_data(struct mxc_i2c_bus *i2c_bus, u8 chip, const u8 *buf, int len) { int i, ret = 0; debug("i2c_write_data: chip=0x%x, len=0x%x\n", chip, len); debug("write_data: "); /* use rc for counter */ for (i = 0; i < len; ++i) debug(" 0x%02x", buf[i]); debug("\n"); for (i = 0; i < len; i++) { ret = tx_byte(i2c_bus, buf[i]); if (ret < 0) { debug("i2c_write_data(): rc=%d\n", ret); break; } } return ret; } /* Will generate a STOP after the last byte if "last" is true, i.e. this is the * final message of a transaction. If not, it switches the bus back to TX mode * and does not send a STOP, leaving the bus in a state where a repeated start * and address can be sent for another message. */ static int i2c_read_data(struct mxc_i2c_bus *i2c_bus, uchar chip, uchar *buf, int len, bool last) { int ret; unsigned int temp; int i; int reg_shift = i2c_bus->driver_data & I2C_QUIRK_FLAG ? VF610_I2C_REGSHIFT : IMX_I2C_REGSHIFT; ulong base = i2c_bus->base; debug("i2c_read_data: chip=0x%x, len=0x%x\n", chip, len); /* setup bus to read data */ temp = readb(base + (I2CR << reg_shift)); temp &= ~(I2CR_MTX | I2CR_TX_NO_AK); if (len == 1) temp |= I2CR_TX_NO_AK; writeb(temp, base + (I2CR << reg_shift)); writeb(I2SR_IIF_CLEAR, base + (I2SR << reg_shift)); /* dummy read to clear ICF */ readb(base + (I2DR << reg_shift)); /* read data */ for (i = 0; i < len; i++) { ret = wait_for_sr_state(i2c_bus, ST_IIF); if (ret < 0) { debug("i2c_read_data(): ret=%d\n", ret); i2c_imx_stop(i2c_bus); return ret; } if (i == (len - 1)) { /* Final byte has already been received by master! When * we read it from I2DR, the master will start another * cycle. We must program it first to send a STOP or * switch to TX to avoid this. */ if (last) { i2c_imx_stop(i2c_bus); } else { /* Final read, no stop, switch back to tx */ temp = readb(base + (I2CR << reg_shift)); temp |= I2CR_MTX | I2CR_TX_NO_AK; writeb(temp, base + (I2CR << reg_shift)); } } else if (i == (len - 2)) { /* Master has already recevied penultimate byte. When * we read it from I2DR, master will start RX of final * byte. We must set TX_NO_AK now so it does not ACK * that final byte. */ temp = readb(base + (I2CR << reg_shift)); temp |= I2CR_TX_NO_AK; writeb(temp, base + (I2CR << reg_shift)); } writeb(I2SR_IIF_CLEAR, base + (I2SR << reg_shift)); buf[i] = readb(base + (I2DR << reg_shift)); } /* reuse ret for counter*/ for (ret = 0; ret < len; ++ret) debug(" 0x%02x", buf[ret]); debug("\n"); /* It is not clear to me that this is necessary */ if (last) i2c_imx_stop(i2c_bus); return 0; } int __enable_i2c_clk(unsigned char enable, unsigned int i2c_num) { return 1; } int enable_i2c_clk(unsigned char enable, unsigned int i2c_num) __attribute__((weak, alias("__enable_i2c_clk"))); #if !CONFIG_IS_ENABLED(DM_I2C) /* * Read data from I2C device * * The transactions use the syntax defined in the Linux kernel I2C docs. * * If alen is > 0, then this function will send a transaction of the form: * S Chip Wr [A] Addr [A] S Chip Rd [A] [data] A ... NA P * This is a normal I2C register read: writing the register address, then doing * a repeated start and reading the data. * * If alen == 0, then we get this transaction: * S Chip Wr [A] S Chip Rd [A] [data] A ... NA P * This is somewhat unusual, though valid, transaction. It addresses the chip * in write