// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2008 RuggedCom, Inc. * Richard Retanubun */ /* * NOTE: * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this * limits the maximum size of addressable storage to < 2 tebibytes */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_HAVE_BLOCK_DEVICE /* GUID for basic data partitons */ #if CONFIG_IS_ENABLED(EFI_PARTITION) static const efi_guid_t partition_basic_data_guid = PARTITION_BASIC_DATA_GUID; #endif /** * efi_crc32() - EFI version of crc32 function * @buf: buffer to calculate crc32 of * @len - length of buf * * Description: Returns EFI-style CRC32 value for @buf */ static inline u32 efi_crc32(const void *buf, u32 len) { return crc32(0, buf, len); } /* * Private function prototypes */ static int pmbr_part_valid(struct partition *part); static int is_pmbr_valid(legacy_mbr * mbr); static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, gpt_header *pgpt_head, gpt_entry **pgpt_pte); static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, gpt_header *pgpt_head); static int is_pte_valid(gpt_entry * pte); static int find_valid_gpt(struct blk_desc *dev_desc, gpt_header *gpt_head, gpt_entry **pgpt_pte); static char *print_efiname(gpt_entry *pte) { static char name[PARTNAME_SZ + 1]; int i; for (i = 0; i < PARTNAME_SZ; i++) { u8 c; c = pte->partition_name[i] & 0xff; c = (c && !isprint(c)) ? '.' : c; name[i] = c; } name[PARTNAME_SZ] = 0; return name; } static const efi_guid_t system_guid = PARTITION_SYSTEM_GUID; static int get_bootable(gpt_entry *p) { int ret = 0; if (!memcmp(&p->partition_type_guid, &system_guid, sizeof(efi_guid_t))) ret |= PART_EFI_SYSTEM_PARTITION; if (p->attributes.fields.legacy_bios_bootable) ret |= PART_BOOTABLE; return ret; } static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, lbaint_t lastlba) { uint32_t crc32_backup = 0; uint32_t calc_crc32; /* Check the GPT header signature */ if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE_UBOOT) { printf("%s signature is wrong: 0x%llX != 0x%llX\n", "GUID Partition Table Header", le64_to_cpu(gpt_h->signature), GPT_HEADER_SIGNATURE_UBOOT); return -1; } /* Check the GUID Partition Table CRC */ memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); calc_crc32 = efi_crc32((const unsigned char *)gpt_h, le32_to_cpu(gpt_h->header_size)); memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); if (calc_crc32 != le32_to_cpu(crc32_backup)) { printf("%s CRC is wrong: 0x%x != 0x%x\n", "GUID Partition Table Header", le32_to_cpu(crc32_backup), calc_crc32); return -1; } /* * Check that the my_lba entry points to the LBA that contains the GPT */ if (le64_to_cpu(gpt_h->my_lba) != lba) { printf("GPT: my_lba incorrect: %llX != " LBAF "\n", le64_to_cpu(gpt_h->my_lba), lba); return -1; } /* * Check that the first_usable_lba and that the last_usable_lba are * within the disk. */ if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), lastlba); return -1; } if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", le64_to_cpu(gpt_h->last_usable_lba), lastlba); return -1; } debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), le64_to_cpu(gpt_h->last_usable_lba), lastlba); return 0; } static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) { uint32_t calc_crc32; /* Check the GUID Partition Table Entry Array CRC */ calc_crc32 = efi_crc32((const unsigned char *)gpt_e, le32_to_cpu(gpt_h->num_partition_entries) * le32_to_cpu(gpt_h->sizeof_partition_entry)); if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { printf("%s: 0x%x != 0x%x\n", "GUID Partition Table Entry Array CRC is wrong", le32_to_cpu(gpt_h->partition_entry_array_crc32), calc_crc32); return -1; } return 0; } static void prepare_backup_gpt_header(gpt_header *gpt_h) { uint32_t calc_crc32; uint64_t val; /* recalculate the values for the Backup GPT Header */ val = le64_to_cpu(gpt_h->my_lba); gpt_h->my_lba = gpt_h->alternate_lba; gpt_h->alternate_lba = cpu_to_le64(val); gpt_h->partition_entry_lba = cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); gpt_h->header_crc32 = 0; calc_crc32 = efi_crc32((const unsigned char *)gpt_h, le32_to_cpu(gpt_h->header_size)); gpt_h->header_crc32 = cpu_to_le32(calc_crc32); } #if CONFIG_IS_ENABLED(EFI_PARTITION) /* * Public Functions (include/part.h) */ /* * UUID is displayed as 32 hexadecimal digits, in 5 groups, * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters */ int get_disk_guid(struct blk_desc * dev_desc, char *guid) { ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); gpt_entry *gpt_pte = NULL; unsigned char *guid_bin; /* This function validates AND fills in the GPT header and PTE */ if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1) return -EINVAL; guid_bin = gpt_head->disk_guid.b; uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID); /* Remember to free pte */ free(gpt_pte); return 0; } void part_print_efi(struct blk_desc *dev_desc) { ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); gpt_entry *gpt_pte = NULL; int i = 0; unsigned char *uuid; /* This function validates AND fills in the GPT header and PTE */ if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1) return; debug("%s: gpt-entry at %p\n", __func__, gpt_pte); printf("Part\tStart LBA\tEnd LBA\t\tName\n"); printf("\tAttributes\n"); printf("\tType GUID\n"); printf("\tPartition GUID\n"); for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { /* Skip invalid PTE */ if (!is_pte_valid(&gpt_pte[i])) continue; printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), le64_to_cpu(gpt_pte[i].starting_lba), le64_to_cpu(gpt_pte[i].ending_lba), print_efiname(&gpt_pte[i])); printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); uuid = (unsigned char *)gpt_pte[i].partition_type_guid.b; if (CONFIG_IS_ENABLED(PARTITION_TYPE_GUID)) printf("\ttype:\t%pUl\n\t\t(%pUs)\n", uuid, uuid); else printf("\ttype:\t%pUl\n", uuid); uuid = (unsigned char *)gpt_pte[i].unique_partition_guid.b; printf("\tguid:\t%pUl\n", uuid); } /* Remember to free pte */ free(gpt_pte); return; } int part_get_info_efi(struct blk_desc *dev_desc, int part, struct disk_partition *info) { ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); gpt_entry *gpt_pte = NULL; /* "part" argument must be at least 1 */ if (part < 1) { printf("%s: Invalid Argument(s)\n", __func__); return -1; } /* This function validates AND fills in the GPT header and PTE */ if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1) return -1; if (part > le32_to_cpu(gpt_head->num_partition_entries) || !is_pte_valid(&gpt_pte[part - 1])) { debug("%s: *** ERROR: Invalid partition number %d ***\n", __func__, part); free(gpt_pte); return -1; } /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); /* The ending LBA is inclusive, to calculate size, add 1 to it */ info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 - info->start; info->blksz = dev_desc->blksz; snprintf((char *)info->name, sizeof(info->name), "%s", print_efiname(&gpt_pte[part - 1])); strcpy((char *)info->type, "U-Boot"); info->bootable = get_bootable(&gpt_pte[part - 1]); #if CONFIG_IS_ENABLED(PARTITION_UUIDS) uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, UUID_STR_FORMAT_GUID); #endif #ifdef CONFIG_PARTITION_TYPE_GUID uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, info->type_guid, UUID_STR_FORMAT_GUID); #endif debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, info->start, info->size, info->name); /* Remember to free pte */ free(gpt_pte); return 0; } static int part_test_efi(struct blk_desc *dev_desc) { ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); /* Read legacy MBR from block 0 and validate it */ if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1) || (is_pmbr_valid(legacymbr) != 1)) { return -1; } return 0; } /** * set_protective_mbr(): Set the EFI protective MBR * @param dev_desc - block device descriptor * * @return - zero on success, otherwise error */ static int set_protective_mbr(struct blk_desc *dev_desc) { /* Setup the Protective MBR */ ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, dev_desc->blksz); if (p_mbr == NULL) { printf("%s: calloc failed!