// SPDX-License-Identifier: GPL-2.0+ /* * BTRFS filesystem implementation for U-Boot * * 2017 Marek Behun, CZ.NIC, marek.behun@nic.cz */ #include #include #include #include "btrfs.h" #include "disk-io.h" #include "volumes.h" u64 __btrfs_lookup_inode_ref(struct __btrfs_root *root, u64 inr, struct btrfs_inode_ref *refp, char *name) { struct __btrfs_path path; struct btrfs_key *key; struct btrfs_inode_ref *ref; u64 res = -1ULL; key = btrfs_search_tree_key_type(root, inr, BTRFS_INODE_REF_KEY, &path); if (!key) return -1ULL; ref = btrfs_path_item_ptr(&path, struct btrfs_inode_ref); btrfs_inode_ref_to_cpu(ref); if (refp) *refp = *ref; if (name) { if (ref->name_len > BTRFS_NAME_LEN) { printf("%s: inode name too long: %u\n", __func__, ref->name_len); goto out; } memcpy(name, ref + 1, ref->name_len); } res = key->offset; out: __btrfs_free_path(&path); return res; } int __btrfs_lookup_inode(const struct __btrfs_root *root, struct btrfs_key *location, struct btrfs_inode_item *item, struct __btrfs_root *new_root) { struct __btrfs_root tmp_root = *root; struct __btrfs_path path; int res = -1; if (location->type == BTRFS_ROOT_ITEM_KEY) { if (btrfs_find_root(location->objectid, &tmp_root, NULL)) return -1; location->objectid = tmp_root.root_dirid; location->type = BTRFS_INODE_ITEM_KEY; location->offset = 0; } if (btrfs_search_tree(&tmp_root, location, &path)) return res; if (__btrfs_comp_keys(location, btrfs_path_leaf_key(&path))) goto out; if (item) { *item = *btrfs_path_item_ptr(&path, struct btrfs_inode_item); btrfs_inode_item_to_cpu(item); } if (new_root) *new_root = tmp_root; res = 0; out: __btrfs_free_path(&path); return res; } /* * Read the content of symlink inode @ino of @root, into @target. * NOTE: @target will not be \0 termiated, caller should handle it properly. * * Return the number of read data. * Return <0 for error. */ int btrfs_readlink(struct btrfs_root *root, u64 ino, char *target) { struct btrfs_path path; struct btrfs_key key; struct btrfs_file_extent_item *fi; int ret; key.objectid = ino; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = 0; btrfs_init_path(&path); ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) return ret; if (ret > 0) { ret = -ENOENT; goto out; } fi = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(path.nodes[0], fi) != BTRFS_FILE_EXTENT_INLINE) { ret = -EUCLEAN; error("Extent for symlink %llu must be INLINE type!", ino); goto out; } if (btrfs_file_extent_compression(path.nodes[0], fi) != BTRFS_COMPRESS_NONE) { ret = -EUCLEAN; error("Extent for symlink %llu must not be compressed!", ino); goto out; } if (btrfs_file_extent_ram_bytes(path.nodes[0], fi) >= root->fs_info->sectorsize) { ret = -EUCLEAN; error("Symlink %llu extent data too large (%llu)!\n", ino, btrfs_file_extent_ram_bytes(path.nodes[0], fi)); goto out; } read_extent_buffer(path.nodes[0], target, btrfs_file_extent_inline_start(fi), btrfs_file_extent_ram_bytes(path.nodes[0], fi)); ret = btrfs_file_extent_ram_bytes(path.nodes[0], fi); out: btrfs_release_path(&path); return ret; } int __btrfs_readlink(const struct __btrfs_root *root, u64 inr, char *target) { struct btrfs_root *subvolume; struct btrfs_fs_info *fs_info = current_fs_info; struct btrfs_key key; int ret; ASSERT(fs_info); key.objectid = root->objectid; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; subvolume = btrfs_read_fs_root(fs_info, &key); if (IS_ERR(subvolume)) return -1; ret = btrfs_readlink(subvolume, inr, target); if (ret < 0) return -1; target[ret] = '\0'; return 0; } static int lookup_root_ref(struct btrfs_fs_info *fs_info, u64 rootid, u64 *root_ret, u64 *dir_ret) { struct btrfs_root *root = fs_info->tree_root; struct btrfs_root_ref *root_ref; struct btrfs_path path; struct btrfs_key key; int ret; btrfs_init_path(&path); key.objectid = rootid; key.type = BTRFS_ROOT_BACKREF_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) return ret; /* Should not happen */ if (ret == 0) { ret = -EUCLEAN; goto out; } ret = btrfs_previous_item(root, &path, rootid, BTRFS_ROOT_BACKREF_KEY); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); root_ref = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_root_ref); *root_ret = key.offset; *dir_ret = btrfs_root_ref_dirid(path.nodes[0], root_ref); out: btrfs_release_path(&path); return ret; } /* * To get the parent inode of @ino of @root. * * @root_ret and @ino_ret will be filled. * * NOTE: This function is not reliable. It can only get one parent inode. * The get the proper parent inode, we need a full VFS inodes stack to * resolve properly. */ static int get_parent_inode(struct btrfs_root *root, u64 ino, struct btrfs_root **root_ret, u64 *ino_ret) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_path path; struct btrfs_key key; int ret; if (ino == BTRFS_FIRST_FREE_OBJECTID) { u64 parent_root = -1; /* It's top level already, no more parent */ if (root->root_key.objectid == BTRFS_FS_TREE_OBJECTID) { *root_ret = fs_info->fs_root; *ino_ret = BTRFS_FIRST_FREE_OBJECTID; return 0; } ret = lookup_root_ref(fs_info, root->root_key.objectid, &parent_root, ino_ret); if (ret < 0) return ret; key.objectid = parent_root; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; *root_ret = btrfs_read_fs_root(fs_info, &key); if (IS_ERR(*root_ret)) return PTR_ERR(*root_ret); return 0; } btrfs_init_path(&path); key.objectid = ino; key.type = BTRFS_INODE_REF_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) return ret; /* Should not happen */ if (ret == 0) { ret = -EUCLEAN; goto out; } ret = btrfs_previous_item(root, &path, ino, BTRFS_INODE_REF_KEY); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); *root_ret = root; *ino_ret = key.offset; out: btrfs_release_path(&path); return ret; } /* inr must be a directory (for regular files with multiple hard links this function returns only one of the parents of the file) */ static u64 __get_parent_inode(struct __btrfs_root *root, u64 inr, struct btrfs_inode_item *inode_item) { struct btrfs_key key; u64 res; if (inr == BTRFS_FIRST_FREE_OBJECTID) { if (root->objectid != btrfs_info.fs_root.objectid) { u64 parent; struct btrfs_root_ref ref; parent = btrfs_lookup_root_ref(root->objectid, &ref, NULL); if (parent == -1ULL) return -1ULL; if (btrfs_find_root(parent, root, NULL)) return -1ULL; inr = ref.dirid; } if (inode_item) { key.objectid = inr; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; if (__btrfs_lookup_inode(root, &key, inode_item, NULL)) return -1ULL; } return inr; } res = __btrfs_lookup_inode_ref(root, inr, NULL, NULL); if (res == -1ULL) return -1ULL; if (inode_item) { key.objectid = res; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; if (__btrfs_lookup_inode(root, &key, inode_item, NULL)) return -1ULL; } return res; } static inline int next_length(const char *path) { int res = 0; while (*path != '\0' && *path != '/') { ++res; ++path; if (res > BTRFS_NAME_LEN) break; } return res; } static inline const char *skip_current_directories(const char *cur) { while (1) { if (cur[0] == '/') ++cur; else if (cur[0] == '.' && cur[1] == '/') cur += 2; else break; } return cur; } /* * Resolve one filename of @ino of @root. * * key_ret: The child key (either INODE_ITEM or ROOT_ITEM type) * type_ret: BTRFS_FT_* of the child inode. * * Return 0 with above members filled. * Return <0 for error. */ static int resolve_one_filename(struct btrfs_root *root, u64 ino, const char *name, int namelen, struct btrfs_key *key_ret, u8 *type_ret) { struct btrfs_dir_item *dir_item; struct btrfs_path path; int ret = 0; btrfs_init_path(&path); dir_item = btrfs_lookup_dir_item(NULL, root, &path, ino, name, namelen, 0); if (IS_ERR(dir_item)) { ret = PTR_ERR(dir_item); goto out; } btrfs_dir_item_key_to_cpu(path.nodes[0], dir_item, key_ret); *type_ret = btrfs_dir_type(path.nodes[0], dir_item); out: btrfs_release_path(&path); return ret; } /* * Resolve a full path @filename. The start point is @ino of @root. * * The result will be filled into @root_ret, @ino_ret and @type_ret. */ int btrfs_lookup_path(struct btrfs_root *root, u64 ino, const char *filename, struct btrfs_root **root_ret, u64 *ino_ret, u8 *type_ret, int symlink_limit) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_root *next_root; struct btrfs_key key; const char *cur = filename; u64 next_ino; u8 next_type; u8 type; int len; int ret = 0; /* If the path is absolute path, also search from fs root */ if (*cur == '/') { root = fs_info->fs_root; ino = btrfs_root_dirid(&root->root_item); type = BTRFS_FT_DIR; } while (*cur != '\0') { cur = skip_current_directories(cur); len = next_length(cur); if (len > BTRFS_NAME_LEN) { error("%s: Name too long at \"%.