mode, but doesn't actually write any register address or data, then * does a repeated start and reads data. * * If alen < 0, then we get this transaction: * S Chip Rd [A] [data] A ... NA P * The chip is addressed in read mode and then data is read. No register * address is written first. This is perfectly valid on most devices and * required on some (usually those that don't act like an array of registers). */ static int bus_i2c_read(struct mxc_i2c_bus *i2c_bus, u8 chip, u32 addr, int alen, u8 *buf, int len) { int ret = 0; u32 temp; int reg_shift = i2c_bus->driver_data & I2C_QUIRK_FLAG ? VF610_I2C_REGSHIFT : IMX_I2C_REGSHIFT; ulong base = i2c_bus->base; ret = i2c_init_transfer(i2c_bus, chip, addr, alen); if (ret < 0) return ret; if (alen >= 0) { temp = readb(base + (I2CR << reg_shift)); temp |= I2CR_RSTA; writeb(temp, base + (I2CR << reg_shift)); } ret = tx_byte(i2c_bus, (chip << 1) | 1); if (ret < 0) { i2c_imx_stop(i2c_bus); return ret; } ret = i2c_read_data(i2c_bus, chip, buf, len, true); i2c_imx_stop(i2c_bus); return ret; } /* * Write data to I2C device * * If alen > 0, we get this transaction: * S Chip Wr [A] addr [A] data [A] ... [A] P * An ordinary write register command. * * If alen == 0, then we get this: * S Chip Wr [A] data [A] ... [A] P * This is a simple I2C write. * * If alen < 0, then we get this: * S data [A] ... [A] P * This is most likely NOT something that should be used. It doesn't send the * chip address first, so in effect, the first byte of data will be used as the * address. */ static int bus_i2c_write(struct mxc_i2c_bus *i2c_bus, u8 chip, u32 addr, int alen, const u8 *buf, int len) { int ret = 0; ret = i2c_init_transfer(i2c_bus, chip, addr, alen); if (ret < 0) return ret; ret = i2c_write_data(i2c_bus, chip, buf, len); i2c_imx_stop(i2c_bus); return ret; } struct mxc_i2c_bus *i2c_get_base(struct i2c_adapter *adap) { return &mxc_i2c_buses[adap->hwadapnr]; } static int mxc_i2c_read(struct i2c_adapter *adap, uint8_t chip, uint addr, int alen, uint8_t *buffer, int len) { return bus_i2c_read(i2c_get_base(adap), chip, addr, alen, buffer, len); } static int mxc_i2c_write(struct i2c_adapter *adap, uint8_t chip, uint addr, int alen, uint8_t *buffer, int len) { return bus_i2c_write(i2c_get_base(adap), chip, addr, alen, buffer, len); } /* * Test if a chip at a given address responds (probe the chip) */ static int mxc_i2c_probe(struct i2c_adapter *adap, uint8_t chip) { return bus_i2c_write(i2c_get_base(adap), chip, 0, 0, NULL, 0); } void bus_i2c_init(int index, int speed, int unused, int (*idle_bus_fn)(void *p), void *idle_bus_data) { int ret; if (index >= ARRAY_SIZE(mxc_i2c_buses)) { debug("Error i2c index\n"); return; } if (CONFIG_IS_ENABLED(IMX_MODULE_FUSE)) { if (i2c_fused((ulong)mxc_i2c_buses[index].base)) { printf("SoC fuse indicates I2C@0x%lx is unavailable.\n", (ulong)mxc_i2c_buses[index].base); return; } } /* * Warning: Be careful to allow the assignment to a static * variable here. This function could be called while U-Boot is * still running in flash memory. So such assignment is equal * to write data to flash without erasing. */ if (idle_bus_fn) mxc_i2c_buses[index].idle_bus_fn = idle_bus_fn; if (idle_bus_data) mxc_i2c_buses[index].idle_bus_data = idle_bus_data; ret = enable_i2c_clk(1, index); if (ret < 0) { debug("I2C-%d clk fail to enable.