\n", __func__); return -1; } /* Read MBR to backup boot code if it exists */ if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) { pr_err("** Can't read from device %d **\n", dev_desc->devnum); return -1; } /* Clear all data in MBR except of backed up boot code */ memset((char *)p_mbr + MSDOS_MBR_BOOT_CODE_SIZE, 0, sizeof(*p_mbr) - MSDOS_MBR_BOOT_CODE_SIZE); /* Append signature */ p_mbr->signature = MSDOS_MBR_SIGNATURE; p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; p_mbr->partition_record[0].start_sect = 1; p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; /* Write MBR sector to the MMC device */ if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) { printf("** Can't write to device %d **\n", dev_desc->devnum); return -1; } return 0; } int write_gpt_table(struct blk_desc *dev_desc, gpt_header *gpt_h, gpt_entry *gpt_e) { const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries * sizeof(gpt_entry)), dev_desc); u32 calc_crc32; debug("max lba: %x\n", (u32) dev_desc->lba); /* Setup the Protective MBR */ if (set_protective_mbr(dev_desc) < 0) goto err; /* Generate CRC for the Primary GPT Header */ calc_crc32 = efi_crc32((const unsigned char *)gpt_e, le32_to_cpu(gpt_h->num_partition_entries) * le32_to_cpu(gpt_h->sizeof_partition_entry)); gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); calc_crc32 = efi_crc32((const unsigned char *)gpt_h, le32_to_cpu(gpt_h->header_size)); gpt_h->header_crc32 = cpu_to_le32(calc_crc32); /* Write the First GPT to the block right after the Legacy MBR */ if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1) goto err; if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba), pte_blk_cnt, gpt_e) != pte_blk_cnt) goto err; prepare_backup_gpt_header(gpt_h); if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt) goto err; if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1) goto err; debug("GPT successfully written to block device!\n"); return 0; err: printf("** Can't write to device %d **\n", dev_desc->devnum); return -1; } int gpt_fill_pte(struct blk_desc *dev_desc, gpt_header *gpt_h, gpt_entry *gpt_e, struct disk_partition *partitions, int parts) { lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); lbaint_t last_usable_lba = (lbaint_t) le64_to_cpu(gpt_h->last_usable_lba); int i, k; size_t efiname_len, dosname_len; #if CONFIG_IS_ENABLED(PARTITION_UUIDS) char *str_uuid; unsigned char *bin_uuid; #endif #ifdef CONFIG_PARTITION_TYPE_GUID char *str_type_guid; unsigned char *bin_type_guid; #endif size_t hdr_start = gpt_h->my_lba; size_t hdr_end = hdr_start + 1; size_t pte_start = gpt_h->partition_entry_lba; size_t pte_end = pte_start + gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry / dev_desc->blksz; for (i = 0; i < parts; i++) { /* partition starting lba */ lbaint_t start = partitions[i].start; lbaint_t size = partitions[i].size; if (start) { offset = start + size; } else { start = offset; offset += size; } /* * If our partition overlaps with either the GPT * header, or the partition entry, reject it. */ if (((start < hdr_end && hdr_start < (start + size)) || (start < pte_end && pte_start < (start + size)))) { printf("Partition overlap\n"); return -1; } gpt_e[i].starting_lba = cpu_to_le64(start); if (offset > (last_usable_lba + 1)) { printf("Partitions layout exceds disk size\n"); return -1; } /* partition ending lba */ if ((i == parts - 1) && (size == 0)) /* extend the last partition to maximuim */ gpt_e[i].ending_lba = gpt_h->last_usable_lba; else gpt_e[i].ending_lba = cpu_to_le64(offset - 1); #ifdef