*s\"", __func__, BTRFS_NAME_LEN, cur); return -ENAMETOOLONG; } if (len == 1 && cur[0] == '.') break; if (len == 2 && cur[0] == '.' && cur[1] == '.') { /* Go one level up */ ret = get_parent_inode(root, ino, &next_root, &next_ino); if (ret < 0) return ret; root = next_root; ino = next_ino; goto next; } if (!*cur) break; ret = resolve_one_filename(root, ino, cur, len, &key, &type); if (ret < 0) return ret; if (key.type == BTRFS_ROOT_ITEM_KEY) { /* Child inode is a subvolume */ next_root = btrfs_read_fs_root(fs_info, &key); if (IS_ERR(next_root)) return PTR_ERR(next_root); root = next_root; ino = btrfs_root_dirid(&root->root_item); } else if (type == BTRFS_FT_SYMLINK && symlink_limit >= 0) { /* Child inode is a symlink */ char *target; if (symlink_limit == 0) { error("%s: Too much symlinks!", __func__); return -EMLINK; } target = malloc(fs_info->sectorsize); if (!target) return -ENOMEM; ret = btrfs_readlink(root, key.objectid, target); if (ret < 0) { free(target); return ret; } target[ret] = '\0'; ret = btrfs_lookup_path(root, ino, target, &next_root, &next_ino, &next_type, symlink_limit); if (ret < 0) return ret; root = next_root; ino = next_ino; type = next_type; } else { /* Child inode is an inode */ ino = key.objectid; } next: cur += len; } if (!ret) { *root_ret = root; *ino_ret = ino; *type_ret = type; } return ret; } u64 __btrfs_lookup_path(struct __btrfs_root *root, u64 inr, const char *path, u8 *type_p, struct btrfs_inode_item *inode_item_p, int symlink_limit) { struct btrfs_dir_item item; struct btrfs_inode_item inode_item; u8 type = BTRFS_FT_DIR; int len, have_inode = 0; const char *cur = path; if (*cur == '/') { ++cur; inr = root->root_dirid; } do { cur = skip_current_directories(cur); len = next_length(cur); if (len > BTRFS_NAME_LEN) { printf("%s: Name too long at \"%.*s\"\n", __func__, BTRFS_NAME_LEN, cur); return -1ULL; } if (len == 1 && cur[0] == '.') break; if (len == 2 && cur[0] == '.' && cur[1] == '.') { cur += 2; inr = __get_parent_inode(root, inr, &inode_item); if (inr == -1ULL) return -1ULL; type = BTRFS_FT_DIR; continue; } if (!*cur) break; if (__btrfs_lookup_dir_item(root, inr, cur, len, &item)) return -1ULL; type = item.type; have_inode = 1; if (__btrfs_lookup_inode(root, (struct btrfs_key *)&item.location, &inode_item, root)) return -1ULL; if (item.type == BTRFS_FT_SYMLINK && symlink_limit >= 0) { char *target; if (!symlink_limit) { printf("%s: Too much symlinks!\n", __func__); return -1ULL; } target = malloc(min(inode_item.size + 1, (u64) btrfs_info.sb.sectorsize)); if (!target) return -1ULL; if (__btrfs_readlink(root, item.location.objectid, target)) { free(target); return -1ULL; } inr = __btrfs_lookup_path(root, inr, target, &type, &inode_item, symlink_limit - 1); free(target); if (inr == -1ULL) return -1ULL; } else if (item.type != BTRFS_FT_DIR && cur[len]) { printf("%s: \"%.*s\" not a directory\n", __func__, (int) (cur - path + len), path); return -1ULL; } else { inr = item.location.objectid; } cur += len; } while (*cur); if (type_p) *type_p = type; if (inode_item_p) { if (!have_inode) { struct btrfs_key key; key.objectid = inr; key.type = BTRFS_INODE_ITEM_KEY; key.offset = 0; if (__btrfs_lookup_inode(root, &key, &inode_item, NULL)) return -1ULL; } *inode_item_p = inode_item; } return inr; } u64 __btrfs_file_read(const struct __btrfs_root *root, u64 inr, u64 offset, u64 size, char *buf) { struct __btrfs_path path; struct btrfs_key key; struct btrfs_file_extent_item *extent; int res = 0; u64 rd, rd_all = -1ULL; key.objectid = inr; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = offset; if (btrfs_search_tree(root, &key, &path)) return -1ULL; if (__btrfs_comp_keys(&key, btrfs_path_leaf_key(&path)) < 0) { if (btrfs_prev_slot(&path)) goto out; if (btrfs_comp_keys_type(&key, btrfs_path_leaf_key(&path))) goto out; } rd_all = 0; do { if (btrfs_comp_keys_type(&key, btrfs_path_leaf_key(&path))) break; extent = btrfs_path_item_ptr(&path, struct btrfs_file_extent_item); if (extent->type == BTRFS_FILE_EXTENT_INLINE) { btrfs_file_extent_item_to_cpu_inl(extent); rd = __btrfs_read_extent_inline(&path, extent, offset, size, buf); } else { btrfs_file_extent_item_to_cpu(extent); rd = __btrfs_read_extent_reg(&path, extent, offset, size, buf); } if (rd == -1ULL) { printf("%s: Error reading extent\n", __func__); rd_all = -1; goto out; } offset = 0; buf += rd; rd_all += rd; size -= rd; if (!size) break; } while (!