\n", index); return; } bus_i2c_set_bus_speed(&mxc_i2c_buses[index], speed); } /* * Init I2C Bus */ static void mxc_i2c_init(struct i2c_adapter *adap, int speed, int slaveaddr) { bus_i2c_init(adap->hwadapnr, speed, slaveaddr, NULL, NULL); } /* * Set I2C Speed */ static u32 mxc_i2c_set_bus_speed(struct i2c_adapter *adap, uint speed) { return bus_i2c_set_bus_speed(i2c_get_base(adap), speed); } /* * Register mxc i2c adapters */ #ifdef CONFIG_SYS_I2C_MXC_I2C1 U_BOOT_I2C_ADAP_COMPLETE(mxc0, mxc_i2c_init, mxc_i2c_probe, mxc_i2c_read, mxc_i2c_write, mxc_i2c_set_bus_speed, CONFIG_SYS_MXC_I2C1_SPEED, CONFIG_SYS_MXC_I2C1_SLAVE, 0) #endif #ifdef CONFIG_SYS_I2C_MXC_I2C2 U_BOOT_I2C_ADAP_COMPLETE(mxc1, mxc_i2c_init, mxc_i2c_probe, mxc_i2c_read, mxc_i2c_write, mxc_i2c_set_bus_speed, CONFIG_SYS_MXC_I2C2_SPEED, CONFIG_SYS_MXC_I2C2_SLAVE, 1) #endif #ifdef CONFIG_SYS_I2C_MXC_I2C3 U_BOOT_I2C_ADAP_COMPLETE(mxc2, mxc_i2c_init, mxc_i2c_probe, mxc_i2c_read, mxc_i2c_write, mxc_i2c_set_bus_speed, CONFIG_SYS_MXC_I2C3_SPEED, CONFIG_SYS_MXC_I2C3_SLAVE, 2) #endif #ifdef CONFIG_SYS_I2C_MXC_I2C4 U_BOOT_I2C_ADAP_COMPLETE(mxc3, mxc_i2c_init, mxc_i2c_probe, mxc_i2c_read, mxc_i2c_write, mxc_i2c_set_bus_speed, CONFIG_SYS_MXC_I2C4_SPEED, CONFIG_SYS_MXC_I2C4_SLAVE, 3) #endif #ifdef CONFIG_SYS_I2C_MXC_I2C5 U_BOOT_I2C_ADAP_COMPLETE(mxc4, mxc_i2c_init, mxc_i2c_probe, mxc_i2c_read, mxc_i2c_write, mxc_i2c_set_bus_speed, CONFIG_SYS_MXC_I2C5_SPEED, CONFIG_SYS_MXC_I2C5_SLAVE, 4) #endif #ifdef CONFIG_SYS_I2C_MXC_I2C6 U_BOOT_I2C_ADAP_COMPLETE(mxc5, mxc_i2c_init, mxc_i2c_probe, mxc_i2c_read, mxc_i2c_write, mxc_i2c_set_bus_speed, CONFIG_SYS_MXC_I2C6_SPEED, CONFIG_SYS_MXC_I2C6_SLAVE, 5) #endif #ifdef CONFIG_SYS_I2C_MXC_I2C7 U_BOOT_I2C_ADAP_COMPLETE(mxc6, mxc_i2c_init, mxc_i2c_probe, mxc_i2c_read, mxc_i2c_write, mxc_i2c_set_bus_speed, CONFIG_SYS_MXC_I2C7_SPEED, CONFIG_SYS_MXC_I2C7_SLAVE, 6) #endif #ifdef CONFIG_SYS_I2C_MXC_I2C8 U_BOOT_I2C_ADAP_COMPLETE(mxc7, mxc_i2c_init, mxc_i2c_probe, mxc_i2c_read, mxc_i2c_write, mxc_i2c_set_bus_speed, CONFIG_SYS_MXC_I2C8_SPEED, CONFIG_SYS_MXC_I2C8_SLAVE, 7) #endif #else static int mxc_i2c_set_bus_speed(struct udevice *bus, unsigned int speed) { struct mxc_i2c_bus *i2c_bus = dev_get_priv(bus); return bus_i2c_set_bus_speed(i2c_bus, speed); } static int mxc_i2c_probe(struct udevice *bus) { struct mxc_i2c_bus *i2c_bus = dev_get_priv(bus); const void *fdt = gd->fdt_blob; int node = dev_of_offset(bus); fdt_addr_t addr; int ret, ret2; i2c_bus->driver_data = dev_get_driver_data(bus); addr = dev_read_addr(bus); if (addr == FDT_ADDR_T_NONE) return -EINVAL; if (CONFIG_IS_ENABLED(IMX_MODULE_FUSE)) { if (i2c_fused((ulong)addr)) { printf("SoC fuse indicates I2C@0x%lx is unavailable.\n", (ulong)addr); return -ENODEV; } } i2c_bus->base = addr; i2c_bus->index = dev_seq(bus); i2c_bus->bus = bus; /* Enable clk */ #if CONFIG_IS_ENABLED(CLK) ret = clk_get_by_index(bus, 0, &i2c_bus->per_clk); if (ret) { printf("Failed to get i2c clk\n"); return ret; } ret = clk_enable(&i2c_bus->per_clk); if (ret) { printf("Failed to enable i2c clk\n"); return ret; } #else ret = enable_i2c_clk(1, dev_seq(bus)); if (ret < 0) return ret; #endif /* * See Documentation/devicetree/bindings/i2c/i2c-imx.txt * Use gpio to force bus idle when necessary. */ ret = fdt_stringlist_search(fdt, node, "pinctrl-names", "gpio"); if (ret < 0) { debug("i2c bus %d at 0x%2lx, no gpio pinctrl state.