CONFIG_PARTITION_TYPE_GUID str_type_guid = partitions[i].type_guid; bin_type_guid = gpt_e[i].partition_type_guid.b; if (strlen(str_type_guid)) { if (uuid_str_to_bin(str_type_guid, bin_type_guid, UUID_STR_FORMAT_GUID)) { printf("Partition no. %d: invalid type guid: %s\n", i, str_type_guid); return -1; } } else { /* default partition type GUID */ memcpy(bin_type_guid, &partition_basic_data_guid, 16); } #else /* partition type GUID */ memcpy(gpt_e[i].partition_type_guid.b, &partition_basic_data_guid, 16); #endif #if CONFIG_IS_ENABLED(PARTITION_UUIDS) str_uuid = partitions[i].uuid; bin_uuid = gpt_e[i].unique_partition_guid.b; if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) { printf("Partition no. %d: invalid guid: %s\n", i, str_uuid); return -1; } #endif /* partition attributes */ memset(&gpt_e[i].attributes, 0, sizeof(gpt_entry_attributes)); if (partitions[i].bootable & PART_BOOTABLE) gpt_e[i].attributes.fields.legacy_bios_bootable = 1; /* partition name */ efiname_len = sizeof(gpt_e[i].partition_name) / sizeof(efi_char16_t); dosname_len = sizeof(partitions[i].name); memset(gpt_e[i].partition_name, 0, sizeof(gpt_e[i].partition_name)); for (k = 0; k < min(dosname_len, efiname_len); k++) gpt_e[i].partition_name[k] = (efi_char16_t)(partitions[i].name[k]); debug("%s: name: %s offset[%d]: 0x" LBAF " size[%d]: 0x" LBAF "\n", __func__, partitions[i].name, i, offset, i, size); } return 0; } static uint32_t partition_entries_offset(struct blk_desc *dev_desc) { uint32_t offset_blks = 2; uint32_t __maybe_unused offset_bytes; int __maybe_unused config_offset; #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF) /* * Some architectures require their SPL loader at a fixed * address within the first 16KB of the disk. To avoid an * overlap with the partition entries of the EFI partition * table, the first safe offset (in bytes, from the start of * the disk) for the entries can be set in * CONFIG_EFI_PARTITION_ENTRIES_OFF. */ offset_bytes = PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc); offset_blks = offset_bytes / dev_desc->blksz; #endif #if defined(CONFIG_OF_CONTROL) /* * Allow the offset of the first partition entires (in bytes * from the start of the device) to be specified as a property * of the device tree '/config' node. */ config_offset = ofnode_conf_read_int( "u-boot,efi-partition-entries-offset", -EINVAL); if (config_offset != -EINVAL) { offset_bytes = PAD_TO_BLOCKSIZE(config_offset, dev_desc); offset_blks = offset_bytes / dev_desc->blksz; } #endif debug("efi: partition entries offset (in blocks): %d\n", offset_blks); /* * The earliest LBA this can be at is LBA#2 (i.e. right behind * the (protective) MBR and the GPT header. */ if (offset_blks < 2) offset_blks = 2; return offset_blks; } int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h, char *str_guid, int parts_count) { gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE_UBOOT); gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); gpt_h->my_lba = cpu_to_le64(1); gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); gpt_h->partition_entry_lba = cpu_to_le64(partition_entries_offset(dev_desc)); gpt_h->first_usable_lba = cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32); gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); gpt_h->header_crc32 = 0; gpt_h->partition_entry_array_crc32 = 0; if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) return -1; return 0; } int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid, struct disk_partition *partitions, int parts_count) { gpt_header *gpt_h; gpt_entry *gpt_e; int ret, size; size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc); gpt_h = malloc_cache_aligned(size); if (gpt_h == NULL) { printf("%s: calloc failed!\n", __func__); return -1; } memset(gpt_h, 0, size); size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry), dev_desc); gpt_e = malloc_cache_aligned(size); if (gpt_e == NULL) { printf("%s: calloc failed!