(res = btrfs_next_slot(&path))); if (res) return -1ULL; out: __btrfs_free_path(&path); return rd_all; } /* * Read out inline extent. * * Since inline extent should only exist for offset 0, no need for extra * parameters. * Truncating should be handled by the caller. * * Return the number of bytes read. * Return <0 for error. */ int btrfs_read_extent_inline(struct btrfs_path *path, struct btrfs_file_extent_item *fi, char *dest) { struct extent_buffer *leaf = path->nodes[0]; int slot = path->slots[0]; char *cbuf = NULL; char *dbuf = NULL; u32 csize; u32 dsize; int ret; csize = btrfs_file_extent_inline_item_len(leaf, btrfs_item_nr(slot)); if (btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE) { /* Uncompressed, just read it out */ read_extent_buffer(leaf, dest, btrfs_file_extent_inline_start(fi), csize); return csize; } /* Compressed extent, prepare the compressed and data buffer */ dsize = btrfs_file_extent_ram_bytes(leaf, fi); cbuf = malloc(csize); dbuf = malloc(dsize); if (!cbuf || !dbuf) { ret = -ENOMEM; goto out; } read_extent_buffer(leaf, cbuf, btrfs_file_extent_inline_start(fi), csize); ret = btrfs_decompress(btrfs_file_extent_compression(leaf, fi), cbuf, csize, dbuf, dsize); if (ret < 0 || ret != dsize) { ret = -EIO; goto out; } memcpy(dest, dbuf, dsize); ret = dsize; out: free(cbuf); free(dbuf); return ret; } /* * Read out regular extent. * * Truncating should be handled by the caller. * * @offset and @len should not cross the extent boundary. * Return the number of bytes read. * Return <0 for error. */ int btrfs_read_extent_reg(struct btrfs_path *path, struct btrfs_file_extent_item *fi, u64 offset, int len, char *dest) { struct extent_buffer *leaf = path->nodes[0]; struct btrfs_fs_info *fs_info = leaf->fs_info; struct btrfs_key key; u64 extent_num_bytes; u64 disk_bytenr; u64 read; char *cbuf = NULL; char *dbuf = NULL; u32 csize; u32 dsize; bool finished = false; int num_copies; int i; int slot = path->slots[0]; int ret; btrfs_item_key_to_cpu(leaf, &key, slot); extent_num_bytes = btrfs_file_extent_num_bytes(leaf, fi); ASSERT(IS_ALIGNED(offset, fs_info->sectorsize) && IS_ALIGNED(len, fs_info->sectorsize)); ASSERT(offset >= key.offset && offset + len <= key.offset + extent_num_bytes); /* Preallocated or hole , fill @dest with zero */ if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_PREALLOC || btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { memset(dest, 0, len); return len; } if (btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE) { u64 logical; logical = btrfs_file_extent_disk_bytenr(leaf, fi) + btrfs_file_extent_offset(leaf, fi) + offset - key.offset; read = len; num_copies = btrfs_num_copies(fs_info, logical, len); for (i = 1; i <= num_copies; i++) { ret = read_extent_data(fs_info, dest, logical, &read, i); if (ret < 0 || read != len) continue; finished = true; break; } if (!finished) return -EIO; return len; } csize = btrfs_file_extent_disk_num_bytes(leaf, fi); dsize = btrfs_file_extent_ram_bytes(leaf, fi); disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); num_copies = btrfs_num_copies(fs_info, disk_bytenr, csize); cbuf = malloc_cache_aligned(csize); dbuf = malloc_cache_aligned(dsize); if (!cbuf || !dbuf) { ret = -ENOMEM; goto out; } /* For compressed extent, we must read the whole on-disk extent */ for (i = 1; i <= num_copies; i++) { read = csize; ret = read_extent_data(fs_info, cbuf, disk_bytenr, &read, i); if (ret < 0 || read != csize) continue; finished = true; break; } if (!finished) { ret = -EIO; goto out; } ret = btrfs_decompress(btrfs_file_extent_compression(leaf, fi), cbuf, csize, dbuf, dsize); if (ret != dsize) { ret = -EIO; goto out; } /* Then copy the needed part */ memcpy(dest, dbuf + btrfs_file_extent_offset(leaf, fi), len); ret = len; out: free(cbuf); free(dbuf); return ret; }