\n", dev_seq(bus), i2c_bus->base); } else { ret = gpio_request_by_name_nodev(offset_to_ofnode(node), "scl-gpios", 0, &i2c_bus->scl_gpio, GPIOD_IS_OUT); ret2 = gpio_request_by_name_nodev(offset_to_ofnode(node), "sda-gpios", 0, &i2c_bus->sda_gpio, GPIOD_IS_OUT); if (!dm_gpio_is_valid(&i2c_bus->sda_gpio) || !dm_gpio_is_valid(&i2c_bus->scl_gpio) || ret || ret2) { dev_err(bus, "i2c bus %d at 0x%2lx, fail to request scl/sda gpio\n", dev_seq(bus), i2c_bus->base); return -EINVAL; } } /* * Pinmux settings are in board file now, until pinmux is supported, * we can set pinmux here in probe function. */ debug("i2c : controller bus %d at %lu , speed %d: ", dev_seq(bus), i2c_bus->base, i2c_bus->speed); return 0; } /* Sends: S Addr Wr [A|NA] P */ static int mxc_i2c_probe_chip(struct udevice *bus, u32 chip_addr, u32 chip_flags) { int ret; struct mxc_i2c_bus *i2c_bus = dev_get_priv(bus); ret = i2c_init_transfer(i2c_bus, chip_addr, 0, 0); if (ret < 0) { debug("%s failed, ret = %d\n", __func__, ret); return ret; } i2c_imx_stop(i2c_bus); return 0; } static int mxc_i2c_xfer(struct udevice *bus, struct i2c_msg *msg, int nmsgs) { struct mxc_i2c_bus *i2c_bus = dev_get_priv(bus); int ret = 0; ulong base = i2c_bus->base; int reg_shift = i2c_bus->driver_data & I2C_QUIRK_FLAG ? VF610_I2C_REGSHIFT : IMX_I2C_REGSHIFT; int read_mode; /* Here address len is set to -1 to not send any address at first. * Otherwise i2c_init_transfer will send the chip address with write * mode set. This is wrong if the 1st message is read. */ ret = i2c_init_transfer(i2c_bus, msg->addr, 0, -1); if (ret < 0) { debug("i2c_init_transfer error: %d\n", ret); return ret; } read_mode = -1; /* So it's always different on the first message */ for (; nmsgs > 0; nmsgs--, msg++) { const int msg_is_read = !!(msg->flags & I2C_M_RD); debug("i2c_xfer: chip=0x%x, len=0x%x, dir=%c\n", msg->addr, msg->len, msg_is_read ? 'R' : 'W'); if (msg_is_read != read_mode) { /* Send repeated start if not 1st message */ if (read_mode != -1) { debug("i2c_xfer: [RSTART]\n"); ret = readb(base + (I2CR << reg_shift)); ret |= I2CR_RSTA; writeb(ret, base + (I2CR << reg_shift)); } debug("i2c_xfer: [ADDR %02x | %c]\n", msg->addr, msg_is_read ? 'R' : 'W'); ret = tx_byte(i2c_bus, (msg->addr << 1) | msg_is_read); if (ret < 0) { debug("i2c_xfer: [STOP]\n"); i2c_imx_stop(i2c_bus); break; } read_mode = msg_is_read; } if (msg->flags & I2C_M_RD) ret = i2c_read_data(i2c_bus, msg->addr, msg->buf, msg->len, nmsgs == 1 || (msg->flags & I2C_M_STOP)); else ret = i2c_write_data(i2c_bus, msg->addr, msg->buf, msg->len); if (ret < 0) break; } if (ret) debug("i2c_write: error sending\n"); i2c_imx_stop(i2c_bus); return ret; } static const struct dm_i2c_ops mxc_i2c_ops = { .xfer = mxc_i2c_xfer, .probe_chip = mxc_i2c_probe_chip, .set_bus_speed = mxc_i2c_set_bus_speed, }; static const struct udevice_id mxc_i2c_ids[] = { { .compatible = "fsl,imx21-i2c", }, { .compatible = "fsl,vf610-i2c", .data = I2C_QUIRK_FLAG, }, {} }; U_BOOT_DRIVER(i2c_mxc) = { .name = "i2c_mxc", .id = UCLASS_I2C, .of_match = mxc_i2c_ids, .probe = mxc_i2c_probe, .priv_auto = sizeof(struct mxc_i2c_bus), .ops = &mxc_i2c_ops, .flags = DM_FLAG_PRE_RELOC, }; #endif