\n", __func__); free(gpt_h); return -1; } memset(gpt_e, 0, size); /* Generate Primary GPT header (LBA1) */ ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); if (ret) goto err; /* Generate partition entries */ ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count); if (ret) goto err; /* Write GPT partition table */ ret = write_gpt_table(dev_desc, gpt_h, gpt_e); err: free(gpt_e); free(gpt_h); return ret; } /** * gpt_convert_efi_name_to_char() - convert u16 string to char string * * TODO: this conversion only supports ANSI characters * * @s: target buffer * @es: u16 string to be converted * @n: size of target buffer */ static void gpt_convert_efi_name_to_char(char *s, void *es, int n) { char *ess = es; int i, j; memset(s, '\0', n); for (i = 0, j = 0; j < n; i += 2, j++) { s[j] = ess[i]; if (!ess[i]) return; } } int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head, gpt_entry **gpt_pte) { /* * This function validates AND * fills in the GPT header and PTE */ if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, gpt_head, gpt_pte) != 1) { printf("%s: *** ERROR: Invalid GPT ***\n", __func__); return -1; } /* Free pte before allocating again */ free(*gpt_pte); /* * Check that the alternate_lba entry points to the last LBA */ if (le64_to_cpu(gpt_head->alternate_lba) != (dev_desc->lba - 1)) { printf("%s: *** ERROR: Misplaced Backup GPT ***\n", __func__); return -1; } if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), gpt_head, gpt_pte) != 1) { printf("%s: *** ERROR: Invalid Backup GPT ***\n", __func__); return -1; } return 0; } int gpt_verify_partitions(struct blk_desc *dev_desc, struct disk_partition *partitions, int parts, gpt_header *gpt_head, gpt_entry **gpt_pte) { char efi_str[PARTNAME_SZ + 1]; u64 gpt_part_size; gpt_entry *gpt_e; int ret, i; ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte); if (ret) return ret; gpt_e = *gpt_pte; for (i = 0; i < parts; i++) { if (i == gpt_head->num_partition_entries) { pr_err("More partitions than allowed!\n"); return -1; } /* Check if GPT and ENV partition names match */ gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name, PARTNAME_SZ + 1); debug("%s: part: %2d name - GPT: %16s, ENV: %16s ", __func__, i, efi_str, partitions[i].name); if (strncmp(efi_str, (char *)partitions[i].name, sizeof(partitions->name))) { pr_err("Partition name: %s does not match %s!\n", efi_str, (char *)partitions[i].name); return -1; } /* Check if GPT and ENV sizes match */ gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) - le64_to_cpu(gpt_e[i].starting_lba) + 1; debug("size(LBA) - GPT: %8llu, ENV: %8llu ", (unsigned long long)gpt_part_size, (unsigned long long)partitions[i].size); if (le64_to_cpu(gpt_part_size) != partitions[i].size) { /* We do not check the extend partition size */ if ((i == parts - 1) && (partitions[i].size == 0)) continue; pr_err("Partition %s size: %llu does not match %llu!\n", efi_str, (unsigned long long)gpt_part_size, (unsigned long long)partitions[i].size); return -1; } /* * Start address is optional - check only if provided * in '$partition' variable */ if (!partitions[i].start) { debug("\n"); continue; } /* Check if GPT and ENV start LBAs match */ debug("start LBA - GPT: %8llu, ENV: %8llu\n", le64_to_cpu(gpt_e[i].starting_lba), (unsigned long long)partitions[i].start); if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) { pr_err("Partition %s start: %llu does not match %llu!\n", efi_str, le64_to_cpu(gpt_e[i].starting_lba), (unsigned long long)partitions[i].start); return -1; } } return 0; } int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf) { gpt_header *gpt_h; gpt_entry *gpt_e; /* determine start of GPT Header in the buffer */ gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * dev_desc->blksz); if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, dev_desc->lba)) return -1; /* determine start of GPT Entries in the buffer */ gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * dev_desc->blksz); if (validate_gpt_entries(gpt_h, gpt_e)) return -1; return 0; } int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf) { gpt_header *gpt_h; gpt_entry *gpt_e; int gpt_e_blk_cnt; lbaint_t lba; int cnt; if (is_valid_gpt_buf(dev_desc, buf)) return -1; /* determine start of GPT Header in the buffer */ gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * dev_desc->blksz); /* determine start of GPT Entries in the buffer */ gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * dev_desc->blksz); gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * le32_to_cpu(gpt_h->sizeof_partition_entry)), dev_desc); /* write MBR */ lba = 0; /* MBR is always at 0 */ cnt = 1; /* MBR (1 block) */ if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) { printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", __func__, "MBR", cnt, lba); return 1; } /* write Primary GPT */ lba = GPT_PRIMARY_PARTITION_TABLE_LBA; cnt = 1; /* GPT Header (1 block) */ if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", __func__, "Primary GPT Header", cnt, lba); return 1; } lba = le64_to_cpu(gpt_h->partition_entry_lba); cnt = gpt_e_blk_cnt; if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", __func__, "Primary GPT Entries", cnt, lba); return 1; } prepare_backup_gpt_header(gpt_h); /* write Backup GPT */ lba = le64_to_cpu(gpt_h->partition_entry_lba); cnt = gpt_e_blk_cnt; if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", __func__, "Backup GPT Entries", cnt, lba); return 1; } lba = le64_to_cpu(gpt_h->my_lba); cnt = 1; /* GPT Header (1 block) */ if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", __func__, "Backup GPT Header", cnt, lba); return 1; } /* Update the partition table entries*/ part_init(dev_desc); return 0; } #endif /* * Private functions */ /* * pmbr_part_valid(): Check for EFI partition signature * * Returns: 1 if EFI GPT partition type is found. */ static int pmbr_part_valid(struct partition *part) { if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && get_unaligned_le32(&part->start_sect) == 1UL) { return 1; } return 0; } /* * is_pmbr_valid(): test Protective MBR for validity * * Returns: 1 if PMBR is valid, 0 otherwise. * Validity depends on two things: * 1) MSDOS signature is in the last two bytes of the MBR * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() */ static int is_pmbr_valid(legacy_mbr * mbr) { int i = 0; if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) return 0; for (i = 0; i < 4; i++) { if (pmbr_part_valid(&mbr->partition_record[i])) { return 1; } } return 0; } /** * is_gpt_valid() - tests one GPT header and PTEs for validity * * lba is the logical block address of the GPT header to test * gpt is a GPT header ptr, filled on return. * ptes is a PTEs ptr, filled on return. * * Description: returns 1 if valid, 0 on error, 2 if ignored header * If valid, returns pointers to PTEs. */ static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, gpt_header *pgpt_head, gpt_entry **pgpt_pte) { /* Confirm valid arguments prior to allocation. */ if (!dev_desc || !pgpt_head) { printf("%s: Invalid Argument(s)\n", __func__); return 0; } ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, dev_desc->blksz); /* Read MBR Header from device */ if (blk_dread(dev_desc, 0, 1, (ulong *)mbr) != 1) { printf("*** ERROR: Can't read MBR header ***\n"); return 0; } /* Read GPT Header from device */ if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) { printf("*** ERROR: Can't read GPT header ***\n"); return 0; } /* Invalid but nothing to yell about. */ if (le64_to_cpu(pgpt_head->signature) == GPT_HEADER_CHROMEOS_IGNORE) { debug("ChromeOS 'IGNOREME' GPT header found and ignored\n"); return 2; } if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) return 0; if (dev_desc->sig_type == SIG_TYPE_NONE) { efi_guid_t empty = {}; if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) { dev_desc->sig_type = SIG_TYPE_GUID; memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid, sizeof(empty)); } else if (mbr->unique_mbr_signature != 0) { dev_desc->sig_type = SIG_TYPE_MBR; dev_desc->mbr_sig = mbr->unique_mbr_signature; } } /* Read and allocate Partition Table Entries */ *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); if (*pgpt_pte == NULL) { printf("GPT: Failed to allocate memory for PTE\n"); return 0; } if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { free(*pgpt_pte); return 0; } /* We're done, all's well */ return 1; } /** * find_valid_gpt() - finds a valid GPT header and PTEs * * gpt is a GPT header ptr, filled on return. * ptes is a PTEs ptr, filled on return. * * Description: returns 1 if found a valid gpt, 0 on error. * If valid, returns pointers to PTEs. */ static int find_valid_gpt(struct blk_desc *dev_desc, gpt_header *gpt_head, gpt_entry **pgpt_pte) { int r; r = is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, gpt_head, pgpt_pte); if (r != 1) { if (r != 2) printf("%s: *** ERROR: Invalid GPT ***\n", __func__); if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), gpt_head, pgpt_pte) != 1) { printf("%s: *** ERROR: Invalid Backup GPT ***\n", __func__); return 0; } if (r != 2) printf("%s: *** Using Backup GPT ***\n", __func__); } return 1; } /** * alloc_read_gpt_entries(): reads partition entries from disk * @dev_desc * @gpt - GPT header * * Description: Returns ptes on success, NULL on error. * Allocates space for PTEs based on information found in @gpt. * Notes: remember to free pte when you're done! */ static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, gpt_header *pgpt_head) { size_t count = 0, blk_cnt; lbaint_t blk; gpt_entry *pte = NULL; if (!dev_desc || !pgpt_head) { printf("%s: Invalid Argument(s)\n", __func__); return NULL; } count = le32_to_cpu(pgpt_head->num_partition_entries) * le32_to_cpu(pgpt_head->sizeof_partition_entry); debug("%s: count = %u * %u = %lu\n", __func__, (u32) le32_to_cpu(pgpt_head->num_partition_entries), (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), (ulong)count); /* Allocate memory for PTE, remember to FREE */ if (count != 0) { pte = memalign(ARCH_DMA_MINALIGN, PAD_TO_BLOCKSIZE(count, dev_desc)); } if (count == 0 || pte == NULL) { printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n", __func__, (ulong)count); return NULL; } /* Read GPT Entries from device */ blk = le64_to_cpu(pgpt_head->partition_entry_lba); blk_cnt = BLOCK_CNT(count, dev_desc); if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) { printf("*** ERROR: Can't read GPT Entries ***\n"); free(pte); return NULL; } return pte; } /** * is_pte_valid(): validates a single Partition Table Entry * @gpt_entry - Pointer to a single Partition Table Entry * * Description: returns 1 if valid, 0 on error. */ static int is_pte_valid(gpt_entry * pte) { efi_guid_t unused_guid; if (!pte) { printf("%s: Invalid Argument(s)\n", __func__); return 0; } /* Only one validation for now: * The GUID Partition Type != Unused Entry (ALL-ZERO) */ memset(unused_guid.b, 0, sizeof(unused_guid.b)); if (memcmp(pte->partition_type_guid.b, unused_guid.b, sizeof(unused_guid.b)) == 0) { debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, (unsigned int)(uintptr_t)pte); return 0; } else { return 1; } } /* * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to * check EFI first, since a DOS partition is often used as a 'protective MBR' * with EFI. */ U_BOOT_PART_TYPE(a_efi) = { .name = "EFI", .part_type = PART_TYPE_EFI, .max_entries = GPT_ENTRY_NUMBERS, .get_info = part_get_info_ptr(part_get_info_efi), .print = part_print_ptr(part_print_efi), .test = part_test_efi, }; #endif /* CONFIG_HAVE_BLOCK_DEVICE */